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Objective: Epilepsy surgery results in seizure freedom in the majority of drug-resistant

patients. To improve surgery outcome we studied whether MEG metrics combined with

machine learning can improve localization of the epileptogenic zone, thereby enhancing

the chance of seizure freedom.

Methods: Presurgical interictal MEG recordings of 94 patients (64 seizure-free >1y

post-surgery) were analyzed to extract four metrics in source space: delta power,

low-to-high-frequency power ratio, functional connectivity (phase lag index), and

minimum spanning tree betweenness centrality. At the group level, we estimated the

overlap of the resection area with the five highest values for each metric and determined

whether this overlap differed between surgery outcomes. At the individual level, those

metrics were used in machine learning classifiers (linear support vector machine (SVM)

and random forest) to distinguish between resection and non-resection areas and

between surgery outcome groups.

Results: The highest values, for all metrics, overlapped with the resection area

in more than half of the patients, but the overlap did not differ between surgery

outcome groups. The classifiers distinguished the resection areas from non-resection

areas with 59.94% accuracy (95% confidence interval: 59.67–60.22%) for SVM and

60.34% (59.98–60.71%) for random forest, but could not differentiate seizure-free

from not seizure-free patients [43.77% accuracy (42.08–45.45%) for SVM and 49.03%

(47.25–50.82%) for random forest].

Significance: All four metrics localized the resection area but did not distinguish

between surgery outcome groups, demonstrating that metrics derived from interictal

MEG correspond to expert consensus based on several presurgical evaluation

modalities, but do not yet localize the epileptogenic zone. Metrics should be improved
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such that they correspond to the resection area in seizure-free patients but not in patients

with persistent seizures. It is important to test such localization strategies at an individual

level, for example by using machine learning or individualized models, since surgery is

individually tailored.

Keywords: magnetoencephalography, presurgical evaluation, functional connectivity, refractory epilepsy, seizure

freedom, beamforming

INTRODUCTION

Presurgical Evaluation
Epilepsy surgery is a potent treatment for drug-resistant
patients with a focal seizure origin. Before a patient undergoes
surgery, presurgical evaluation localizes the area for resection.
Magnetoencephalography (MEG) is a non-invasive technique
that contributes to establish a hypothesis about the location
of the epileptogenic zone (1–3), which is defined as the area
that needs to be removed or disconnected to achieve seizure
freedom (4). By definition, it can only be confirmed post-
operatively whether the resection area corresponds to the
epileptogenic zone (in case of seizure freedom) or not (in
case of recurrent seizures). Epilepsy surgery attains seizure
freedom in roughly half to two-thirds of patients, depending
on the type of epilepsy (2, 5–7). To increase the success rate,
further improvement in localizing the epileptogenic zone is
needed.

Localization of the Epileptogenic Zone
Several quantitative imaging metrics have been shown to localize
the epileptogenic zone. Patients with epilepsy often, although
not always (3, 8), show increased focal slow (delta) activity
compared to controls (9), which has been used for localization
of the epileptogenic zone (8, 9). Other imaging metrics have
been derived from the field of connectivity and network analysis
(10, 11). A functional connection is defined as the existence of
statistical dependencies between time series (12). A network can
be constructed from the brain regions and their connections,
and its topology can be characterized using various network
metrics (10).

Increased functional connectivity has been found to indicate
the epileptogenic zone (13, 14) and the seizure onset zone
[SOZ; the area where seizures begin (4)] (15). We previously
found (16) that MEG functional connectivity was increased
in the irritative zone (4). Increased functional connectivity in
epileptogenic regions might augment the tendency to generate
and spread seizures (14).

Regions that play a central role in networks, namely hubs
(10, 17, 18), have been associated with the epileptogenic zone.
Various metrics can be used to quantify the centrality of
nodes (19): degree, eigenvector centrality, and betweenness
centrality. Betweenness centrality has been used to identify
the epileptogenic zone in both the ictal (18, 20, 21) and
interictal state (17, 18, 21). The presence of hubs in or near the
epileptogenic zone alludes to a role for hubs in seizure spread
(10, 17, 22).

