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Introduction: Impaired sit-to-stand and stand-to-sit movements (postural transitions,

PTs) in patients with Parkinson’s disease (PD) and older adults (OA) are associated with

risk of falling and reduced quality of life. Inertial measurement units (IMUs, also called

“wearables”) are powerful tools to monitor PT kinematics. The purpose of this study was

to develop and validate an algorithm, based on a single IMU positioned at the lower

back, for PT detection and description in the above-mentioned groups in a home-like

environment.

Methods: Four PD patients (two with dyskinesia) and one OA served as algorithm

training group, and 21 PD patients (16 without and 5 with dyskinesia) and 11 OA

served as test group. All wore an IMU on the lower back and were videotaped

while performing everyday activities for 90–180min in a non-standardized home-like

environment. Accelerometer and gyroscope signals were analyzed using discrete wavelet

transformation (DWT), a six degrees-of-freedom (DOF) fusion algorithm and vertical

displacement estimation.

Results: From the test group, 1,001 PTs, defined by video reference, were

analyzed. The accuracy of the algorithm for the detection of PTs against video

observation was 82% for PD patients without dyskinesia, 47% for PD patients with

dyskinesia and 85% for OA. The overall accuracy of the PT direction detection

was comparable across groups and yielded 98%. Mean PT duration values were

1.96 s for PD patients and 1.74 s for OA based on the algorithm (p < 0.001) and

1.77 s for PD patients and 1.51 s for OA based on clinical observation (p < 0.001).
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Conclusion: Validation of the PT detection algorithm in a home-like environment shows

acceptable accuracy against the video reference in PD patients without dyskinesia and

controls. Current limitations are the PT detection in PD patients with dyskinesia and the

use of video observation as the video reference. Potential reasons are discussed.

Keywords: accelerometer, gyroscope, home-like activities, older adults, PD patients, postural transition

INTRODUCTION

Falls are dangerous incidents often occurring at home for older
adults (OA) resulting in injury, and consequently decreased
quality of life (1–3). A positive history of falls increases fear
of falling, further contributing to future falls (1, 4). Movement
deficits often occur in neurological diseases.Within this spectrum
Parkinson’s disease (PD) is a predominantly motor disorder
and patients with PD are specifically prone to increased
fall risk (5). In both OA and PD patients, falls frequently
happen during sit-to-stand and stand-to-sit movements (postural
transitions, PTs), i.e., during changes of posture that require
multi-limb coordination (6–8). Usually the diagnosis of these
deficits at the doctor’s office or in hospitals are based on
qualitative parameters or on semi-quantitative scoring tools.
The Unified Parkinson Disease Rating Scale (MDS-UPDRS) is
one of many tools to rate motor symptoms including gait and
postural stability in PD (9). Such tools have been subject to
multiple validation studies and reflect disease state relatively
well, but a downside is the large inter-rater variability and
subjectivity (10–13). Over the last decade, inertial measurement
units (IMUs, also called “wearables”), force plates (14), and
complex optical 3Dmotion capture systems have been developed
making it interesting for medical purposes (15–25) especially
in the complementary assessment of gait and balance (25,
26). A body of literature describes assessment technologies
and algorithms for the detection of PTs (27–31). While some
systems are expensive and restricted to the laboratory (i.e., force
plates, 3D motion capture), IMUs are a good trade-off. IMUs
are microelectromechanical systems with multiple degrees of
freedom (DOF; e.g., 3D accelerometers, 3D gyroscopes and 3D
magnetometers). They are advantageously priced, light-weight,
and can measure at frequencies sufficient to capture even fast
human movements (32, 33). An additional argument for IMUs is
their applicability in virtually any environment especially outside
the clinic.

Assessments performed within the clinical environment or
a laboratory setting reflect only parts of human behavior.
For example, these assessments often measure unintentional
(i.e., non-targeted) movements. Assessment of purposeful and
target-oriented movements under unsupervised conditions can
add highly relevant and complementary insight into human
movements and mobility, including treatment effects (34–37).
Therefore, a substantial interest is coming from legal institutions,
such as the European Medicines Agency (EMA), the Food and
Drug Administration (FDA), and from pharmaceutic companies
to include parameters collected in the real life environment of
study participants.

