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The motor thalamus (MTh) and the nucleus reticularis thalami (NRT) have been

largely neglected in Parkinson’s disease (PD) research, despite their key role as

interface between basal ganglia (BG) and cortex (Cx). In the present study, we

investigated the oscillatory activity within the Cx, MTh, and NRT, in normal and

different dopamine (DA)-deficient states. We performed our experiments in both acute

and chronic DA-denervated rats by injecting into the medial forebrain bundle (MFB)

tetrodotoxin (TTX) or 6-hydroxydopamine (6-OHDA), respectively. Interestingly, almost

all the electroencephalogram (EEG) frequency bands changed in acute and/or chronic

DA depletion, suggesting alteration of all oscillatory activities and not of a specific band.

Overall, δ (2–4Hz) and θ (4–8Hz) band decreased in NRT and Cx in acute and chronic

state, whilst, α (8–13Hz) band decreased in acute and chronic states in the MTh and

NRT but not in the Cx. The β (13–40Hz) and γ (60–90Hz) bands were enhanced

in the Cx. In the NRT the β bands decreased, except for high-β (Hβ, 25–30Hz) that

increased in acute state. In the MTh, Lβ and Hβ decreased in acute DA depletion state

and γ decreased in both TTX and 6-OHDA-treated animals. These results confirm that

abnormal cortical β band are present in the established DA deficiency and it might be

considered a hallmark of PD. The abnormal oscillatory activity in frequency interval of

other bands, in particular the dampening of low frequencies in thalamic stations, in

both states of DA depletion might also underlie PD motor and non-motor symptoms.

Our data highlighted the effects of acute depletion of DA and the strict interplay in the

oscillatory activity between the MTh and NRT in both acute and chronic stage of DA

depletion. Moreover, our findings emphasize early alterations in the NRT, a crucial station

for thalamic information processing.
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INTRODUCTION

Recent evidence has suggested that abnormal oscillatory activity
at specific frequencies within basal ganglia (BG) and cortex (Cx)
represents a hallmark of Parkinson’s disease (PD) (1–10). This
abnormal oscillatory activity may reflect dysfunctions of cortico-
BG-thalamo-cortical loop linked to Parkinsonian symptoms in
both PD patients and/or animal models of this disease (8–11) and
its recognition could provide possible biomarkers for the disease
state.

Brain oscillatory activities are classically segmented into
different frequency band intervals, i.e., 2–4Hz (delta, δ), 4–8Hz
(theta, θ), 8–13Hz (alpha, α), 13–40Hz (beta, β), and 60–90Hz
(gamma, γ). Each band is associated with one or more specific
physiological behavior and differently contribute to information
processing (12). β oscillations are involved in motor control and
are greatly enhanced at different sites within the BG circuit in
both PD patients and animal models of PD (9, 11, 13, 14). In
addition, elevated β band synchronization could be considered
as an expression of bradykinesia (13, 15). As proof of its strong
association with motor signs in PD, β activity is reduced by
dopaminergic therapies (15, 16). Recent evidence (17) supports
the idea of functional subdivision of this band in low-β (Lβ,
15–20Hz) and high-β (Hβ, 25–30Hz). Lβ in the subthalamic
nucleus (STN) is tightly associated with Parkinsonian symptoms
in patients that do not receive medications, whereas Hβ reflects
the degree of coupling between cortical and STN activity (18, 19).
Nevertheless, the exact role of Lβ and Hβ band in PD remains an
unsolved question.

Opposite to β, γ band is supposed to be associated to
dyskinesia (20) and more generally to modulation of movements
(20). In particular, γ band is involved in voluntary movements
(21, 22), but also in motor imagery (23), as well as in planning of
movements (24).

