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Automatic computer-based seizure detection and warning devices are important for

objective seizure documentation, for SUDEP prevention, to avoid seizure related

injuries and social embarrassments as a consequence of seizures, and to develop on

demand epilepsy therapies. Automatic seizure detection systems can be based on

direct analysis of epileptiform discharges on scalp-EEG or intracranial EEG, on the

detection of motor manifestations of epileptic seizures using surface electromyography

(sEMG), accelerometry (ACM), video detection systems and mattress sensors and

finally on the assessment of changes of physiologic parameters accompanying epileptic

seizures measured by electrocardiography (ECG), respiratory monitors, pulse oximetry,

surface temperature sensors, and electrodermal activity. Here we review automatic

seizure detection based on scalp-EEG, ECG, and sEMG. Different seizure types affect

preferentially different measurement parameters. While EEG changes accompany all

types of seizures, sEMG and ACM are suitable mainly for detection of seizures with

major motor manifestations. Therefore, seizure detection can be optimized by multimodal

systems combining several measurement parameters. While most systems provide

sensitivities over 70%, specificity expressed as false alarm rates still needs to be

improved. Patients’ acceptance and comfort of a specific device are of critical importance

for its long-term application in a meaningful clinical way.
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INTRODUCTION

In general, automatic seizure detection must be distinguished from automatic seizure prediction.
While seizure detection methods aim to detect ongoing seizures as soon as possible after seizure
onset, seizure prediction models try to identify upcoming seizures well before seizure onset. In the
present review we will focus on automatic seizure detection, while the reader is referred to excellent
reviews on the current status of seizure prediction (1–4).

Automatic computer-based seizure detection currently is one of the major research questions in
clinical epileptology for the following reasons:
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1. Documentation of seizure frequency, seizure severity and
seizure type by patients and their relatives represents the most
important outcome parameter for epilepsy treatment both
in everyday clinical practice and for the assessment of the
efficacy of medical and non-medical treatment interventions
in clinical trials. However, seizure documentation by patients
and their relatives has been shown to be highly unreliable.
In a study using video-EEG monitoring as the gold standard
for seizure documentation, 55.5% of all seizures, 73.2% of
complex partial seizures, 26.2% of simple partial seizures,
41.7% der secondary generalized tonic-clonic seizures, 85.8%
of seizures arising out of sleep and 32.0% of seizures
arising out of wakefulness remained unnoticed or were
not documented by patients (5). In a study using a
long-term, implanted seizure advisory system in patients
with drug-resistant focal epilepsy for several months, a
very low agreement between seizures noticed in patients’
seizure diaries and those objectively documented on invasive
EEG was found. Most patients significantly underestimated
their seizure frequency. Because the relationship between
patient and EEG documented seizures was highly variable
from month to month, the application of a hypothetical
correction factor seems not feasible (6). Therefore, objective
and automatic documentation of seizure frequency, seizure
severity, and seizure type is urgently needed in everyday
clinical epileptology, but also in clinical epilepsy research to
objectively assess the efficacy of therapeutic interventions in
clinical trials (7).

2. Persons with active epilepsy face a standardized mortality
ration of 2–3 (8, 9). Patients with severe severely drug-
refractory epilepsy even suffer from a sevenfold increase in
mortality rate over 3 years (10). The most frequent causes
of death include cerebrovascular diseases, pneumonia, and
neoplasia (8). Sudden unexpected death in epilepsy (SUDEP)
represents themost frequent epilepsy associated cause of death
and is most probably mediated through seizure associated
cardiac, pulmonary or other autonomic dysfunctions (11).
Automatic monitoring of EEG, cardiac, respiratory, and other
autonomic changes during seizures therefore could be useful
to elucidate the pathomechanisms underlying SUDEP (12).
Generalized tonic-clonic seizures occurring out of sleep are
a significant risk factor for SUDEP with supervision during
night currently representing the only preventive measure
(11, 13, 14). Automatic detection of nocturnal generalized
tonic-clonic seizures could alert relatives, friends or caregivers
leading to check on the patient, and provide sufficient
stimulation to prevent respiratory arrest (15).