IMU-based PT studies have shown that PTs differ between OA
and PD patients (38) and that PT characteristics change when
the disease progresses (39). These studies have most often been
performed under standardized lab situations, i.e., PT movements
were pre-defined and instructed. However, the behavior in real-
life environmentmay be evenmore relevant for clinical judgment
(34). Therefore, algorithms that have been developed based on
lab-based assessments may not be suitable for home assessments.
They obviously do not address the high variance of PTs and
increase the risk of false-positive (i.e., the detection ofmovements
that are no PTs) and false-negative PTs (i.e., the non-detection of
actual PTs) under daily living conditions.

In this study, we developed and validated a PT detection
algorithm in PD patients and OA that performed purposeful
movements in a home-like environment, from data of a lower
back-worn IMU.

METHODS

Study Participants, Setting and Data
Collection Process
The study was approved by the ethical committee of the
Medical Faculty of the University of Tübingen (protocol number
399/2012BO2). The investigation of participants was carried
out at the Neurology department of the University Hospital of
Tübingen and the development and validation of the algorithm
were performed at Kiel University (both Germany). Before the
assessments all participants gave written consent.

All participants were examined by a movement disorder
specialist (WM). Participants without orthopedic problems and
capable of walking without aids were included. Exclusion criteria
were deep brain stimulation and Mini Mental State Examination
(MMSE) score <24. Table 1 provides the demographic and
clinical details of the participants. All participants were equipped
with the Mobility Lab system (APDM, INC., Portland, Oregon)
including 3D accelerometers (±16 g) and 3D gyroscopes
(±2,000◦/s), with 128 samples/s (fs). Participants were then asked
to perform daily-like activities, such as moving around in the
hospital, climbing stairs, sitting, standing, making coffee, ironing
clothes and brushing teeth during an assessment period of 90–
180min (41, 42). During the entire standardized process, the
participants were video-recorded with a camera (Sony, resolution
1,920 × 1,080 pixels, frame rate of 50 samples/s). The video was
mostly collected within one continuous session and rest periods
were also included in the analysis.

Videos were evaluated by two independent clinical observers
(LH and EW) to identify PT episodes and to estimate directions
and durations of each PT. The clinical observers noted when a
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TABLE 1 | Demographic and clinical data of the training and test groups.

PD patients Older adults

TRAINING GROUP

N (females) 4 (3) 1 (0)

Age (years) 64 (18) 58 (0)

MDS-UPDRS III (0–132) 37 (2) 1 (0)

H&Y (0–5) 3 (1) 0 (0)

LED (mg) 353 (420) 0 (0)

TEST GROUP

N (females) 21 (11) 11 (5)

Age (years) 68 (6) 62 (9)

MDS-UPDRS III (0–132) 29 (13) 2 (4)

H&Y (0–5) 2 (1) 0 (0)

LED (mg) 904 (611) 0 (0)

Data are shown as mean ± standard deviation, except gender. H&Y, Hoehn & Yahr;

LED, Levodopa equivalent dose (40); MDS-UPDRS III, motor part of the revised Unified

Parkinson’s disease (PD) Rating scale.

stand-to-sit or sit-to-stand movement occurred. The start of a PT
episode was defined by a forward bending of the lower back. The
PT episode ended when the backward movement of the lower
back stopped and the participant fully sat down (in stand-to-
sit) or stood up (in sit-to-stand). The PT duration was estimated
using a watch and presented in full seconds. Periods during which
the participant was out of the camera sight (about 5% of the
total number of PTs) were discarded. The mean number of PTs
measured per study participant was 33.

Algorithm Development and Validation
Data obtained from the lower back IMU was used for the
analysis (Figure 2A). First, we divided available datasets into an
algorithm training dataset consisting of four PD patients (two
with dyskinesia) and one OA and a test dataset consisting of
21 PD patients (five with dyskinesia) and 11 OA. We used the
training dataset for the development of the algorithm, which
is described in the following. The test dataset was used for
validation purposes. Table 1 provides demographic and clinical
details of the two groups. Figure 1 graphically presents the
relevant steps of the algorithm development and the validation
processes.