In addition, γ band has also been related to sensory and
cognitive processing (25), attention, long-term memory and
language tasks (26, 27). In PD patients, a γ decrease has been
shown during anti-Parkinsonian therapies (15, 28). In line, deep
brain stimulation (DBS) of STN at γ frequencies facilitates
movements (29) and it is powerfully expressed in both Cx and
globus pallidus (GP) in levodopa-induced dyskinesia (LID) in 6-
hydroxydopamine (6-OHDA)-lesioned rats (20, 30). Concerning
STN DBS, a correlation between frequency of stimulation and
improvement of symptoms has been recently shown (31). For
example, during 5Hz DBS, a worsening of bradykinesia has
been shown, while both bradykinesia and tremor showed no
improvement at frequencies below 50Hz (32).

The θ band has been described in frontal and central cortical
regions (33), as implicated in several functions different from
the control of voluntary movements, such as sensory processing
and memory in healthy people (34). The θ band increased in PD
patients, selectively during a motor task (35), as well as in PD
patients experiencing freezing of gait (36).

The δ band is instead associated with sleep functions (37) as
well as with cognitive processes (38).

It has been shown the association between δ band disruption
with PD (39–41). For instance, the administration of the

Delta Sleep-inducing peptide into the SNc induces Parkinsonian
syndrome in rat (42).

Moreover, Parker and colleagues (43) showed that δ

expression on medial frontal cortex (MFC) is associated with
cognitive dysfunctions in both PD patients and animal models
and DA depletion in the MFC. In addition, sleep disturbances are
common symptoms in PD (44) and often they arise before the
onset of motor symptoms (45). Although, the DAergic treatment
seems have no effect of sleep functions (41, 46), some might have
positive effects on sleep quality (47).

Finally, α frequency, according to the inhibition-timing
hypothesis (48), is negatively correlated with cortical excitability
and its enhancement prevents task-irrelevant interference (49).
The thalamic- and cortical-generated α activity has a role in
attentive tasks in physiological conditions (50–52) and it is
modulated by visual task performance in occipital lobe (53). In
addition, α oscillation is modulated by visual stimuli (54), even if
they are sub- and supraliminal stimuli (55). In line, correlation
between the phase of α oscillatory activity and the saccadic
reaction time in cognitive task responses has been reported (56).
It has been hypothesized that changes in α band expressionmight
underlie some cognitive and attentive difficulties observed in PD
patients (57). Within the BG circuit, the sensory-motor thalamus
(MTh) has critical role in motor information processing (58), but
contrasting data exist concerning its neuronal activity in PD (59).
According to the searchlight hypothesis, the nucleus reticularis
thalami (NRT) has a fundamental role as the guardian of the
thalamus, contributing to the encoding of thalamic information
(60–68). In particular, the sensorimotorMTh is modulated by the
NRT motor sector.

In spite of its importance, the oscillatory activity across
multiple frequency bands within the MTh and the NRT is
a neglected area in PD studies. Therefore, we monitored the
electrocorticogram (ECoG) and the local field potentials (LFPs)
of the MTh and the NRT in two dopamine (DA) depletion states
in a PD animal model. We first performed our recordings in
the standardized Parkinsonian animal model obtained with the
injection of 6-OHDA, capable of causing a chronic DA depletion.

Additionally, since it has been shown that some PD
symptoms, such as bradykinesia, are already associated with
acute DA depletion state induced by tetrodotoxin (TTX), we
performed a similar study in animal with acute DA depletion
induced by TTX (69–74).

We hypothesized that the oscillatory activity within MTh-
NRT might be different in acute DA depletion state from that
recorded in chronic 6-OHDA-lesioned rats, due to the presence
of adaptive mechanisms.

METHODS

Ethical Approval
All experimental electrophysiological and histological
procedures were carried out in compliance with Switzerland
laws on animal experimentation and approved by the Animal
Research Committee and the Veterinary Office of the Canton
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of Ticino, Switzerland (TI-08-2015). We analyzed 42 adult male
Sprague Dawley rats weighing∼300 g.