3. Automatic seizure detection systems could be used as seizure
alarm devices for patients without reliable auras alleviating
the unpredictability of seizures and their potential social
embarrassments. Automatic seizure detection systems and
warning devices could also help to prevent seizure associated
injuries (10). This would significantly reduce the fear of
seizures and thus improve the quality of life for persons with
epilepsy (16). However, warning devices based on seizure
detection would be clinically useful only in patients with
subclinical seizures detected by the system or in order to alert

significant others about an ongoing seizure enabling them to
set protective measures. On the contrary, a warning device
would be useless for patients if seizures have already started
and lead to impairment of consciousness. Therefore, warning
devices ideally should be based on seizure prediction rather
than on seizure detection.

4. Automatic seizure detection systems could open the way
to on-demand therapies, such as acute administration of
anticonvulsants or acute electrical stimulation in selected
brain areas, in order to stop ongoing seizures (7, 17–21).

5. During video-EEG-monitoring (VEM) in the epilepsy
monitoring unit (EMU), applications for automatic seizure
detection systems include enhancement of patient safety, more
efficient data analysis, automatic documentation of seizures,
and computer-based neurological and neuropsychological
testing during and after seizures.
Patient safety in order to avoid seizure related injuries, to
recognize seizure induced cardiac arrhythmias and finally
to prevent SUDEP has become a central issue during VEM
(22–25). While optimum patient safety can be ensured only
by continuous observation through trained personnel (25,
26), several surveys showed that only 56–80% of EMUs
can provide continuous personal patient surveillance (23–
25, 27). Automatic on-line seizure detection and warning
systems could provide a significantly less personnel intensive
alternative to personal patient surveillance in the EMU.
However, only 15–19% of EMUs actually use on-line seizure
detection and warning systems (24, 27).

Automatic seizure detection could optimize data review in
the EMU and thus could facilitate a more efficient personnel
assignment (28–30). Although agreement on EEG seizure
identification between human electroencephalographers is
high with an average any-overlap sensitivity of 92% and
false positives per hour rate of 0.117 applying any-overlap
comparisons (i.e., whether there was any detection overlap
between experts during a period annotated as a seizure),
high seizure rates as well as short and long seizure durations
with ambiguous offsets can make analysis rather complicated
resulting in suboptimal agreements even between EEG experts
(31). Therefore, automatic seizure detection systems could
improve seizure documentation during VEM.

The exact analysis of clinical seizure semiology is essential
for correct seizure classification as well as for the localization
of the seizure onset zone and pathways of seizure spread (32,
33). Proper assessment of many essential features of seizure
semiology require systematic interactive testing for various
cognitive, behavioral, sensory, and motor functions during
and after seizures (32, 33). However, immediate ictal testing
frequently is not possible due to personnel limitations (34).
Recently, a seizure detection system triggering automatically
a series of video-recorded behavioral tasks presented in
the patient’s room [Automatic Responsiveness Testing in
Epilepsy (ARTiE)] has been introduced which could optimize
assessment of these functions during seizures (34).

6. Finally, automatic seizure detection has become increasingly
important for the detection of non-convulsive seizures and
non-convulsive status epilepticus in critical care patients (35).
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PERFORMANCE MEASURES OF
AUTOMATIC SEIZURE DETECTION AND
ALARM ALGORITHMS

Visual annotation of seizures by EEG experts remains the gold
standard for performance evaluation of seizure detection and
seizure alarm algorithms. In general, agreement on seizure
annotation between EEG experts is high. However, discrepancies
can occur in case of high seizure rates as well as in case of
seizures with short and long durations. These caveats have
to be considered during assessment of computer-based seizure
detection algorithms (31). Preferably, agreement on seizure
annotations should be obtained by several blinded EEG experts
(29, 36).

