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Alzheimer’s disease (AD) is characterized by memory loss and decline of cognitive

function, associated with progressive neurodegeneration. While neuropathological

processes like amyloid plaques and tau neurofibrillary tangles have been linked to

neuronal death in AD, the precise role of glial activation on disease progression is still

debated. It was suggested that neuroinflammation could occur well ahead of amyloid

deposition and may be responsible for clearing amyloid, having a neuroprotective effect;

however, later in the disease, glial activation could become deleterious, contributing

to neuronal toxicity. Recent genetic and preclinical studies suggest that the different

activation states of microglia and astrocytes are complex, not as polarized as previously

thought, and that the heterogeneity in their phenotype can switch during disease

progression. In the last few years, novel imaging techniques e.g., new radiotracers

for assessing glia activation using positron emission tomography and advanced

magnetic resonance imaging technologies have emerged, allowing the correlation of

neuro-inflammatory markers with cognitive decline, brain function and brain pathology

in vivo. Here we review all new imaging technology in AD patients and animal models

that has the potential to serve for early diagnosis of the disease, to monitor disease

progression and to test the efficacy and the most effective time window for potential

anti-inflammatory treatments.
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INTRODUCTION

Neuroinflammation is the term used to denote the response of the central nervous system
to harmful stimuli such as protein aggregation, pathogens, and any other insult to the brain.
While timely initiated and resolved, the inflammatory response is necessary reaction to noxious
stimuli and hence protective, sustained and/or disproportionate (neuro)inflammation will likely
contribute, exacerbate or induce tissue damage and thereby aggravate disease pathology (1). The
nature of the inflammatory process is therefore complex and dynamic and changes along different
stages of the disease, involving phenotypic alterations in all cells present within the CNS including
neurons, microglia, astrocytes, and other inflammatory cells.

Microglia, act as part of the innate immune system, are constantly scanning and surveying the
local microenvironment for signals of infection and injury [for a review see (2)]. Amyloid-β has
been reported to “prime” or activate microglial cells (3). Different activation states were described
in the past, so called “M1” or classically activated microglia or “M2” alternatively activated (2). The
classically activated or pro-inflammatory phenotype has been associated with disease aggravation.
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However, this classification has been recently challenged by
single-cells transcriptomics, which suggests that the gene
expression profile progressively switches with the disease and
that this may even depend on how close they are to the amyloid
plaques (4).

Astrocytes, are key mediators of many essential processes in
the CNS. As for microglia, astrocytes have been classified into
two distinct reactive states, A1 (inflammatory) and A2 (ischemic)
states (5), although this classification seems to be over-simplistic.
Accumulation of hypertrophic reactive astrocytes around senile
plaques has been observed in post-mortem human tissue from
AD patients [Reviewed by (6)] and in animal models of the
disease (7). It is worth noting that astrocytes and microglia
communicate with each other and this cross talk is important in
promoting glial activation (8, 9).

In order to follow-up changes in microglial and astrocytic
activation in vivo, radioactive tracers for positron emission
and single-photon emission computed tomography (PET and
SPECT) have been developed in the past decades. In this review,
we will analyze different in vivo imaging techniques that allow
the visualization of changes in neuroinflammation in animals and
humans.

IN VIVO IMAGING OF MICROGLIA
ACTIVATION

PET Imaging With TSPO Ligands in AD
Patients
Following activation, microglia proliferate, and express a series
of genes for pro-inflammatory cytokines and certain receptors
on their surface, including the 18 kDa translocator protein
(TSPO). TSPO, primarily but not exclusively expressed in the
mitochondrial membrane of microglia, was previously identified
as the peripheral-type benzodiazepine receptor (PBR) (10).
Besides microglia, TSPO has been detected in other types of
gliosis as well, such as in astrocytoma (11), and is generally
expressed in highly proliferating cells. While the exact function
of TSPO still remains to be elucidated, initially its role was
associated with the transport of cholesterol, with the TSPO
complex being a rate-limiting step in the synthesis of steroid
hormones (12). Initial attempts to create TSPO knockout mice
reported a non-viable phenotype [described in (13)]. However,
the successful development of conditional TSPO knockout
mice suggested that TSPO might not be a crucial part of
steroid hormone synthesis, e.g., testosterone production (14). In
addition, the mitochondrial expression-paradigm was challenged
by reports of TSPO expression in other subcellular locations (15),
e.g., nuclear/perinuclear-located TSPO, where is believed to play
a part in cell proliferation (16). Moreover, plasma membrane
bound TSPO has been observed as well, for instance in mature
human red blood cells, lacking mitochondria (17, 18).