Pre-recording Surgery
Rats were anesthetized with urethane (1.4 g/kg, i.p.) (Sigma
Chemical Co., St Louis, MO, USA) and mounted on a stereotaxic
instrument (Stoelting Co., Wheat Lane, Wood Dale, IL, USA),
maintaining the body temperature at 37–38◦C with a heating
pad (Stoelting Co., Wheat Lane, Wood Dale, IL, USA) placed
beneath the animal. A midline scalp incision was made, the skull
was drilled on the left side and the dura was then spread out to
expose the cortical surface. All wound margins were infiltrated
with a local anesthetic (lidocaine 0.5%). All electrophysiological
recordings were performed in three categories of animals: in
normal rats, in 6-OHDA-lesioned rats and in acutely DA-
depleted animals (see Table 1).

Unilateral 6-OHDA Lesioning
Chronic DA depletion was induced by performing a unilateral
6-OHDA denervation in the left hemisphere with standard
technique (75, 76). The animals were anesthetized with 1.5–
2.5% isoflurane in oxygen, mounted on a stereotaxic instrument
(Stoelting Co., Wheat Lane, Wood Dale, IL, USA) for the
injection of the neurotoxin (8 µg/4 µl of saline solution
containing 0.1% of ascorbic acid) in the medial forebrain bundle
(MFB; stereotaxic coordinates: 2.56mm posterior to the bregma,
2mm lateral to the midline, and 8.6mm below the cortical
surface). The electrophysiological recordings were performed
21–29 days after the surgery.

Pharmacological Blockade of the Medial
Forebrain Bundle
The pharmacological blockade of the MFB was performed
according to previous publications (55–57). TTX was injected
via inverse microdialysis by using a probe with 1mm dialytic
membrane (CMA/11 microdialysis probe, CMA Microdialysis,
Stockholm, Sweden). TTX was perfused by using a syringe pump
(CMA/400, CMA Microdialysis, Stockholm, Sweden) with a rate
flow of 1 µl/min, for 10min.

Electrophysiological Recordings
The ECoG was recorded through a screw electrode (Dentorama,
Stockholm, Sweden, 8mm of total length, 3mm tip lenght)
placed on the cortical surface above the right frontal Cx (3.0mm
anterior of bregma and 2.0mm lateral to the midline) and

TABLE 1 | Animals utilized in the study.

Animal groups for electrophysiology Sacrificed Analyzed

CTL rats 10 6

TTX-treated rats 34 27

6-OHDA-lesioned rats 15 9

Total 59 42

CTL, control; TTX, tetrodotoxin; 6-OHDA, 6-hydroxydopamine.

referenced against an indifferent screw electrode placed above
cerebellum. Raw ECoG was band-pass filtered (0.1–300Hz) and
amplified (×2000; Neurolog). The ECoG was on-line digitalized
with a sample rate of 600Hz through an analogical/digital
interface (Micro1401 mk II, Cambridge Electronic Design,
Cambridge, UK) and stored on a computer for the subsequent
inspection. During cortical recordings, we collected LFPs from
the left MTh or the NRT (from 1.2mm to 1.8 posterior of bregma
and from 2 to 2.6mm lateral to the midline). The recordings
were performed using tungsten electrodes (Word Precision
Instrument, USA, TM33B01). At the end of the recordings, the
animals were sacrificed. The recordings were carried out 21–29
days after the administration of 6-OHDA, while in TTX-treated
animals, after TTX infusion.

LFP and ECoG Analysis
The local field potentials were analyzed by Spike2 script
(SUDSA22) to calculate the total power of δ band (δ, 2–4Hz),
θ band (θ, 4–8Hz), α band (α, 8–13Hz), low-β band (Lβ, 13–
25Hz), high-β band (Hβ, 25–40Hz), and γ band (γ, 60–90Hz)
in the Cx, MTh, and NRT of control (CTL), acute and chronic
DA-depleted rats. The analysis was performed with raw data
in the first 6min of recording using the fast Fourier transform
(FFT) analysis (4096 points). Figure 1 represents an example of
recording, with smoothing signal.