Seizure detection and alarm algorithms usually are evaluated
and compared concerning the following performance measures
(1, 37):

True positives (TP) meaning that the algorithm detected a
seizure identified by the human expert;
False negatives (FN) meaning that the algorithm missed a
seizure identified by the human expert;
False positives (FP) meaning the algorithm erroneously
detected a seizure which was not confirmed by the human
expert;
Sensitivity defined as the ratio TP/(TP+ FN);
Specificity defined as the number of false positive alarms per
hour referred to as false positive alarm rate (FAR).
Alarm algorithms need to provide both on-line calculation
and short detection delays.
Detection delay is defined as the time interval between the
time of seizure onset identified by the human expert and the
time when the computer algorithm sets the alarm. Detection
delays in the range of a few seconds are required for alarm
devices (38, 39).

MEASUREMENT PARAMETERS FOR
AUTOMATIC SEIZURE DETECTION

Ictal EEG changes which can be measured on scalp-EEG
and intracranial EEG represent the electrophysiological
correlates of epileptic seizures. Therefore, analysis of ictal
EEG represents the most direct biomarker for automatic
epileptic seizure detection. While specificity of intracranial
EEG is considerably higher than that of scalp-EEG, drawbacks
of intracranial EEG based seizure detection include the
sampling problem due to limited coverage of the cerebral
cortex and a less well defined specificity as compared to
scalp-EEG. Motor manifestations representing a prominent
feature of many seizures can be assessed with surface
electromyography (sEMG), accelerometry (ACM), video
detection systems, and mattress sensors. Most epileptic seizures
are accompanied by changes in physiologic parameters like
heart and respiration rate, oxygen saturation, skin temperature,
and sweat secretion. These parameters can be measured
by electrocardiography (ECG), respiratory monitors, pulse

oximetry, surface temperature sensors, and electrodermal
activity (EDA) (Table 1).

We focused our review on automatic seizure detection
based on scalp electroencephalography (scalp-EEG),
electrocardiography (ECG) and surface electromyography
(sEMG) because these modalities have been studied most
extensively in the literature. For seizure detection based on other
modalities the reader is referred to some recent excellent reviews
(12, 16, 40).

AUTOMATIC SEIZURE DETECTION BASED
ON SCALP
ELECTROENCEPHALOGRAPHY
(SCALP-EEG)

Ideally scalp-EEG based seizure detection algorithms should
detect a broad range of seizures in patients with different epilepsy
syndromes and seizure-onset zones with high sensitivity and
specificity. Algorithms should facilitate fast and robust analysis of
large amounts of EEG data. All EEG data acquired during VEM
should be analyzed, including artifacts, all neurophysiological
states as well as non-ictal physiological and pathological EEG
patterns (37).

While scalp-EEG based seizure detection algorithms can use
either single or multiple scalp-EEG channels, most algorithms
applied in a clinical setting use multiple EEG channels. In
multiple channel systems, themontage can significantly influence
for performance of the algorithm (41). For computational
reasons and for patient comfort (especially in an outpatient
setting) a proper selection and reduction of electrode numbers
is important (42–44). While using all 21 channels of the
International 10-20-system provided a sensitivity of 84%,
reduction to only 8 frontal and temporal electrodes yielded an
average sensitivity of 79%, a restriction to only 7 temporal,
parietal, and occipital electrodes an average sensitivity of 68%
(43). After data acquisition, artifact rejection needs to be applied.
Detection of EEG seizure patterns is based on characteristic
changes with respect to frequency, amplitude and/or rhythmicity

TABLE 1 | Measurement parameters for automatic seizure detection.

Electrophysiological correlates of epileptic seizures

Scalp-EEG

Intracranial EEG

Measurement of motor manifestations

Surface electromyography (semg)

Accelerometry (ACM)

Video detection systems

Mattress sensors

Measurement of physiologic parameters

Heart rate → electrocardiography (ECG)

Respiration rate → respiratory monitors

Oxygen saturation → pulse oximetry

Skin temperature → surface temperature sensors

Sweat secretion → electrodermal activity (EDA)
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using different linear and non-linear time-frequency signal
analyses techniques (37, 45, 46).