In the mammalian brain, the expression of TSPO turned out
to be very low, compared to other tissues (19). Only the olfactory
bulb and non-parenchymal regions, such as the ependymal and
choroid plexus, showed higher TSPO densities in comparison
with most gray and white matter structures (20, 21). However,

under conditions of local inflammatory responses, e.g., caused
by a multitude of brain injuries, neoplasms and infections, TSPO
appears to be upregulated. This effect was quickly recognized and
made TSPO a potentially ideal and sensitive biomarker of brain
injury (10, 11, 22–25). Therefore, PET tracers for TSPO were
developed in the past decade as markers for microglia activation
and neuroinflammation in AD (10, 26) (see Table 1).

The first and probably most widely used TSPO radiotracers,
with over thousand publications, are the antagonist PK11195 [1-
(2-chlorophenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline
carboxamide] and the agonist Ro5-4864 (63). Initial studies
with PK11195 were conducted more than two decades ago, with
numerous subsequent papers demonstrating upregulation in
different neurodegenerative diseases and in neuroinflammatory
conditions (64–67). Unsurprisingly, increased TSPO expression
was reported by autoradiography in a wide range of brain
regions of post-mortem samples from AD patients, including
hippocampus, frontal, temporal, and parietal cortices (22, 68, 69).

Cagnin et al. published the first PET study using
[11C]PK11195 in 2001, demonstrating an increase of tracer
uptake in AD cases (28). While subsequent reports generally
have shown increased tracer binding in AD brains, some
publications found no differences between Alzheimer’s subjects
and healthy individuals (29, 33, 35). In spite of these conflicting
results, it is generally accepted that there is increased microglial
activation in AD. Recent studies have extended this to patients
with Mild cognitive impairment (MCI), showing that glia
activation can precede clinical AD (70).

Recent reports have evaluated the relationship between
amyloid load and neuroinflammation, suggesting that microglial
activation is associated with amyloid load. Interestingly, using
[11C]PK11195 and the amyloid tracer [11C]PIB, one study did
not show any correlation between the binding of these tracers,
while another one suggested a negative correlation between
amyloid-β and TSPO density (31, 33). The reason behind
these different outcomes could be related to the limitations
of the current amyloid ligands; while we are able to image
amyloid plaque deposition using amyloid imaging agents, other
forms of amyloid, such as β-amyloid oligomers, which may
be contributing to the microglial activation, are not currently
detectable by PET (36, 71).

However, rigorous quantification of TSPO density using
[11C]PK11195 has been confronted by limitations of the ligand,
including its modest binding affinity, high non-specific binding
and elevated lipophilicity, generating a low signal-to-noise ratio
(72). This has led to the development of numerous “second-
generation“ TSPO ligands [11C]AC-5216, [18F]PBR111, both
11C and 18F radiolabeled derivatives of PBR06 and PBR28,
[18F]FEPPA, [18F]DPA-714 and the SPECT tracer [123I]CLINDE
(46, 48, 64, 73–79). Figure 1 illustrates an example of PET
imaging with [11C]-PBR28 showing increased binding in an AD
patient.