Machine Learning in Epilepsy
Machine learning builds a prediction model from the data
using metrics from e.g., imaging data or patient characteristics,
thereby elegantly bypassing the need for multiple comparisons
correction (23). The algorithm is trained using these features
to classify between two or more labeled subsets. In epilepsy,
such classifiers have been used to predict surgery outcome
(24–26) or to identify epileptogenic regions using interictal
data (27–29). Performance typically increases with larger
training datasets, although classifiers have also been applied
successfully to rather small clinical datasets (26, 27, 29).
The trained classifiers allow for inferences at an individual
level (23, 30).

Aim and Research Questions
We aimed to identify metrics based on interictal MEG recordings
that localize the epileptogenic zone. This paper is divided
into two parts. The first part is a group level analysis
to identify metrics that localize the epileptogenic zone, to
address the following research questions: do the metrics overlap
with the resection area? Is the overlap different in seizure-
free patients compared to patients with persistent seizures?
The second part is an analysis at the individual level using
machine learning, investigating whether any observed group
differences are relevant for individual patients. The research
questions were: can the classifiers distinguish between resection
and non-resection areas at the individual level? Additionally,
can they distinguish between seizure-free and not seizure-free
patients?

METHODS

Patients
The patient cohort is an extension of the cohort presented in
(17) and is heterogeneous regarding seizure etiology. Ninety-
four patients met the following inclusion criteria: (1) They
received a clinical MEG recording as part of their presurgical
evaluation between 2010 and 2015 at the VU University
Medical Center. (2) They subsequently underwent epilepsy
surgery at the same center. (3) Surgery outcome information
was available, which was assessed with the Engel classification
(31) 1 year after surgery for all patients, except for three
patients who had a 6 month follow up. No rules or procedures
were imposed other than routine clinical care, accordingly
no approval for this study by the institutional review board
(Medisch Ethische Toetsingscommissie VUmc) and informed
consent were needed according to the Dutch health law of
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FIGURE 1 | Flowchart of the machine learning classification. Two classification tasks were carried out: (1) 626 resection ROIs vs. 7834 non-resection ROIs in all

patients with the four metrics for each ROI as input features, and (2) 64 seizure-free patients vs. 30 not seizure-free patients with the four metric values for all 90 ROIs

plus the 24 averaged measures as input features. The features were first converted to z-scores, after which the majority class was subsampled 100 times. For each

subsample round, one instance was kept apart as test set, while all other instances constituted the training set. Both a linear support vector machine (SVM) and a

random forest were trained with the training set and predicted the class of the one test instance, which fell into one of the four categories of true positive, false

positive, false negative, or true negative. The accuracy with confidence interval, as well as the sensitivity and specificity were derived from the results across the 100

test instances.

February 26, 1998 (amended March 1, 2006), i.e. Wet Medisch-
Wetenschappelijk Onderzoek met mensen (WMO; Medical
Research Involving Human Subjects Act), division 1, section
1.2.

MEG Acquisition
Interictal MEG recordings were acquired using a whole-head
system (Elekta Neuromag Oy, Helsinki, Finland) with 306
channels (102 magnetometers and 204 gradiometers). The
recordings were performed inside a magnetically shielded room
(Vacuumschmelze GmbH, Hanau, Germany) with the patients
in supine position. Three eyes-closed resting-state recordings
of typically 15min each were recorded for clinical analysis of
interictal epileptiform activity. Only one recording was analyzed
in this study and chosen according to the following criteria
with descending priority: (1) consisting of at least 5min of
data, (2) displaying the smallest number of artifacts, and (3)
being the earlier dataset of the three recordings. The data were
recorded with a sampling frequency of 1250Hz and filtered
online with a 410Hz anti-aliasing filter and a 0.1Hz high-pass
filter. The relative position of the head to the MEG sensors was
recorded continuously with 4 or 5 head-localization coils. A
3D digitizer (Fastrak, Polhemus, Colchester, VT, USA) digitized
the head-localization coil positions and scalp outline (roughly
500 points). Co-registration of the scalp surface points with
the patient’s anatomical magnetic resonance imaging (MRI) was
performed with surface-matching. Offline spatial filtering of the
raw data removed artifacts using the temporal extension of Signal
Space Separation (tSSS) (32) using MaxFilter software (Elekta
Neuromag Oy; version 2.1), with details and parameter settings
as described in (33).

FIGURE 2 | Percentage of patients with overlap of the resection area and the

1–5 ROIs with the highest values for each metric. Overlap by chance level is

indicated by the solid line. A binomial test determined whether the number of

patients with overlap was significantly above chance level (indicated with an

asterisk), corrected for 20 tests using FDR.