In general non-patient specific and patient specific algorithms
can be distinguished. Non-patient specific algorithms can be
applied without a priori knowledge about the patient’s individual
electrographic seizure patterns. Therefore these algorithms are
easy to use with identical parameter settings for all patients
which is important for the application in a busy clinical
environment. Patient specific algorithms, on the other hand,
try to improve the performance by parameter adjustments for
each individual patient (47–49). However, such patient specific
detection algorithms need specific training and interactive,
sometimes complex individualized parameter adjustments.

Table 2 provides a selection of non-patient specific algorithms
tested in a clinical setting (28–30, 37–39, 41, 46, 50–58).

Due to the large amount of EEG data, patients and seizures
analyzed we summarize here the studies published by the
Erlangen group (37, 41) and the Vienna group (30, 56, 57).

Hopfengärtner et al. (37, 41) analyzed 25,278 h of EEG in 159
patients [117 temporal-lobe epilepsies (TLE); 35 extra-temporal
lobe epilepsies (ETLE); 7 others] containing 794 seizures. They
applied an adaptive thresholding technique and calculated the
integrated power in the frequency band from 2.5 to 12Hz for
a seizure detection montage including basal temporal electrodes
referenced against the average of Fz-Cz-Pz. With this approach
they could obtain a sensitivity of 87.3% and a FAR of 0.22/h.
Performance for TLE patients (18,996 h of EEG including 589
seizures; sensitivity 89.9%, FAR 0.19/h) was better as compared to
ETLE patients (5,192 h of EEG including 172 seizures; sensitivity
77.4%, FAR 0.25/h).

Fürbass et al. (30) performed a prospective multi-center study
in 3 epilepsy centers. The algorithm was developed on additional

25,567 h of EEG from 310 patients (including 124 patients with
1,113 seizures and an additional 186 patients without seizures)
(30, 56, 57). While for the prospective data set a mean sensitivity
of 81% and a FAR 0.29/h could be obtained, in the development
dataset mean sensitivity was 75% and FAR was 0.3/h. In the
prospective data set, 16 seizures unnoticed during routine visual
analysis (3% of all seizures) were detected by the algorithm.
Sensitivity was better for TLE (83%) than for ETLE (64%).

Table 3 summarizes some clinically applied patient specific
algorithms (47–49, 58–61). Of course performance is higher for
patient-specific as compared to non-patient specific algorithms.
Nevertheless it should be mentioned the amount of EEG, patients
and seizures reported in the literatures is drastically higher for
non-patient specific algorithms indicating their easier use in
clinical setting.

In conclusion, non-patient specific scalp-EEG based seizure
detection algorithms provide sensitivities between 73 and 96%
(62). Difficult to detect are EEG seizure patterns with short
duration, with low amplitude, with circumscribed highly focal
activity, with high frequency, with unusual non-rhythmic
morphology and those obscured by artifact. These features
frequently apply to seizures of extratemporal origin which
therefore are more difficult to detect than seizures of temporal
lobe origin (30, 37, 58). Specificity (FAR) of non-patient specific
scalp-EEG based seizure detection algorithms varies between
0.11 and 5.38/h. Low FARs are essential for the acceptance of
an algorithm in a clinical setting, especially if the algorithm
is applied as an alarm device. Here high FAR would result
in unnecessary concerns and anxiety of patients as well as
frequent unnecessary responses and actions by caregivers. FAR
can be caused by physiological and pathological brain activity
including sleep patterns, rhythmic non-epileptiform activities

TABLE 2 | Non-patient specific, scalp-EEG based seizure detection algorithms tested in clinical settings.

References EEG sample (hours) Patients Seizures Sensitivity (%) Specificity FAR (per hour) Detection delay (seconds)

Gotman (50) 4362 44 179 73.2 0.84 n.a.