However, while affinity and nonspecific binding properties
were usually found to be improved as compared to PK11195, it
quickly became apparent that these new TSPO tracers are affected
by genetic variability of TSPO binding site induced by the rs6971
single-nucleotide polymorphism (80), resulting in high-, mixed
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TABLE 1 | In vivo imaging studies in patients with Alzheimer’s disease or Mild Cognitive Impairment (MC) with the primary purpose of investigating neuroinflammatory

changes through radiolabeled tracers.

Radiotracer Subjects used Characteristics References

18 kDa TRANSLOCATOR PROTEIN (TSPO)

[11C]PK11195 8 probable AD, “normal”

elderly controls

No differences between controls and AD patients (27)

8 AD, 1 MCI, 15 HC Increased tracer uptake in most brain regions (28)

13 AD, 14 HC Increased tracer uptake in cortices, striatum and other regions, but not in

hippocampus; positive correlation of tracer binding and cognitive scores, but not with

[11C]PIB amyloid load

(29)

10 AD, 10 HC Higher average BP in AD subjects in neocortex and cerebellum; vascular binding

different between AD and controls

(30)

6 AD, 6 MCI, 6 HC No differences between controls and MCI/AD patients (31)

22 AD,

14 MCI; 24 HC

Increased tracer binding in the frontal cortex of MCI subjects, coinciding with higher

[11C]PIB amyloid load in the frontal cortex; no correlation between tracer binding and

amyloid load or cognitive scores; tracer binding in AD patients not compared to MCI

and controls

(32)

11 AD, 4 HC Increased tracer binding in cortices and cingulate but not in hippocampus; negative

correlation of tracer BP and [11C]PIB amyloid load

(33)

8 AD, 9 MCI, 17 HC Comparison of different modeling approaches (34)

19 AD,10 MCI; 21 HC No differences between groups in ROI analysis but small significantly increased

clusters in voxel-wise comparison; no correlation of BPND and cognitive function

(35)

8 AD, 15 HC Increases in tracer binding in AD patients in several cortical regions, hippocampus

and striatum with further mean increases at 16 months later; tracer binding coincided

with increased [11C]PIB amyloid load and decreased [18F]FDG glucose metabolism

(36)

9 PD dementia, 8 AD, 8 HC Negative correlation between hippocampal volume and tracer binding (37)

8 MCI, 8 AD, 14 HC MCI and AD patients showed an increased tracer binding as compared to control but

reductions in tracer binding 14 months later

(38)

42 MCI; 15 HC 85% of MCI patients showed increased tracer uptake in cortical regions; positive

correlation of tracer uptake and [11C]PIB amyloid load in cortical regions; [11C]PIB

positive MCI patients showed higher tracer binding; correlation of tracer binding with

some cognitive scores

(39)

16 PSP, 9 probable AD, 7

MCI; Part of the NIMROD

study

Increased tracer uptake in most neocortical regions and putamen of AD patients;

tracer binding correlates with cognitive scores

(40)

[123I] iodo-PK11195

(SPECT)

10 AD, 9 HC Significant increase in tracer uptake in frontal and right mesotemporal cortices;

significant negative correlation between cognitive scores and tracer uptake in several

brain regions

(41)

[11C] vinpocetine 6 AD, 12 HC No difference between AD and controls; Study limited by poor modeling and use of

%SUV used as main outcome measure

(42)

[11C] DPA-713 7 AD, 12 healthy elderly and

12 healthy young subjects

Comparison with [11C]PK11195 binding; BPND levels significantly elevated in AD, but

not for [11C](R)PK11195; Correlation of [11C]DPA-713 BPND levels and cognitive

scores, again not observed for [11C]PK11195; no rs6971 genotyping

(43)

[18F] DPA-714 10 AD, 6 HC No difference between AD and controls; no rs6971 genotyping (44)

9 probable-AD, 6 HC significant differences in frontal and medial temporal lobes between subject groups in

BPND; no correlation between age, cognitive scores and disease duration; no rs6971

genotyping

(45)

64 AD, 32 HC rs6971 genotyping; higher tracer uptake in high and mixed affinity binders with AD

compared to controls using volumes of interest and voxel-wise comparison,

especially at the prodromal stage; tracer binding correlated with cognitive scores