Source Reconstruction
The reconstruction of neuronal sources was performed with an
atlas-based beamforming approach, modified from (34). In this
study, the time series of neuronal activity were reconstructed
for the centroids (35) of 90 ROIs of the automated anatomical
labeling (AAL) atlas (36), of which 78 were cortical ROIs (37)
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and 12 subcortical ROIs (excluding the cerebellar ROIs). The
centroids of the MRI template were inversely transformed to
the patient’s co-registered MRI. Subsequently, each centroid’s
time series was reconstructed with a scalar beamformer (Elekta
Neuromag Oy; beamformer; version 2.2.10). The beamformer
acts as a spatial filter, whose weights were calculated separately
for each centroid to maximally pass signals from the centroid
of interest while attenuating all other signals. The weights were
based on the data covariance, the noise covariance and the lead
fields (calculated using a single sphere head model based on
the scalp surface from the patient’s anatomical MRI, and an
equivalent current dipole as source model). The data covariance
was based on the entire length of the selected recording in the
broadband (0.5–48Hz). The noise covariance was represented
as a unity matrix. The time series (virtual electrodes) for each
centroid (35) were reconstructed by projecting the broadband
data through the normalized beamformer weights (38).

Metrics
Based on the number of epochs in the shortest recording, the
first 174 epochs were selected for each patient without regarding
epileptiform activity or artifacts. Each epoch contained 4096
samples (3.28 s) and were analyzed in Brainwave (version
0.9.152.4.1 available from http://home.kpn.nl/stam7883/
brainwave.html). Four metrics were evaluated: relative delta
power, low-to-high frequency power ratio, broadband PLI, and
broadband betweenness centrality.

The relative power for each time series was estimated using
an offline discrete Fast Fourier Transform filter for the following
frequency bands: delta (0.5–4Hz), theta (4–8Hz), lower alpha
(8–10Hz), upper alpha (10–13Hz), beta (13–30Hz), and gamma
(30–48Hz). The relative delta power for each ROI was used as
the first metric.

The added relative power for the low frequency bands (delta
and theta) were divided by the relative power for the lower alpha
frequency band to obtain a low-to-high frequency power ratio.
This low-to-high frequency power ratio for each ROI was used
as the second metric.

The PLI (phase lag index) is a functional connectivity metric
and measures the asymmetry in the distribution of instantaneous
phase differences between two time series (39). It is robust against
zero-lag phase synchronization due to volume conduction or
field spread (39). For each ROI, the broadband PLI (0.5–48Hz)
to all other ROIs was averaged and used as the third metric.

A functional network was constructed based on the PLI
values. The 90 ROIs served as nodes and the inverted PLI
values (1/PLI) as edge weights. Subsequently, the minimum
spanning tree (MST) was derived, which forms the backbone of
the original network (40). Based on the MST, the betweenness
centrality was estimated for each node to identify hubs.
The betweenness centrality is defined as the number of
shortest paths that pass through a node divided by the total
number of shortest paths in the network (19). The broadband
betweenness centrality for each ROI was used as the fourth
metric.

For each of the four metrics, we additionally calculated six
average measures per patient that incorporate information about T
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the location and extent of the resection area: (1) the average
of the ROIs overlapping with the resection (resection ROIs),
(2) the average of all ROIs belonging to the lobe that contains
the resection, (3) the average of the ROIs contralateral to the
resection ROIs, (4) the average of all ROIs outside the resection
cavity, (5) the difference between the average of the resection
ROIs and the average of the contralateral ROIs, (6) the difference
between the average of the resection ROIs and the average of the
non-resection ROIs.

Resection Cavity
The resection cavity was determined for each patient from the 3-
month post-operative magnetic resonance imaging (MRI) scan,
which was normalized to the MRI template containing the AAL
centroids. Subsequently the normalized post-operative MRI scan
was linearly co-registered to the pre-operative MRI scan (used
for MEG co-registration) using FSL FLIRT (version 4.1.6) with
12 parameter affine transformation. The resection cavity and
ROI outlines were then used to visually determine the ROIs
overlapping with the resection (resection ROIs).