Algorithm Development
As an overview, the accelerometer and gyroscope data were pre-
processed and the stationary periods of the lower back were
identified. These stationary periods were used to estimate the tilt
angle with respect to the horizontal plane. They were smoothed
by using discrete wavelet transformation (DWT denoise) and the
start and end of the PTs were identified. The sensor orientation
during the PTs was estimated using the quaternion (estimated
from accelerometer and gyroscope data) to estimate the vertical
displacement of the lower back. Based on the extent of vertical
displacement, PTs were classified as “effective PTs” and “PT
attempts,” and the direction of the PTs was defined.

Preprocessing
The raw data stems from accelerometers (a0) and gyroscopes
(ω0). The magnetometer data was not used, because it is affected
by magnetic disturbances (43, 44). Accelerometer signals were
filtered with the 4th order Butterworth phaseless, recursive low
pass filter (LPF) with a cut-off frequency of fc = 5 Hz to remove
electronic noise (30). That cut-off frequency was selected based
on a previous study (44), mentioning that the typical frequency
range for gait is between 0 and 5Hz. The filtered accelerometer
signal and the gyroscope signal were called a(n) = {ai} and
ω(n) = {ωi}, respectively. The index i ∈

{

x, y, z
}

indicates the
direction (x, y, or z axis). The acceleration magnitude (

∣

∣a(n)
∣

∣)
was extracted from the raw accelerometer data according to
(Equation 1):

∣

∣a(n)
∣

∣ =
√

∑

i={x,y,z}
ai(n)

2 (1)

n is the discrete time index of the data sampled at fs = 128 Hz.
From the acceleration magnitude, the short-term acceleration

mean (µa (n)) (Equation 2) and variance (σ 2
a (n)) (Equation 3)

were extracted, with N chosen to be 128:

µa (n) = 1

N

∑N−1

i= 0

∣

∣a(n− i)
∣

∣ (2)

σ 2
a (n) = 1

N

∑N−1

i= 0
(|a (n− i)| − µa (n− i))2 (3)

The similar short-term estimations were computed for the
gyroscope signal, to get the gyroscope magnitude

∣

∣ω(n)
∣

∣,
the short-term gyroscope mean µω(n) and variance σ 2

ω(n).
Whenever σ 2

ω (n) < 10−5m
s2
, the gyroscope bias (bω) was found

according to (Equation 4). This threshold was selected based on
the observations on the training dataset.

bω (n) =
{

ω (n) , if σ 2
ω (n) < 10−5m

s2

bω (n− 1) , else
(4)

The gyroscope bias was removed from the gyroscope signal
according to (Equation 5):

ω̃(n) = ω(n)− bω (n) (5)

In the following sections, to reduce the complexity of the
equations, the index n will be removed except when the time
indices of two quantities are different.

Detection of Stationary Periods
Stationary periods (sp) were defined as the episodes when the
lower back of the participant was almost not moving and
not rotating. While previous research has set threshold values
based on mathematical approaches or estimations (45), we used
thresholds determined based on the training data set. The period
was defined as a stationary period (sp) when |a| < 0.05m

s2
and

σ 2
a < 0.01m2

s4
and σ 2

ω < 0.01 1
s2
. Otherwise, the period was

considered as an active period (ap).
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FIGURE 1 | Algorithm development and validation steps for postural transition (PT) detection. Acc, accelerometer; accel, acceleration; DWT, discrete wavelet

transform; gyr, gyroscope; SiSt: sit-to-stand, StSi: stand-to-sit; +/-, positive/negative.

FIGURE 2 | (A) Sensor location. The upper left x/z axis represents the reference frame (gravity, g). ax , acceleration in vertical direction (x-axis); az , acceleration in

anterior-posterior direction (z-axis); IMU, inertial measurement unit; θ , tilt angle. (B) Tilt angle estimation from sit-to-stand and stand-to-sit movements. The blue line

shows the tilt angle estimation based on integration. The black dotted line shows the drift of the integration. The red line shows the tilt angle estimation after removing

the drift. ap, active period; sp, stationary period; nls, latest time index of the previous stationary period; nrs, earliest time index of the following stationary period. The

step change at nrs for the “tilt angle (with drift)” line is caused by the accumulative integration error of the medio-lateral gyroscope signal. The tilt angle at that point

changes from “estimated by gyroscope” to “estimated by accelerometer”.
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Tilt Angle Estimation
We assumed that the tilt angle of the lower back during PTs was
only around the medio-lateral axis (M/L) of the body. As shown
in Figure 2A, during a sp, accelerometers measure only gravity
(g), whose component (gz , gx) could be used to estimate the tilt
angle during sp θsp(Equations 6–8):

gx = ax (6)

gz = az (7)