(46)

[11C] DAA1106

10 AD and 10 HC Mean BP increased in AD patients in all measured regions, significant in dorsal/medial

prefrontal cortex, anterior cingulate cortex, striatum and cerebellum; no rs6971

genotyping

(47)

10 MCI, 10 AD and 10 HC Increased BP diffusely in MCI compared to control but no AD; No difference between

AD and aMCI; no rs6971 genotyping

(48)

[18F] FEDAA1106 9 AD, 7 HC No difference between AD and controls; no rs6971 genotyping; (49)

(Continued)
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TABLE 1 | Continued

Radiotracer Subjects used Characteristics References

[11F] FEPPA 21 probable AD, 21 HC rs6971 genotyping; adjusted tracer binding significantly higher in AD in various gray

and white matter areas; tracer binding was positively correlated with cognitive and

sensory impairments

(50)

[11F] FEMPA 10 AD, 7 HC rs6971 determined; increased VT in the medial temporal cortex of high- and mixed

affinity AD patients; High-affinity binding AD patients showed significantly higher

tracer binding most investigated brain regions; correlation with cognitive scores

(51)

[11C] PBR28 10 MCI, 19 AD, 13 HC rs6971 genotyping; No difference between MCI and healthy controls; AD patients

showed widespread increases in cortical but not subcortical tracer binding as

compared to MCI and controls, largely independent of genotype; tracer binding was

significantly negatively correlated with several cognitive scores, gray matter volume

and [11C]PIB amyloid burden

(52)

9 MCI, 6 AD and 7 HC Association of higher [11C]PBR28 SUV with poly (ADPribose) polymerase 1

polymorphisms in subjects at risk for AD

(53)

11 MCI, 25 AD and 21 HC All patients [11C]PIB positive and rs6971 genotyped; tracer VT higher temporal and

parietal cortex in MCI/AD; cerebellum a suitable pseudo-reference region not

significantly different among the three groups in cerebellum

(54)

14 probable MCI/AD, 8 HC [11C]PIB positive patients (rs6971 genotyped) had higher tracer binding in cortical

regions and hippocampus and showed a 2.5–7.7% annual increase in follow-up

scans; tracer binding was correlated with disease progression, measured as

worsening of cognitive scores

(55)

11 PCA, 11 AD, 15 HC Higher tracer retention of PCA patients in occipital, posterior parietal, and temporal

regions, AD patients with increased tracer binding in inferior and medial temporal

cortex; tracer binding correlated with cortical volume loss and reduced glucose

metabolism

(56)

21 AD and 15 HC BPND can be estimated without arterial input function and shows similar effect sizes

in AD patients compared to arterial input function derived data in AD patients

(57)

MONOAMINE OXIDASE B - [11C]DEUTERIUM-L-DEPRENYL

[11C]deuterium-L-

deprenyl

9 AD, 11 HC Significantly increased tracer retention after blood-flow corrections in frontal, parietal

and temporal cortex of AD patients, No difference in sensorimotor, occipital cortex

and subcortical regions; significant correlation of tracer binding and [11C]PIB amyloid

load

(58)

8 MCI, 7 AD, 14 HC Significant increase in tracer binding in bilateral frontal and parietal cortices in MCI

and AD patients; no change in subcortical regions; no correlation of the tracer binding

with [11C]PIB amyloid load or [18F]FDG glucose metabolism

(59)

17 MCI, 8 AD Significant correlation between tracer binding and [11C]PIB amyloid burden in AD;

MCI [11C]PIB positive patients show higher tracer binding in parahippocampus

(60)

17 MCI, 8 AD, 11 HC Tracer binding found to be independent of brain perfusion and able to discriminate

between groups

(61)

CALCIUM INFLUX USING 57CO SPECT

57Co (SPECT) 6 probable AD, 5

vascular/fronto-temporal

dementia

No specific uptake patterns in probable AD patients as compared to other dementia

patients

(62)