Group Level Analysis: Group Statistics
For each metric separately, we considered the ROIs with the five
highest values and determined whether those ROIs overlapped
with the resection area (i.e., corresponded to resection ROIs).
We did that five times by choosing only the maximum value,

the two highest values, and so on until the five highest values.
Subsequently, we determined whether the number of patients
with overlap was significantly higher than expected by chance
using a binomial test. The probability of chance was estimated
from a hypergeometric distribution (the discrete probability
of drawing k out of m resection ROIs in n draws without
replacement). For each of the thresholds of 1–5 ROIs, we
calculated the probability of drawing at least one resection ROI
(k ≥ 1) when randomly choosing 1–5 ROIs (n = 1, 2, 3, 4, or
5) from the 90 ROIs. For this calculation, we used the median
number of resection ROIs (m = 7), as patients had a different
number of resection ROIs (range 1–12). Additionally, we
determined whether the number of patients with overlap differed
between the seizure-free group and not seizure-free group using
a Chi-square test of independence. Furthermore, we estimated
whether the average measures differed between seizure-free
patients and not seizure-free patients using an unpaired t-
test. The analyses were performed in MATLAB (MATLAB and
Statistics Toolbox Release 2012a, The MathWorks Inc., Natick
MA, United States). All individual statistical tests were corrected
for multiple comparisons using false-discovery rate (FDR) (41).

Individual Level Analysis: Machine
Learning
We used a linear support vector machine (SVM) and a random
forest classifier. The SVM consisted of a linear kernel and

FIGURE 3 | Percentage of patients in each surgery outcome group with overlap between the resection area and the four metrics. The ROIs with the 1–5 highest

values were considered. A Chi-square test for independence was performed to determine if seizure-free patients and not seizure-free patients differed significantly in

the percentage of patients with overlap. None of the differences remained significant after multiple comparison correction for 20 tests using FDR.
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was implemented from the LIBSVM library (42) (version 3.22,
software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm).
The random forest was built from 500 trees, the number of
features within a tree chosen at random for each decision
split was set to the square root of the total number of
features (MATLAB and Statistics Toolbox Release 2012a, The
MathWorks Inc., Natick MA, USA). We applied the algorithms
for two different classifications: resection vs. non-resected ROIs
and seizure-free vs. not seizure-free patients (Figure 1). For the
first classification, one class consisted of the resection ROIs in all
94 patients (626 resection ROIs) and the other class contained all
other ROIs in all patients (7834 non-resection ROIs). The input
for the classifiers was the four metrics for each ROI, yielding four
features in total. For the second classification, one class contained
the 64 seizure-free patients and the other class comprised the 30
patients with persistent seizures. The input per patient were the
metric values for all 90 ROIs and the 24 averaged measures (six
averaged measures for all four metrics), yielding 384 features in
total. For both classifications, the features were converted to z-
scores, using the mean and standard deviation across all ROIs
or subjects for each feature. The class imbalance was corrected
for by subsampling the majority class by randomly selecting 626
out of 7834 non-resection ROIs and 30 out of 64 seizure-free
patients for the first and second classification task, respectively.
The subsampling was repeated 100 times, and the accuracy,
sensitivity, and specificity were averaged and the 95% confidence
interval was calculated for the accuracy. The performance of the
classifiers was tested with leave-one-out cross-validation.

RESULTS

Group Level
The five ROIs with the highest values for all four metrics
overlapped with the resection area (Figure 2 and Table 1). The
overlap was highly significant compared to chance level, also after
FDR correction. Considering only the ROI with the maximum
value resulted in an overlap in about one-third of patients (28–
34%, depending on the metric). When considering only a few
ROIs, the delta power overlapped in the most patients (32 (34%),
40 (43%), 44 (47%) out of 94 patients when using 1, 2, 3 ROIs
with the highest values, respectively), whereas when considering
more ROIs, the PLI [50 (53%) and 54 (57%) patients when using
4 and 5 ROIs with the highest values, respectively] overlapped in
the most patients, followed by betweenness centrality [52 (55%)
patients for 5 ROIs].

The mean and standard deviation are given for each surgery
outcome group and p-values of 24 unpaired t-tests after FDR
correction. P, uncorrected p-value; p corr, FDR-corrected p-value.