θsp =
{

atan2
(

gz , gx
)

, if gz ≥ 0
atan2

(

gz , gx
)

+ 2π , if gz < 0
(8)

Tilt angle during ap (θap) was estimated as follows (Figure 2B):

- integrate the angular velocity around the medial lateral axis
(ωy) (the 2nd component of the gyroscope signal without
bias ω̃), from the latest time index (nls) of the previous
stationary period, to the earliest time index (nrs) of the
following stationary period, to get the tilt angle with drift
(θap+d) (Equations 9, 10):

θap+d (nls + 1) = θsp (nls) + ωy (nls) ∗
1

fs
(9)

θap+d (n+ 1) = θap+d (n) + ωy (n) ∗ 1
fs

(10)

- estimate the drift (d) from nls to nrs, according to (Equations
11, 12):

dθ (n) = kθ ∗ (n− nls)+ θsp(nls) (11)

with

kθ =
θap+d (nrs) − θsp (nrs)

nrs − nls
(12)

• estimate θap, which was the tilt angle without drift, according
to (Equation 13):

θap = θ
ap+d

− dθ (13)

The tilt angle (θ), consisting of θsp and θap, was used for further
analysis.

Discrete Wavelet Transformation (DWT) to Denoise

the Tilt Angle (θ )
DWT was used to remove the integration drift and movement
artifacts (30). To scale θ from −1 to 1, sin θ was calculated,
then denoised using DWT (Figure 3). sin θ was passed through
a LPF [with h(n) as the impulse response] and high pass filter
(HPF) [with g(n) as the impulse response], then both were down-
sampled by half (2 ↓ 1). sin θ was split into the low-frequency
component (A21 [sinθ]), and the high-frequency component
(D21 [sinθ]). This step is called one deconstruction step.A21 [sinθ]
was deconstructed again, split into A22 [sinθ] and D22 [sinθ]. h(n)
and g(n) were chosen by the Coiflet order 5 (46). The process was

continued similarly on the lowest-frequency component to get
A2j [sinθ] and D2j [sinθ], with j is the number of iteration.

In the reconstruction step, all high-frequency components
were suppressed to zero (Equation 14):

D2j [sinθ] =
{

0, if j > 0
D2j [sinθ] , if j = 0

(14)

A20 [sinθ] was upsampled (1 ↑ 2) by double, to get the denoised
signal (Rj [sinθ]). This process is called reconstruction.

In this study, j was taken to be three times (to get R3 [sin θ])
and 10 times (to get R10 [sin θ]) (based on the training results).
The symbol R3 [sin θ] describes the aforementioned process
“deconstruct the signal sin θ three times; suppress the high-
frequency components; reconstruct with the lowest frequency
component.” The symbol R10 [sin θ] describes “deconstruct the
signal sin θ 10 times; suppress the high-frequency components;
reconstruct with the lowest frequency component.” The
difference between R3 [sin θ] and R10 [sin θ], called tilt_denoise
(tilt_denoise = R3 [sin θ] − R10 [sin θ]), was used for further
analysis.

Postural Transition (PT) Detection
The peaks of the tilt_denoise signal with magnitude and
prominence >0.1 were defined as PT events (indicated by a star
symbol, Figure 4). In the following parts, they were classified
into either “effective PTs” (i.e., the participant was considered to
perform a complete standing up or sitting down movement) or
“PT attempts” (i.e., the participant was considered not to perform
a complete PT, e.g., forward and backwards body motion).

The zero-crossing method was used to define the beginning
and the end of a PT in the gyroscope signal (47) (indicated by
vertical lines, Figure 4). The beginning of a PT was defined as the
first zero crossing point of the medio-lateral angular velocity (ωy)
on the left side of the PT event, with negative slope. The end of a
PT was defined as the zero crossing point of ωy on the right side
of the PT event, again with negative slope.

