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Multifocal visual evoked potential (mfVEP) is used for assessing visual functions in

patients with pituitary adenomas. Images generated by mfVEP facilitate evaluation of

visual pathway integrity. However, lack of healthy controls, and high time consumption

for analyzing data restrict the use of mfVEP in clinical settings; moreover, low

signal-noise-ratio (SNR) in some images further increases the difficulty of analysis. I

hypothesized that automated workflow with deep learning could facilitate analysis and

correct classification of these images. A total of 9,120 images were used in this study.

The automated workflow included clustering ideal and noisy images, denoising images

using an autoencoder algorithm, and classifying normal and abnormal images using a

convolutional neural network. The area under the receiver operating curve (AUC) of the

initial algorithm (built on all the images) was 0.801 with an accuracy of 79.9%. The model

built on denoised images had an AUC of 0.795 (95%CI: 0.773–0.817) and an accuracy of

78.6% (95%CI: 76.8–80.0%). Themodel built on ideal images had an AUC of 0.985 (95%

CI: 0.976–0.994) and an accuracy of 94.6% (95%CI: 93.6–95.6%). The ensemble model

achieved an AUC of 0.908 and an accuracy of 90.8% (sensitivity: 94.3%; specificity:

87.7%). The automated workflow for analyzing mfVEP plots achieved high AUC and

accuracy, which suggests its possible clinical use.
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INTRODUCTION

Pituitary adenomas account for 15% of all intracranial neoplasms, making them one of the most
common type of brain tumors (1). Patients report visual dysfunctions when tumors extend beyond
the sella compressing the optic chiasm and nerve. Typical neuro-ophthalmic features include
progressive loss of visual acuity and bilateral temporal visual field defect.

Visual evoked potential is used to evaluate patients with pituitary adenomas presenting visual
symptoms. However, the efficacy of full-field visual evoked potential is limited by the fact that
it provides a summed response of all the stimulated visual neurons. Recent development of
multifocal stimulation techniques has resulted in the implementation of a newmethod for assessing
visual functions, i.e., multifocal visual evoked potential (mfVEP), which is a unique approach for
evaluating the visual pathway integrity. This technique dismisses the subjectivity of patients; thus,
it is beginning to show promise in evaluating patients with compressive neuropathy (2). Several
studies have shown that mfVEP can predict visual outcome in these patients (3, 4).
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mfVEP generates 60 visual evoked potential images for both
eyes (Figure 1). For the analysis of these images, a database of
healthy volunteers is required. The analysis is time consuming
(30min by a trained ophthalmologist) and these images vary in
qualities due to low signal-noise-ratio (SNR), which increases
the difficulty during analysis. Recently, a few deep learning
systems have shown high sensitivity and specificity for image
classification (5, 6). Deep learning-based models also have shown
great promise for denoising images (7).Moreover, from fundus to
skin disease images, convolutional neural networks have shown
to have great capability to distinguish images into multiple
classifications (5, 6). Therefore, I hypothesize that deep learning-
based automated workflow could facilitate the analysis and
correct classification of these images by clustering ideal and noisy
images, denoising images using an autoencoder algorithm, and
classifying normal and abnormal images using a convolutional
neural network.

METHODS

All the procedures followed the tenets of the Declaration of
Helsinki, and the study was approved by Huashan Hospital
Institutional Review Board; written informed consents were
obtained from all participants.

mfVEP recordings were obtained as in my previous studies
(2). The stimulus was a 60-sector, cortically scaled dartboard
pattern with a mean luminance of 66 cd/m2 and a Michelson
contrast of 95%. The dartboard pattern had a reversal frame
rate of 75Hz. The patients were instructed to fixate on the
center of the dartboard pattern (marked with an “X”) with
their best refractive correction; the eye position was monitored
continuously. Three recording channels were connected to gold
cup electrodes. For the midline channel, electrodes were placed
4 cm above the inion (active), at the inion (reference), and on
the earlobe (ground). For the other two active channels, the
same ground and reference electrodes were used, but the active
electrode was placed 1 cm above and 4 cm lateral to the inion
on either side. Two seven-minute recordings from each eye
were obtained and the averaged responses were used. Normal
or abnormal rating was given by comparing each sector with
the same sector for healthy volunteers using MATLAB programs
(MathWorks, Natick, MA, USA).

As part of the automated workflow, images and ground truth
were extracted from the mfVEP report using a Python-based
algorithm. The plot of each sector was transformed into an image
of 30 × 50 pixels, which yielded 120 images for each patient
(60 images per eye, as shown in Figure 1).

A convolutional neural network was used to classify the
images into normal or abnormal images. The convolutional
neural network algorithm computes the likelihood of
abnormality from the intensities of pixels in each image.
Training this algorithm requires a large set of images in which
the ground truth is already known (training set). During the
training process, the parameters of the neural network are
initially set to random values. Then, in each training step, the
algorithm compares the calculated likelihood with the ground

truth and modifies the parameters slightly to decrease the error.
The algorithm repeats this process for every image in the training
set for several iterations. Finally, the algorithm learns how to
compute the correct likelihood from the pixels of all images
in the training set with the least error. A convolutional neural
network (VGG19 architecture, Supplement Table 1), which
learns to recognize the amplitude or latency of mfVEP using
local features, was used in this study.