The overlap of the metrics with the resection area did
not differ between seizure-free and not seizure-free patients
(Figure 3 and Table 2). Before FDR correction, only PLI differed
significantly between the two groups for the maximum ROI [χ2

(1)

= 3.97, p = 0.046]. Thus, even though the metrics overlapped
with the resection area, this overlap did not discriminate
between the two surgery outcome groups. The same was
found for the averaged measures (Figure 4 and Table 3). Before
FDR correction, only the average betweenness centrality was
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significantly higher in the resection lobe in the seizure-free
patients compared to the not seizure-free patients [t(92) = 2.41,
p= 0.0179].

Individual Level
The four metrics were able to distinguish ROIs within the
resection from ROIs outside the resection (Table 4). However,
the effect was smaller at the individual level compared to the
group level (compare withTable 1). The accuracy of the SVMwas
59.94% (95% confidence interval: 59.67–60.22) and the accuracy
of the random forest 60.34% (59.98–60.71).

None of the classifiers could distinguish seizure-free patients
from patients with persistent seizures using the four metrics for
each ROI and the six averaged measures (Table 4). The SVM
classifier gave an accuracy of 43.77% (95% confidence interval:
42.08–45.45) and the accuracy of the random forest was 49.03%
(47.25–50.82). Adding clinical variables to the classifiers did not
improve the differentiation between seizure-free and not seizure
free patients (Supplementary Material).

DISCUSSION

The aim of this study was to identify metrics based on
interictal MEG recordings that localize the epileptogenic zone.
We found that all four evaluated metrics (delta power, low-to-
high frequency power ratio, functional connectivity, and network
hubs) localized the resection cavity in more patients compared
to chance level. However, the localization of the resection cavity

did not differ between seizure-free patients and patients with
persistent seizures. At the individual level, we showed that
machine learning classifiers could distinguish between resection
areas and non-resection areas. However, similar to our findings
on the group level, the classifiers could not distinguish between
surgery outcome based on the four metrics.

Localization of the Resection Area
For all four metrics, the highest values coincided with the
resection area in more patients than expected at chance level.
Relative delta power was the strongest indicator of the resection
area, when the ROIs with the one to three highest values were
considered. Focal slowing (i.e., delta activity) is known to indicate
the epileptogenic zone in focal epilepsy (8, 9), perhaps on a lobar
rather than sublobar level. It has been shown that increased delta
activity localizes within or at the borders of the resection area in
most patients (9) and lateralizes to the hemisphere containing
the resection (8). Low-to-high frequency power ratio did not
improve the localization ability above relative delta power alone.

Functional connectivity was increased in the resection area,
which replicates earlier MEG and EEG findings (11, 14, 16).
Englot and colleagues reported that patients with increased
connectivity in the resection area were more likely to achieve
seizure-freedom after surgery (43). Our result corroborates
the hypothesis that the epileptogenic zone is functionally
well connected within the brain network (13–15). Highly
interconnected cells have been shown to exhibit enhanced
network activity in a computational model of the rat dentate

FIGURE 4 | Difference between seizure-free and not seizure-free patients using the six averaged measures. The averaged measures were: (1) resection ROIs average,

(2) resection lobe average, (3) contralateral resection ROIs average, (4) non-resection ROIs average, (5) difference between (1) and (3), (6) difference between (1) and

(4). An unpaired t-test was performed to determine significant group differences. None of the differences remained significant after multiple comparison correction for

24 tests using FDR.
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gyrus, resulting in a seizure-prone network (22). Similarly,
increasing the interconnectedness by adding more long-distance
connections to models of excitatory neurons in the hippocampus
led network models to transition into seizure activity (44).
This interconnectedness might lower the threshold for
seizures (14).

The resection ROIs showed increased betweenness centrality,
which points to the existence of hubs in the resection area.
Elevated hub status in, or near, the epileptogenic zone has
been reported by various studies (16–18, 21, 45). Similarly, the
epileptogenic zone and seizure onset zone have been described as
a driver, i.e., they exert strong influence over other brain regions
(13, 46, 47). In addition, the removal of hubs has been associated
with seizure freedom (18, 48). These findings suggest that the
epileptogenic zone is a hub that influences other brain regions,
and that it can be localized using connectivity and network
measures.