Orientation Estimation of the Sensor With Respect to

the Earth Frame
A 6DOF fusion algorithm was used to represent the orientation
of the sensor with respect to the earth frame in quaternion q

(48) (Figure 5). q has the form of
[

q1 q2 q3 q4
]

, with the initial

orientation value q(0) =
[

1√
2
0 (− 1√

2
) 0

]

once the sp is firstly

detected. Gravity in the sensor frame (gest) was estimated using

gest =





2∗(q2q4 − q1q3)
2∗(q1q2 + q3q4)
q21 − q22 − q23 + q24



. The preprocessed acceleration

vector (a) was normalized to â = a
|a| . The angular velocity (ωest)

was re-estimated (calculated by ωest = ω̃ + β△ω) with △ω is
the feedback fixation of ω̃ (calculated by ω = â × gest , with ×
is the cross product) and β is the coefficient (which is 0 during
ap, and 0.5 during sp). The quaternion change (q̇) was computed
q̇ = 1

2q⊗ωest (with⊗ is the quaternion multiplication) and used
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FIGURE 3 | The denoising process with discrete wavelet transform. θ , tilt angle; A2j [sinθ], low frequency components; D2j [sinθ], high frequency components with j,

number of iteration; h(n), low pass filter; g(n), high pass filter; 2 ↓ 1, downsample by half; 1 ↓ 2, upsample by double; Rj [sinθ], denoised signal after j iterations. Dash

lines mean suppressing the components to zero. This figure shows an example of the denoising process with two iterations.

FIGURE 4 | Postural transition (PT) detection and PT start/end identification. The upper part shows the tilt angle. The middle part shows the denoised tilt signal used

for PT detection. The lower part presents the medio-lateral-axis gyroscope signal (ωy ) whose zero-crossings were used for the identification of the start and the end of

a PT. The fine-dashed vertical line indicates the start and the gross-dashed line the end of the respective PTs. The star symbols indicate the PT events with magnitude

and prominence >0.1.
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FIGURE 5 | Structure of the algorithm for the detection of postural transitions using six degree-of-freedom IMU sensor fusion. a, pre-processed accelerometer signal;

â, normalized acceleration; |a|, magnitude of the acceleration; β, feedback coefficient; gest, estimated gravity;
∫

dt, integration symbol; ω̃, gyroscope signal with no

bias; ω, feedback fixation of ω̃; ωest, re-estimated ω̃; q1, q2, q3, q4, four components of the quaternion; q(n), quaternion from the current iteration; q(n+ 1),

quaternion from the next iteration; q̇, change in quaternion; q, quaternion; |q|, quaternion magnitude; z−1, time shift operator.

to update the current quaternion using the following formula
(Equation 15):

q(n+ 1) = q(n)+ q̇(n) ∗ 1

fs
(15)

q values were normalized q̃ = q

|q| before being used for further

analysis.

Translational Acceleration Estimation (aT )
a was converted to the earth frame (Ea) (Equation 16):

[

0 Ea
]

= q̃⊗ [0 a]⊗ q̃∗ (16)

where q̃
∗

is the quaternion conjugation of the quaternion
(Equation 17)

q̃
∗ = [q̃1 −q̃2 −q̃3 −q̃4] (17)

The gravity component (Eg), which equals [0 0 1] in the earth
frame, was eliminated from the Ea to get only translational
acceleration (aT) (Equation 18):

aT =E a−E g (18)

Translational Velocity (vT ) and Vertical Displacement

(dz ) Estimation
During sp, vT was set to zero. During ap, translational velocity
with drift (vT+d) was obtained by integrating aT (Equation 19):

vT+d = aT .
1

fs
(19)

Similar to the aforementioned part “Tilt angle estimation,” with
vT during sp being zero, the drift (dv) was estimated (Equations
20, 21) and removed from vT+d, to get vT :

dv (n) = kvn− kvnls (20)

with kv = vT+d (nrs)

nrs − nls
(21)

During the ap period, vT along the vertical axis (vz , which is
the 3rd component of vT) was integrated to obtain the vertical
displacement (dz) (Equation 22):

dz = vz .
1

fs
(22)

The difference of dz between the end and the beginning of each
PT events (△dz) was calculated and was used for further analysis.
A threshold was set to △dz = 0.1m to differentiate between
effective PTs and PT attempts. PT attempts were excluded from
the final result. Regarding the direction of the PTs, positive △dz
was defined as a sit-to-stand, and negative △dz as a stand-to-
sit movement. The duration of the PT was defined as the time
between the beginning and the end of the PT.