AD, Alzheimer’s disease; HC, Healthy controls; MCI, Mild Cognitive Impairment; PCA, posterior cortical trophy; PD, Parkinson’s disease; PSP, progressive supranuclear palsy.

and low-affinity binders. This polymorphism restricts studies
with these tracers to high- and mixed-affinity binders. Recently,
“third-generation” TSPO tracers, such as GE-180 and ER176 (81,
82) were developed and aimed at allowing TSPO quantification
regardless of rs6971 genotype, however with mixed success and
no published data in AD patients. Additional considerations
to take into account when using these ligands in vivo are the
different modeling approaches and reference regions (83), along
with other methodological issues reviewed by Donat et al. (84).

In order to follow up changes of TSPO over time, longitudinal
studies in AD have recently been published. Two studies
(36, 38) revealed reductions in [11C]PK11195 binding in MCI
patients with different amyloidosis status, whereas increased

binding was found in diagnosed AD patients. A moderate
increase of [11C]PBR28 uptake in 14 patients with AD was
associated with worsening clinical symptoms (55). The most
recent longitudinal study with [18F]DPA-714 demonstrated that
prodromal and demented AD patients display an initially
higher TSPO density as compared to controls. However, when
classifying patients into slow and fast decliners according to
functional (Clinical Dementia Rating change) or cognitive (Mini-
Mental State Examination score decline) outcomes, it was
shown that slow decliners show a higher initial [18F]DPA-
714 binding than fast decliners, suggesting that higher initial
[18F]DPA-714 binding is associated with better clinical prognosis
(85).
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FIGURE 1 | [11C]PBR28 binding is significantly increased in different cortical

regions in an Alzheimer’s disease subject (MMSE of 22/30) compared to

healthy control (MMSE 30/30).

PET Imaging in Animal Models of AD
The first studies carried out in animal models of amyloidosis
demonstrated a significant age-dependent increase in the
specific binding of [3H]PK11195 in the TASTPM model
(APPswxPS1M146V) by autoradiography (8), in agreement
with age-dependent increases in CD68 immunoreactivity co-
localized with Aβ deposits. However, reports on [11C]PK11195
PET imaging in mouse models of amyloidosis have exposed
conflicting results, depending on the model used and age of
the animals. A higher [11C]PK11195 uptake was shown in the
brains of older APP/PS1 mice when compared with age-matched
controls (68, 86). Surprisingly, [11C]PK11195 binding in younger
transgenic APP/PS1 mice was not different from their controls,
even though immunostaining revealed activated microglia in
close proximity of amyloid deposits. Similar to human data, it is
likely that different modeling approaches and reference regions
may contribute to the seemingly conflicting in vivo findings.

Our own recent autoradiographic and PET data provided
evidence of an increased binding of [3H]PBR28 in the brain
of the aggressive 5XFAD mouse model, compared with wild-
type controls, which coincided with the strongly increased
immunoreactivity of the microglial marker Iba1 in the same
brain areas (87). These results provided support for the suitability
of PBR28 as a tool for monitoring of (micro)-glial activation.
[3H]PBR28 binding was significantly higher in female animals
and positively correlated between Aβ plaque load and tracer
binding. In addition, using [11C]PBR28 in healthy rats, in vitro
brain autoradiography showed a 19% increase of binding in aged
(19.6 months) as compared in young rats (4 months) (88).

Besides PBR28, other new generation tracers have exhibited
similar patterns in animal models of AD. Increases in TSPO
density were reported from 10 months old Thy1-hAPPLond/Swe
(APPL/S) mice compared with wild-type controls, using ex