Pauri et al. (28) 461 12 253 81.4 5.38 n.a.

Gabor et al. (51)+ 528 22 62 90.3 0.71 n.a.

Gabor (52)* 4554 65 181 92.8 1.35 n.a.

Wilson et al. (53) 1049 426 672 76.0 0.11 n.a.

Saab and Gotman (38) 360 16 69 76.0 0.34 10.0

Kuhlmann et al. (54) 525 21 88 81.0 0.60 16.9

Meier et al. (38) 1403 57 91 > 96.0 <0.5 2.0

Schad et al. (55) 423 6 26 59 0.15 n.a.

Kelly et al. (29) 1200 55 146 79.5 0.08 n.a.

Zandi et al. (46) 236 26 79 91.0 0.33 7.0

Hopfengärtner et al. (41) 3248 19 148 90.9 0.29 19

Hopfengärtner et al. (37) 25278 159 794 87.3 0.22 n.a.

Hartmann et al. (56) 4300 48 186 83.0 0.3 n.a.

Fürbass et al. (57) 22000 275 623 73.0 0.30 n.a.

Fürbass et al. (30)* 15684 205 526 81.0 0.29 n.a

Fürbass et al. (30)+ 25567 310 113 75.0 0.30 n.a.

FAR, false positive alarms per hour; +development data set; *prospective data set.
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TABLE 3 | Patient specific, scalp-EEG based seizure detection algorithms tested in clinical settings.

References EEG sample (hours) Patients Seizures Sensitivity (%) Specificity FAR (per hour) Detection delay (seconds)

Qu and Gotman (47) 1071 10 n.a. n.a. 1.40 n.a.

Qu and Gotman (59) 29.7 12 35 100 0.03 9.5

Qu and Gotman (60) n.a. 12 47 100 0.02 9.35

Shoeb et al. (61) 60 36 139 94 0.25 8.0

Khamis et al. (48) 1624 10 83 91.6 0.27 n.a.

Minasyan et al. (49) 625 25 86 100 0.02 4.0

FAR, false positive alarms per hour.

like frontal intermittent rhythmic delta activity (FIRDA) or
temporal intermittent rhythmic delta activity (TIRDA) or by
various especially rhythmic artifacts (including chewing, tooth
brushing, repetitivemovements, eyemovements etc.) (30, 37, 58).
Algorithms need to be developed and tested on large amount of
EEG data containing also prolonged time periods of interictal
EEG across all stages of the sleep-waking cycle and including
all kinds of artifacts and non-ictal physiological and pathological
EEG patterns in order to obtain stable and reproducible results in
a clinical setting (30, 37, 58).

While patient specific algorithms can further enhance
sensitivity and selectivity, drawbacks of these approaches include
sometimes complex parameter adjustments and the necessity of
training for individual patients (47–49).

If a detection algorithm is used as an alarm system, on-line
calculation with short detection delays represents a prerequisite.
Detection delays reported in the literature vary between 2 and
19 s (39).

Draw-backs of scalp-EEG based seizure detection systems
include the complexity of the EEG signal, attenuation of the
EEG signal by skull and scalp and the fact that large parts
of the cerebral cortex including mesial frontal, basal frontal,
and mesial temporal areas are not accessible to the scalp-
EEG. The most significant limitation remains the application
of scalp-EEG based seizure detection systems in an outpatient
setting because it is not acceptable for patients to wear EEG
electrode arrays for prolonged time periods in everyday life (58).
Recently developed subcutaneous EEG electrodes may offer a
practical solution for this problem (63). Chronically implanted
intracranial electrodes represent another option for long-term
outpatient EEG recordings which have been successfully applied
for seizure prediction (6) and seizure detection with responsive
brain stimulation (17–21). However, despite their invasive nature
these devices suffers from high rates of false positive detections
limiting the clinical usefulness for seizure detection in a clinical
setting (64). The reader is referred to an recent excellent paper
on the problems and future aspects of seizure detection based on
invasive EEG recordings (64).