Statistical Analysis
Analyses were conducted using JMP 11.1.1 software (SAS
Institute GmbH, Böblingen, Germany). Demographic data of
the training group and the validating group is presented with
mean and standard deviation (Table 1). Intraclass correlation
(ICC) was used to evaluate the agreements between two clinical
observers (EW and LH). Contingency table was used to calculate
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TABLE 2 | Validation values for detection of postural transitions (PTs) derived from the test group.

Groups Acc. Sens. PPV PT detected by the

algorithm

PT detected by the

clinical observers

True

positive PT

False

positive PT

False

negative PT

All participants (N = 32) 77 89 83 1,064 1,001 888 176 113

OA (N = 11) 85 98 86 307 273 265 42 6

PD without dyskinesia (N = 16) 82 89 90 595 599 533 61 67

PD with dyskinesia (N = 5) 47 69 55 162 129 89 73 40

Values are calculated on a sample-by-sample basis. Acc., accuracy; NPV, negative predictive value; PD, Parkinson’s disease; OA, older adults; PPV, positive predictive value; Sens,

sensitivity.

the sensitivity, accuracy and positive predictive value for PT
detection. 888 true positive PTs were used for the inference
statistics. Student t-test was performed to detect PT duration
differences between PD patients and OA for both the algorithm
and the video reference. PT direction (SiSt or StSi) of the true
positive PTs was compared between the algorithm and the video
reference. The difference of the PT duration, estimated by the
algorithm and the video reference, and the 95% confidence
interval (CI) were also computed.

RESULTS

The ICC of the two clinical observers regarding PT detection
was 0.99. Total number of detected PTs were 1,001 and 1,064
for clinical raters and the algorithm, respectively. The accuracy of
the algorithm to detect PTs reached 82% for PD patients without
dyskinesia, 47% for PD patients with dyskinesia and 85% for OA
(Table 2). The overall accuracy regarding the PT direction was
98%.

The algorithm yielded amean (SD) PT duration of 1.96 (0.72)s
for PD patients and 1.74 (0.43)s for OA, with 0.22 s PT duration
difference (p < 0.001) between the groups showing a comparable
value with the video reference (0.26 s, p < 0.001). Figure 6 shows
the difference of the PT duration, estimated by the algorithm and
the video reference including the 95% CI. The mean duration
difference between the algorithm and the video reference was
0.20 s, with a 95% CI between−1.06 s and 1.45 s.

DISCUSSION

In this paper, we present an algorithm for successful PT detection
and quantification from a single wearable sensor on the lower
back in a home-like environment. The algorithm was developed
and tested with PD patients with and without dyskinesia and OA,
and the results were compared against video observation.

The introduced algorithm yielded accuracies of 82% for PD
patients without dyskinesia, 47% for PD patients with dyskinesia
and 85% for OA. To our knowledge, this is the first validated PT
detection algorithm for PD patients and OA based on home-like-
environment data using one sensor fixed to the lower back.

Previous research (27, 29, 31, 49) has reported higher
detection accuracies, however the studies either estimated PTs in
healthy adults or during scripted laboratory protocols/supervised
conditions, which differs to daily-life conditions.

Equally, the studies investigating PT occurrences in home-like
conditions (50, 51) showed very promising results for healthy
OA, frail OA and for post-stroke patients. Nevertheless, the
groups and the IMU localization differ; therefore, accuracy values
should be compared with caution.

With regards to PD patients, one study (52) reported high
accuracy values for the detection and evaluation of PTs in healthy
individuals (94%) and PD patients (87%) in home-like conditions
using a fuzzy classifier, but the definition of PT was not specified
to sit-to-stand and stand-to-sit movements and multiple sensors
were used.