For denoising noisy images, an autoencoder algorithm was
used. An autoencoder is a neural network that is trained to
attempt to match its input to its output. The network may be
viewed as consisting of two parts: an encoder block that encodes
the images and a decoder block that performs reconstruction.
Two convolutional layers that were symmetrically arranged in
both encoder and decoder blocks were used for the denoising
process (Supplement Table 2). The training process is same as
that of the convolutional neural network algorithm described
earlier. First, noisy images and ideal images are used to train the
autoencoder algorithm. Then, denoised images are obtained by
the trained autoencoder algorithm with noisy images as inputs.
Finally, another convolutional neural network is trained for
classification of the denoised images.

To speed up the training process, pre-initialization weights
from the same network trained to classify objects in the
ImageNet dataset were used; random dropout was used to
prevent overfitting. The dataset was divided randomly into three
parts: (1) training: 80% of the data was used to build the
algorithm; (2) validating: 10% of the data was used to optimize
the hyperparameters; and (3) testing: 10% of the data was used
to test the algorithm for an unseen dataset. The performance of
the algorithm was measured using the area under the receiver
operating curve (AUC) by plotting sensitivity versus 1-specificity
in the testing set. The final performance was achieved by 10-fold
cross validation (the previous process was repeated 10 times).
All the analyses were performed on Python 3.6 with the Keras
package.

RESULTS

A total of 76 mfVEP examinations were included in this study.
All the participants had suprasellar tumor. Among the 152
eyes examined, mfVEP was abnormal for 140 eyes. In the
initial algorithm, 9,120 images (4,912 normal images and 4,208
abnormal images) were used. The training dataset contained
7,296 images; both validation and testing datasets contained 912
images. The AUC of the initial algorithm in the testing set was
0.801 (Figure 2) with an accuracy of 79.9%. The sensitivity was
73.9% and the specificity was 85.1%.

The model did not perform very well even with the state-
of-art deep learning architecture. I assumed that the problem
was due to the existence of many noisy images and therefore
excluded noisy images with low SNR and fitted the remaining
images to the model again (5,530 images in the training dataset
and 691 images in both the validation and testing dataset). The
performance in the testing set skyrocketed to an AUC of 0.985
(95% CI: 0.976–0.994, Figure 2) and an accuracy of 94.6% (95%
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FIGURE 1 | Multifocal visual evoked potential recordings in both eyes.

FIGURE 2 | ROC curve of different models.

CI: 93.6–95.6%). The sensitivity was 94.8% (95% CI: 93.2–96.4%)
and the specificity was 94.9% (95% CI: 92.9–96.9%).

An autoencoder algorithm to denoise noisy images (2,208
images) was used. The denoised images (1,768 images in the
training dataset and 220 images in both the validation and
testing dataset) were fitted to the convolutional neural network.
The acquired AUC in the testing dataset was 0.795 (95%
CI: 0.773–0.817, Figure 2) and the accuracy was 78.6% (95%
CI: 76.8–80.0%). The sensitivity was 94.4% (95% CI: 92.4–96.4%)
and the specificity was 50.0% (95% CI: 45.5–54.5%).

The ensemble model combined the previous results of ideal
images and denoised images to obtain the final AUC (0.908,
Figure 2) and accuracy (90.8%). The sensitivity and specificity
were 94.3 and 87.7%, respectively.

DISCUSSION

I built an automated workflow for analyzing the images
of mfVEP. The workflow can extract images from each
sector, convert noisy images to denoised images, and predict
abnormality in the images. The workflow can reduce the analysis
time to the greatest extent. Improved accuracy was observed after
separating noisy data from ideal data. Ten-fold cross-validation
results of the model suggest that the model is robust.

By combining models built on ideal images and those built
on denoised images created by the autoencoder algorithm, high
AUC and accuracy were achieved, suggesting possible clinical
use. Moreover, saved parameters and structures of the trained
neural network can be used in other institutions without healthy
controls.

However, this study had some limitations. The diagnostic
test being studied, mfVEP, is not widely available and is
time consuming. The lack of other clinical data such as
visual field or optical coherence tomography may also limit
the possible clinical utility, although previous researches have
published these data (2, 8). Unfortunately, ground truth is
needed for the metrics to determine the quality of the model.
Some ground truth values may be incorrect due to noise.
Unsupervised learning and model development should be
applied and evaluated in future studies. Moreover, only patients
with compressive optic neuropathy were included in this study.
Further research is necessary to evaluate the applicability of
the deep learning system for other ophthalmological diseases
and the utility of the deep learning system to improve vision
outcomes.
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