AUTOMATIC SEIZURE DETECTION BASED
ON ELECTROCARDIOGRAPHY (ECG)

ECG represents a simple and easy to record signal for
automatic seizure detection. Many seizures are accompanied by

a pronounced ictal sinus tachycardia (65). Ictal sinus tachycardia
is caused primarily by direct activation of the central autonomic
network through epileptic discharges and to a much lesser
extent the mere consequence of motor manifestations during
epileptic seizures (66). Cortical areas of the central autonomic
network include the amygdala, the anterior insula, the anterior
cingulate cortex, the ventromedial prefrontal cortex, and the
posterior orbitofrontal cortex. Subcortical areas of the central
autonomic network are represented in the hypothalamus, the
periaqueductal gray matter, the parabrachial Köller-Fuse region,
the nucleus of the tractus solitarius, the nucleus ambiguous and
the ventrolateral medulla oblongata (67).

Compared to the EEG, the ECG signal is highly robust
and less prone to artifacts. Long-term ECG recordings can be
easily obtained in an ambulatory setting using ambulatory ECG,
smart watches andminimally invasive implantable loop recorders
for prolonged time periods. Contrary to long term scalp EEG
recordings these systems impose no burdens or restrictions to
the patient and are well tolerated by patients. Compared to long-
term intracranial EEG recordings, implantable loop recorders are
far less invasive, carry only negligible risks for the patients, are
widely available commercially and considerably less costly than
implantable EEG recording devices. Finally, the ECG signal is
simpler to process and to analyze than the EEG signal.

Definition of ictal sinus tachycardia is rather heterogeneous in
the literature (65). The most frequent definition refers to a heart
rate>100 beats perminute (bpm) corresponding to the threshold
for a maximum normal heart rate for patients older than 15 years.
Other definitions include a heart rate >120 bpm, a heart rate
>10 bpm above baseline heart rate, age-adjusted thresholds and
not further specified significant changes in heart rate relative to
baseline (65).

In general, a lower threshold will result in a higher sensitivity,
but lower specificity corresponding to a higher FAR, whereas a
higher threshold will be associated with a lower sensitivity, but a
higher specificity corresponding to a lower FAR.

Concerning algorithms for detection of ictal sinus tachycardia,
so-called threshold and curve fitting algorithms can be
distinguished. Threshold algorithms set an alarm when the
average heart frequency in an analyzing time window exceeds
the average heart frequency in a baseline time window by a
predefined threshold parameter of 2.5–25 bpm. The duration
of the analyzing time window can be varied for instance from
5 to 15 s, while the duration of the baseline time window is
kept constant at 20 s (68). The most recent version of the
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vagal nerve stimulator incorporates a so-called cardiac based
seizure detection algorithm (CBSDA) which compares the most
recent heart rate to a background heart rate established over
approximately the previous 5min of R–R intervals. Whenever
heart rate (during a presumed seizure) exceeds baseline heart by
20–70% (the actual value can be programmed in 10% increments)
for at least 1 s an automatic on-demand stimulation is triggered
in a closed loop fashion (69). Curve fitting algorithms on
the contrary calculate changes in heart frequency based on
predefined algorithms resulting in an increased specificity and
shortened detection latency (68, 70, 71).