vivo autoradiography with [18F]PBR06, but this increase was
only observed in older mice, at 16 months of age by PET
(89). Similar findings were published by Liu et al. (90), who
performed [18F]GE180 PET in young and old wild-types (WTs)
and APP/PS1dE9 transgenic mice, showing higher uptake in
transgenic and WT mice at 24 months of age but not in
young 4 months old transgenics (90). In a different study,
[18F]GE180 uptake was slightly increased in PS2APP mice at 5
mo and markedly elevated at 16 mo. Over this age range, there
was a highly positive correlation between TSPO PET uptake,
amyloid load and likewise with tracers for brain metabolism (91).
However, a recent study in APP23mice showed that the increased
rate of (micro)glia activation detected with [18F]GE-180 appears
to be of less magnitude than the elevation in amyloidosis detected
with [11C]PIB over time. In fact, [18F]GE-180 binding seems to
plateau at an earlier stage of pathogenesis, whereas amyloidosis
continues to increase. These results suggest that TSPO might
be a good marker for early pathogenesis detection, but not for
tracking long-term disease progression (92).

These tracers have also served to assess and monitor the
efficacy of anti-inflammatory treatments. LM11A-31 is a p75
neurotrophin receptor ligand that was shown to reduce the
hyperphosphorylation and misfolding of tau, decrease neurite
degeneration, and attenuate microglial activation. LM11A-31-
treated APPL/S mice displayed significantly lower [18F]GE-180
binding in cortex and hippocampus of as compared to vehicle-
treated animals, corresponding to decreased TSPO and Iba1
staining (93).

As AD is characterized by substantial aggregation of
hyperphosphorylated tau, second-generation TSPO ligands have
also been employed in transgenic models of tau pathology, such
as the PS19 mice. Here, uptake of [11C]AC-5216 was found
linearly proportional to the phospho-tau immunolabelling (94).

While TSPO is the most widely recognized biomarker of
neuroinflammations, other targets have been explored in recent
years. Radiolabeled ketoprofen methyl ester, [11C]-KTP-Me is
a highly selective tracer for the cyclooxygenase-1 (COX-1). In
APP transgenic mice, [11C]-KTP-Me uptake was significantly
increased in the brain of 16 to 24 mo old mice in comparison to
their age-matched controls, coinciding with the histopathologic
appearance of abundant Aβ plaques and activated microglia.
Furthermore, [11C]-KTP-Me accumulation was observed in the
frontal cortex and hippocampus, whereby COX-1-expressing
activated microglia appeared surrounding Aβ plaques, indicating
neuroinflammation that originated with Aβ deposition (95).
Another currently investigated alternative to TSPO ligands are
tracers for the cannabinoid 2 receptor, such as [11C]Sch225336
and [11C]A-836339 (96–98) and tracers for the purinergic
receptors P2Y12 and P2X7 (99).

Magnetic Resonance Spectroscopy (MRS)
Magnetic resonance spectroscopy (MRS) is a new technique that
can provide information about several relevant metabolites for
neuroinflammation and neurodegeneration. Recently, chemical
exchange saturation transfer (CEST), as a novel molecular
MR imaging approach, has been developed, which uses
proton exchange as a means of enhancing the contrast of
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specific molecules in the body (100). Endogenous CEST
compounds include hydroxyl (OH), amine (NH2), and amide
groups (NH). In the last few years, several studies have
explored the possibility of imaging neuroinflammatory and
neurodegeneration biomarkers in vivo with CEST, such as CEST
imaging of myo-inositol (101), glutamate (102) and glucose (103)
in AD mouse models.

IN VIVO IMAGING OF ASTROCYTES

PET Imaging of Astrocytes in Humans
The best-known tracer for astrocytes so far is [11C]deuterium-
L-deprenyl [[11C]DED], which is an irreversible monoamine
oxidase B (MAO-B) inhibitor. This is based on previous findings
showing that astrocytes express elevated levels of MAO-B during
their activation. The ligand has been therefore employed as
biomarker of astrocytosis in pathologies such as AD (59) and
amyotrophic lateral sclerosis (ALS) (104). Increased [11C]DED
binding throughout the brain was detected in MCI [11C]PIB-
positive patients compared with controls and MCI [11C]PIB-
negative and AD patients (59). In autosomal dominant AD
carriers, astrocytosis measured by [11C]DED was found initially
high and then declining, contrasting with the increasing amyloid-
β plaque load during disease progression, suggesting astrocyte
activation is implicated in the early stages of AD pathology (61).