The localization of the four metrics to the resection area was
more pronounced at the group level compared to the individual
level. The simplest explanation is that group differences can be
found even when the differences are not significant in every
patient. Dickten and co-workers, for example, reported that the
seizure onset zone influenced other brain regions during the
interictal state, but that this connection was only the strongest
when averaging over the group (46). They reported that in more

than one-third of the patients, the strongest connections were
observed outside the seizure-onset zone. Most studies report
group level findings, even though surgery is tailored to individual
patients. It is therefore important to test localization strategies
at an individual level, for example by using machine learning or
individualized models (49).

Resection Area vs. Epileptogenic Zone
The evaluated metrics localized the resection area but not
the epileptogenic zone. The metrics therefore achieved the
same localization results as the presurgical evaluation by a
multidisciplinary team of experts, but did not improve on this by
predicting surgery outcome. To our knowledge, only one study
so far predicted surgery outcome in a large and heterogeneous
patient cohort regarding seizure etiology, which found that
MEG spike location, when concordant with the resection area,
predicted seizure freedom (2). Larger patient cohorts that are
representative of the heterogeneous group of epilepsy surgery
candidates, and with known surgery outcome, are needed to
evaluate the many available metrics for epileptogenic zone
localization.

Surgery Outcome
The four metrics that we evaluated did not differentiate between
surgery outcome groups. The classification accuracy of the SVM

TABLE 3 | Difference between seizure-free and not seizure-free patients using averaged measures.

Seizure-free patients Not seizure-free patients

Mean std Mean std p p corr.

Delta power Resection 0.3817 0.0910 0.3574 0.0851 0.2207 0.4264

Resection lobe 0.3766 0.0854 0.3462 0.0827 0.1085 0.4264

Contralateral 0.3449 0.0778 0.3304 0.0873 0.4208 0.4681

Non-resection 0.3289 0.0747 0.3135 0.0779 0.3591 0.4681

Difference to contralateral 0.0368 0.0495 0.0270 0.0455 0.3590 0.4681

Difference to non-resection 0.0528 0.0485 0.0439 0.0463 0.4029 0.4681

Low/high frequency

power ratio

Resection 4.4654 1.7443 4.0212 1.5541 0.2370 0.4264

Resection lobe 4.3420 1.7207 3.9163 1.4334 0.2425 0.4264

Contralateral 3.7916 1.5403 3.6020 1.4675 0.5738 0.5987

Non-resection 3.7159 1.3100 3.3713 1.3468 0.2416 0.4264

Difference to contralateral 0.6738 1.0309 0.4192 0.7953 0.2352 0.4264

Difference to non-resection 0.7495 0.9682 0.6499 0.9653 0.6430 0.6430

PLI Resection 0.0931 0.0091 0.0901 0.0100 0.1501 0.4264

Resection lobe 0.0930 0.0090 0.0899 0.0099 0.1399 0.4264

Contralateral 0.0910 0.0085 0.0892 0.0097 0.3546 0.4681

Non-resection 0.0900 0.0082 0.0884 0.0089 0.3961 0.4681

Difference to contralateral 0.0021 0.0031 0.0009 0.0023 0.0697 0.4264

Difference to non-resection 0.0032 0.0038 0.0018 0.0032 0.0769 0.4264

Betweenness centrality Resection 0.0867 0.0229 0.0784 0.0205 0.0933 0.4264

Resection lobe 0.0844 0.0184 0.0748 0.0171 0.0179 0.4264

Contralateral 0.0738 0.0155 0.0709 0.0150 0.3938 0.4681

Non-resection 0.0680 0.0034 0.0686 0.0020 0.4291 0.4681

Difference to contralateral 0.0130 0.0233 0.0075 0.0153 0.2487 0.4264

Difference to non-resection 0.0187 0.0248 0.0099 0.0215 0.0956 0.4264
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TABLE 4 | Classification of (1) resection vs. non-resection ROIs and (2)

seizure-free vs. not seizure-free patients, using random forest and a linear support

vector machine.