According to a recent review article incorporating 34 articles
ictal sinus tachycardia can be observed in 82% of patients (65).
While some studies reported consistent ictal heart rate changes
within a given patient (72, 73), others observed intraindividual
variability of ictal heart rate changes (68, 71, 74–76). The absolute
increase in heart rate averaged 34.23 bpm per seizure and 33.51
bpm per patient (weighted average across several studies) (65).
Concerning seizure types, ictal sinus tachycardia was observed
in 12% of subclinical seizures, in 71% of focal onset seizures,
in 64% of generalized seizures and in 76% of mixed seizure
types (weighted average across several studies) (65). Concerning
seizure onset zone, ictal sinus tachycardia was more consistent
and prevalent in seizures of temporal origin as compared to
those of extratemporal origin (65). While the effect of seizure
onset lateralization was inconsistent (65), some studies suggest
a more pronounced increase in heart rate during seizures arising
from the non-dominant hemisphere (70, 71, 77–79). Secondarily
generalized tonic-clonic seizures result in a higher ictal heart
rate as compared to complex partial seizures (80). Finally, an
elevated heart rate was observed already prior to seizure onset in
those focal seizures evolving to secondarily generalized seizures
as compared to those focal seizures which remained localized
(81).

In a study with intracranial electrodes, the temporal
relationship between the onset of ictal tachycardia, seizure onset
on intracranial EEG, seizure onset on scalp-EEG and clinical
seizure onset was investigated (82). Ictal tachycardia occurred
after seizure onset on intracranial EEG in all seizures with
mean latencies of 21.6–23.7 s. On the contrary, ictal tachycardia
preceded scalp-EEG onset in 9/13 patients and in 48/78 seizures
with mean latencies of 7.8–14.0 s. Furthermore, ictal tachycardia
occurred before the first clinical sign in 10/13 patients and in
56/78 seizures with mean latencies of 6.5–9.5 s. Ictal tachycardia
was observed earlier in seizures arising from the hippocampal
formation than in those of extrahippocampal onset. Finally, ictal
tachycardia occurred earlier in seizures originating from the right
temporal lobe as compared to those originating from the left
temporal lobe. The authors concluded that ictal tachycardia is an
ictal rather than a preictal phenomenon and that ictal tachycardia
may be an appropriate noninvasive marker for closed-loop
interventions (82).

Concerning specificty, heart rate increases during epileptic
seizures occur faster and are more pronounced as compared
to those associated with physical exercise or nocturnal arousals
(83, 84). In the VNS study, a mean sensitivity of 80% with a FAR
of 0.5–7.2/h and a detection latency of 6–35 s could be achieved

using the cardiac based seizure detection algorithm (CBSDA)
(69).

Analysis of heart rate variability represents a very promising
approach for ECG based seizure detection. Especially the so-
called modified cardiac sympathetic index (CSI100) seems to
be suitable to detect the abnormal increase in sympathetic
tone during epileptic seizures (85). Thus, the CSI100 based
algorithm showed an excellent performance for seizure detection:
All seizures were detected in 13/17 patients with a mean
detection latency of 16 s (range: 6 s before and 50 s after EEG or
clinical seizure onset). Furthermore, the CSI100 based algorithm
could differentiate very well between ictal ECG changes and
physiologic, exercise-induced ECG changes, while a simple
analysis of the heart rate failed to do so (85).

AUTOMATIC SEIZURE DETECTION BASED
ON SURFACE ELECTROMYOGRAPHY
(SEMG)

Quantitative analysis of surface electromyography (sEMG)
represents a valuable tool for the detection of seizures with
prominent motor manifestations (16).

The deltoid muscle, the anterior tibialis muscle (86–89) as well
as the brachial biceps and triceps muscles (90, 91) have been used
as recording sites for sEMG based seizure detection.

For the detection of generalized tonic-clonic seizures sEMG
from the deltoid muscle yielded higher sensitivity, but lower
specificity than sEMG from the anterior tibialis muscle [deltoid
muscle: sensitivity 100%, false positive alarm rate 1 per 24 h,
detection latency 13.7 s (86); anterior tibialis muscle: sensitivity
57%, false positive alarm rate 1 per 12 days, detection latency 25 s
(87)]. For the detection of tonic seizures with sEMG applied to
the deltoid muscle a sensitivity of 53–63% with a false positive
alarm rate of 0.08 bis 7.90/h could be obtained (89).