In the last years, new ligands for the potential imaging
of astrocytes have been developed, including those for type-2
imidazoline receptors (I2Rs), which were found to be expressed
primarily in astrocytes. These receptors were described for
the first time in the 90’s and the first studies performing
in vitro binding with [3H]idazoxan in postmortem cortical
membranes showed increased density in AD patients (105). Later
on, work carried out with the I2R PET tracer [11C]FTIMD
reported specific binding to these receptors in rat and
monkey brains, but exhibiting a relative low binding specificity
(106, 107). More recently, [11C]BU99008 (2-(4,5-Dihydro-1H-
imidazol-2-yl)-1- methyl-1H-indole) was developed as a more
potent PET ligand for I2Rs imaging (108, 109), displaying
relatively high binding specificity and brain penetration in
the porcine and rhesus monkey brain (108, 110). There
are ongoing human PET imaging trials in Alzheimer’s and
healthy control patients at the moment using [11C]BU99008
and the preliminary results have shown good brain delivery,
reversible kinetics, heterogeneous distribution specific binding
signal consistent with I2BS distribution and good test-retest
reliability (111).

Imaging of Astrocytes in Models of AD
PET Imaging for Astrocytes
Imaging studies with [11C]DED carried out in transgenic APP
Swedish (APPswe) mice and wild–type animals at different ages,
have demonstrated that tracer uptake was significantly higher
at 6 months than at 18–24 months in APPswe mice, preceding
Aβ deposition (112). However, no differences in [3H]-L-deprenyl
obtained by autoradiography were observed between WT and
APPswe mice across different ages. Furthermore, staining of
the astrocyte marker GFAP was increased in older transgenic
APPSwe mice as compared to younger mice (112), raising

questions about the specificity of this ligand as marker for
astrocytes.

In vivo Bioluminescence Imaging (BPI)
Bioluminescence describes the light produced by the enzymatic
reaction of a luciferase with its substrate (luciferin) and the
emitted light is detected with a camera. The technique allows
for fast acquisition times so that subjects can be imaged quickly,
serially over time and with minimal distress. The Prusiner’s lab
developed in vivo bioluminescence imaging and quantitative
determination of inflammation in a model of prion related
neurodegenerative disease (113). Additionally, bigenic mice
overexpressing APP and GFAP-Luc were reported to show an
age-dependent increase in signal that was corresponded to major
areas of Aβ deposition. Bioluminescence signals began to increase
in 7-mo-old Tg(CRND8:Gfap-luc) mice and at 14-mo-old in
Tg(APP23:Gfap-luc) mice (114).

Gfap-luciferase reporter mice have also been crossed-bred
with hTau40AT/C57BL/6N mice. In vivo bioluminescence
imaging (BLI) showed activation of astrocytes in response to
aggregation of Tau, from 5 months of age compared with wild-
type animals (115).

CONCLUSIONS AND FUTURE
PERSPECTIVES

The development of new neuroinflammation tracers in the last
decade has allowed characterizing the pattern of glia activation in
AD patients, showing that it occurs ahead of amyloid deposition,
correlates in many cases with amyloid plaque density and allows
limited predictions of disease progression. The longitudinal
studies have shown that this glial activation, as detected by
PET, fluctuates during disease progression. Although reports in
animal models of AD have helped confirming the specificity
of TSPO tracers for microglia, the situation is not the same
for tracers for astrocytes and more research needs to be done
regarding this aspect. In addition, new tracers able to differentiate
between the potential M1 and M2 microglial phenotypes would
be advantageous in identifying their function in vivo (116).

Future studies should include imaging in patients after
intervention with anti-inflammatory drugs; however so far, there
are no reports in that aspect in AD cases. Therefore, imaging
studies are key to test the efficacy and the most effective time
window for potential anti-inflammatory treatments.
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