Accuracy Sensitivity Specificity

Mean Confidence

interval

Mean Mean

Resection vs. non-resection ROIs

Random forest 60.34% 59.98–60.71% 61.45% 59.52%

Support vector

machine

59.94% 59.67–60.22% 55.07% 64.82%

Seizure-free vs. not seizure-free patients (MEG metrics only)

Random forest 49.03% 47.25–50.82% 49.40% 48.67%

Support vector

machine

43.77% 42.08–45.45% 42.60% 44.93%

Seizure-free vs. not seizure-free patients (MEG and clinical metrics)

Random forest 49.74% 48.14–51.35% 50.55% 48.94%

Support vector

machine

42.95% 41.54–44.36% 42.12% 43.77%

was below 50%, which is probably because the learned patterns
from the training dataset did not generalize to the test dataset.
Nonetheless, other studies have found a relation to surgery
outcome using similar metrics. For example, an MEG study has
reported that the quantity of delta activity could be used as
a predictor for surgery outcome (9), and Wilke et al. showed
that the removal of regions with high betweenness centrality
in invasive electrocorticography was associated with seizure
freedom (18). In our study, both delta power and betweenness
centrality showed a non-significant difference between outcome
groups in the same direction as reported in the above studies.
A possible explanation for the different results between studies
is the difference in cohort size (94 vs. 25 patients), as spurious
findings are more likely in small cohorts.

Alternatively, in our study the resection area may have been
in the correct location for (at least part of) the patients with
persistent seizures, but seizures persisted because the resection
was not sufficiently extensive, did not fully remove tumor tissue
in patients with tumor-related epilepsy, or tumor regrowth
elicited new seizures. In the future, post-operative MEGs would
be useful to detect the epileptiform or other abnormalities that
might remain in patients who do not become seizure-free.

Several studies have proposed metrics that differentiate
between seizure-free patients and patients with persistent
seizures. Group differences were found with, for example,
concordance of MEG dipole localization with the resection area
(2), and MRI functional and structural connectivity analysis
(50, 51). Other studies have successfully appliedmachine learning
to predict surgery outcome (24–26). However, some predicting
features were complex and difficult to interpret (25, 26), whereas
features in our study were relatively straightforward and easily
derived.

Limitations
The five ROIs with the highest metric values were able to localize
the resection area. However, considering five possible ROIs is

not yet clinically relevant, as it remains unknown which one or
more of the five ROIs to consider for surgery. Nonetheless, the
location of each of the five ROIs can be compared to the findings
of other presurgical evaluation modalities. Moreover, the ROI
with the maximum value alone did also indicate the location of
the resection area, which is clinically more applicable.

The division into surgery outcome groups was based on
Engel classification 1 year after surgery, which is a common
yet arbitrary time point. Longitudinal studies have shown that
surgery outcome varies over time and that the number of
patients achieving seizure freedom decreases over several years
(52, 53). The estimation of surgery outcome at a different
time point would likely have resulted in different groups and
therefore possibly different results (54). Factors such as long-
term tissue transformation or tumor growth can change surgery
outcome at different time points (55). Exclusion of patients
with tumors could result in a more reliable not-seizure free
group, but for this study we wanted our patient cohort to
be representative of all patients with epilepsy who undergo
an MEG in our clinic. Future studies should investigate the
differences between seizure-free and not seizure-free patients
in homogeneous subgroups and at different time points after
surgery.

We evaluated the highest values of four metrics based on
results from previous studies. We could have analyzed the lowest
values or extended those metrics with others, for example based
on directed connectivity or other network measures. In addition
to theMEG-basedmetrics we also included five clinical metrics in
an extra analysis (see Supplementary Material), but this did not
improve the classification of surgery outcome. In this study we
concentrated on the most promising metrics for the time being.
A next step could be to first develop metrics that differentiate
between surgery outcome (50), and subsequently investigate
whether such metrics also localize the epileptogenic zone.

CONCLUSION

Localization of the epileptogenic zone is challenging in patients
with a heterogeneous and complex etiology. We found that
several metrics based on interictal MEG recordings localized
the resection area but did not differentiate between seizure-
free patients and patients with persistent seizures. The results
demonstrate thatmetrics derived from interictalMEG recordings
correspond to expert consensus derived from various presurgical
evaluation modalities, but do not yet improve the localization
of the epileptogenic zone. The next step is to develop metrics
that localize the resection area in seizure-free but not in patients
with persistent seizures. Machine learning is a useful tool to
explore many such different metrics without the drawback
of the multiple comparison problem. Those algorithms rely
on a large quantity of data, which can only be provided by
large patient cohorts or many segments of recorded data.
Furthermore, machine learning tests hypotheses at an individual
level, which is important in tailoring the surgical approach on
a patient-by-patient basis in focal epilepsy irrespective of its
etiology.
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