Continuous sEMG recordings for 1,399 h from the brachial
biceps and triceps muscle were performed in 33 patients with
196 epileptic seizures (21 generalized tonic-clonic seizures, 96
myoclonic, 28 tonic, 12 absence, and 42 focal seizures with
or without loss of awareness) and 4 nonepileptic spells. The
algorithm detected 20 of 21 generalized tonic-clonic seizures
corresponding to a sensitivity of 95% with an average detection
latency of 20 s. While only one false positive alarm was observed
in the postictal phase after a generalized tonic-clonic seizure, no
false positive alarms were triggered by other seizure types (90).

In a prospective multicenter phase III trial in 199 patients
investigated in 11 epilepsy monitoring units, sEMG from the
brachial biceps muscle detected 35 out of 46 of generalized tonic-
clonic seizures corresponding to a sensitivity of 76% with a false
positive alarm rate of 2.52/24 h. If the device was correctly placed
over the midline of the biceps muscle, 29/29 of generalized tonic-
clonic seizures could be detected (sensitivity 100%, mean false
positive alarm rate 1.44/24 h, mean detection latency 7.70 s).
While mild to moderate adverse events (mostly skin irritation
caused by the electrode patch that resolved without treatment)
occurred in 28% of participants leading to study withdrawal in
9%, no serious adverse events were reported (91).
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In a prospective study in 71 patients from 3 centers sEMG
recordings from brachial biceps muscle (mean recording time
per patient 53.19 h, total recording time 3735.5 h), a sensitivity
of 93.8% (30 out of 32 generalized tonic-clonic seizures) with a
median detection latency of 9 s (range: −4 to 48 s) and a false
alarm rate was 0.67/24 h could be obtained. No adverse events
were observed (92).

Quantitative sEMG analysis provides direct information about
the electric activity in the motor cortex and therefore is
useful to elucidate the pathomechanisms of convulsive seizures
(93). Thus sEMG can differentiate between generalized tonic-
clonic seizures and maximal voluntary muscle contraction (93).
sEMG correctly classified 24/25 (96%) of generalized tonic-
clonic seizures and 18/19 (95%) of psychogenic non-epileptic
seizures corresponding to an overall diagnostic accuracy of 95%
(94). Furthermore, the tonic phase of generalized tonic-clonic
seizures showed different quantitative features as compared to
tonic seizures. Furthermore, due to its high temporal resolution
sEMG facilitates a detailed characterization of the temporal
evolution of generalized tonic-clonic seizures suggesting that
the same inhibitory mechanisms involved in the prevention of
buildup of seizure activity, contribute to seizure termination.
Thus, quantitative sEMG can be viewed as a neurophysiologic
biomarker for detection of generalized tonic-clonic seizures and
for the automated differentiation between convulsive and non-
convulsive epileptic seizures (93).

CONCLUSION

Automatic computer-based seizure detection and warning
devices are important for objective seizure documentation,

for SUDEP prevention, to avoid seizure related injuries
and social embarrassments as a consequence of seizures,
and to develop on demand epilepsy therapies. Automatic
seizure detection systems can be based on direct analysis of
epileptiform discharges on scalp-EEG or intracranial EEG, on
detection of motor manifestations of epileptic seizures using
surface electromyography (sEMG), accelerometry (ACM), video
detection systems, and mattress sensors and finally on the
assessment of changes of physiologic parameters accompanying
epileptic seizures measured by electrocardiography (ECG),
respiratory monitors, pulse oximetry, surface temperature
sensors, and electrodermal activity (EDA). Different seizure
types affect preferentially different measurement parameters.
While EEG changes accompany all types of seizures, sEMG
and ACM are suitable primarily for the detection of seizures
withmajormotormanifestations. Therefore, multimodal systems
combining several different measurement parameters certainly
represent the future of automatic seizure detection (16, 58).
While most systems provide sensitivities over 70%, specificity
expressed as false alarm rates still needs to be improved.
Patients’ acceptance and comfort of a specific device are of
critical importance for its long-term application in meaningful
clinical way.
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