We argue that data obtained from the lower back is preferable,
as the position is closer to the center of mass (53), and lower
back-derived algorithms for PT-“associated” movements, such
as walking (33, 54, 55) and turning (32, 47, 56), show excellent
accuracy values. The inclusion of PD patients and healthy OA
in the validation process supplemented the robustness of the
proposed algorithm yielding in excellent accuracy regarding the
PT direction identification (98%), for further investigations.

This study used discrete wavelet transform to remove noise
and to deal with integration errors in tilt angle estimation
from the gyroscope bias (30, 57). The tilt angle was estimated
by integrating the gyroscope and this computation step avoids
inverse trigonometric functions, resulting in faster computation
speed. This wavelet technique also enhances the height of PT
peaks in the tilt angle pattern, suppresses the superfluous peaks
(i.e., the peaks in the pattern produced by other activities)
and consequently increases the sensitivity of PT detection. The
inclusion of the orientation estimation (by using the quaternion)
and the vertical displacement led to a substantial improvement
of accuracy values compared to vertical acceleration and velocity.
Specifically, this approach reduced, compared to the mentioned
vertical acceleration and velocity approach, the number of false
positive PTs due to erroneous detection of trunk movements
(which regularly occur during daily activity movements, such as
ironing). In summary, we feel that we can provide here a mature
“hypothesis-derived” algorithm for PT detection in PD patients
and OA, however with potential of further improvement (see also
below).

Although our results are promising, still more work is
necessary, particularly with the definition and validation
of quantitative PT parameters. Most promising candidate
parameters are, in our view, flexion and extension tilt angles of
the lower back during PTs (58), as well as flexion and extension
angular velocities (59).
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FIGURE 6 | Differences between the postural transition duration estimation including the mean and the 95% confidence interval represented as horizontal lines. PT,

postural transition; CI, confidence interval.

With regard to the dyskinetic PD patients, the algorithm
was not sufficiently accurate. The main reason is that these
patients were constantly moving, which prevented the algorithm
from detecting stationary periods sufficient to estimate a correct
vertical displacement (50, 60). One option to overcome this issue,
at least in patients that are not continuously dyskinetic, is to
use algorithms for dyskinesia detection (41, 61) and to remove
dyskinetic phases before the PT evaluation. For the evaluation of
PTs during dyskinetic phases, an additional barometric pressure
sensor could be included as it allows the accurate estimation of
vertical displacement (50, 62).

Mean PT duration of 1.89 s is comparable to other studies
including PD patients (31). The mean PT duration difference
between the algorithm and the video reference was 0.20 s and
comparable to (27). The difference is partly explained by the
video reference measurement. Measuring in full seconds may
increase the mean PT duration difference and consequently
the confidence intervals between the IMU-based and video
reference durations (Figure 6). Moreover, it is often difficult for
clinical observers to differentiate between an effective PT and a
PT attempt. For example, we experienced that especially slow
and long PT attempts were occasionally classified as a single
PT attempt by the clinical observers, while being identified as
two PTs (i.e., a sit-to-stand and stand-to-sit movement) by the
algorithm. Such a misclassification leads consequently to two
false positives and this misinterpretation explained 60% of the
false positives in our validation group. Furthermore, we have still
some false positive PT detections from the activities involving
the leaning forward and backward of the upper body, such
as during ironing clothes, picking objects, and tying shoelaces.
False negative PT detections seem to originate mainly from rigid

sit-to-stand and stand-to-sit episodes in severely bradykinetic
PD patients (63). Those specific patterns need to be further
investigated in order to reduce the false detection, hence improve
the accuracy of the algorithm.

CONCLUSION

We present here an algorithm for PT detection in PD
patients and OA who all performed purposeful PTs in a
home-like environment. The validation values for PD patients
and OA justify, in our view, the use of the algorithm in
pilot studies performed in clinical and home-based settings.
Our algorithm needs further validation particularly with
regard to PT quantification, to provide, e.g., validated PT
angle-related parameters. Moreover, further exploration is
required particularly in specific subgroups performing “unusual”
movements (here: PD patients suffering from dyskinesia), e.g.,
within collaborations of algorithm developing research groups
including cross-validation approaches.
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