Statistical Analysis
For the comparison of total power of analyzed bands, among CTL
vs. TTX and 6-OHDAwe performed the non-parametric Kruskal
Wallis test followed byMannWhitney U test for the comparisons
CTL vs. TTX, CTL vs. 6-OHDA, and TTX vs. 6-OHDA. For each
statistical analysis a value of p < 0.05, corrected per number
of comparisons (n = 3), therefore p = 0.016, was considered
statistically significant. For each condition, we calculated the
mean of each of the 6min and then compared the 6min among
conditions in the MTh and the NRT. The cortical bands were
calculated as ECoG recorded during MTh and during NRT
neurons. Therefore, the comparisons were made on the mean of
6min (n = 6) for each structures. The results are expressed as
mean± SEM. For exact p value, please refer to Results section.

The ECoG and the LFP from the MTh and NRT was divided
into the six different frequency bands. The total power of
each band was calculated and compared among CTL, acute,
and chronic DA depletion states (Supplementary Tables 1–3).
Then the percentage of change in comparison to CTL was
calculated for each band in the Cx, the MTh and the NRT
(Supplementary Tables 4A–C).

We recorded from a total of 59 rats (CTL n= 10, TTX-treated
n= 34, and 6-OHDA-denervated rats n= 15) and analyzed from
a total of 42 animals (CTL n = 6; TTX-treated n = 27 and 6-
OHDA-denervated rats n= 9). In detail, in CTL rats we analyzed
a total of 7 LFP recordings from the NRT and 15 LFP recordings
from theMTh, recorded parallel to EEG (total of n= 22); in TTX-
treated rats we analyzed 11 LFP recordings from the NRT and 16
LFP recordings from the MTh, recorded parallel to EEG (total of
n= 27); in 6-OHDA rats we analyzed 5 LFP recordings from the
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FIGURE 1 | Example of recordings, from the ECoG trace, the MTh and the NRT in control condition. The raw data was processing with smoothing.

NRT and 15 LFP recordings from the MTh, recorded parallel to
EEG (n= 20).

RESULTS

Overall, after DA depletion the magnitude of changes of
oscillatory activity in all analyzed frequency ranges within the
NRT was more marked than that within the MTh and the Cx.
Figure 1 shows an example of recordings in control condition in
the Cx, the MTh and the NRT.

Effects of DA-Depletion on Cortical
Oscillatory Activities
The cortical activity changed after both chronic and acute
DA depletion, with exception of α band (CTL: 0.0065 ±

0.0004; acute state: 0.0069 ± 0.00047; chronic state: 0.0064 ±

0.0003).
The δ band decreased of 20.5% in chronic DA depletion

state (δ: 0.0439 ± 0.0009 in CTL, 0.026 ± 0.0052 in acute
state and 0.0349 ± 0.0011 in chronic state; CTL vs. acute state
p= 0.021, CTL vs. chronic state p= 0.000, acute vs. chronic state
p= 1).

The θ band decreased in acute (32.3%) and chronic (17.2%)
DA depletion states (θ: 0.0254 ± 0.0005 in CTL, 0.017 ± 0.002
in acute state, and 0.021 ± 0.0006 in chronic state; CTL vs. acute
state p= 0.000, CTL vs. chronic state p= 0.000, acute vs. chronic
state p= 0.299).

The Lβ, Hβ, and γ band frequencies increased in both acute
and chronic DA depletion state (Lβ: 0.0049 ± 0.0003 in CTL,
0.0066 ± 0.0001 in acute state and 0.0077 ± 0.00007 in chronic

state; CTL vs. acute state p = 0.000, CTL vs. chronic state
p= 0.000. acute vs. chronic state p= 0.000. Hβ: 0.0024± 0.0002
in CTL, 0.0038 ± 0.00018 in acute state and 0.00398 ± 0.00009
in chronic state; CTL vs. acute state p = 0.000, CTL vs. chronic
state p = 0.000, acute vs. chronic state p = 0.686. γ: 0.0004 ±

0.00002 in CTL, 0.0052 ± 0.00024 in acute state and 0.0014 ±

0.00004 in chronic state; CTL vs. acute state p = 0.000, CTL
vs. chronic state p = 0.000, acute vs. chronic state p = 0.000).
The Lβ increased by 34.9 and 55.6% in acute and chronic DA
depletion state, respectively, the Hβ increased by 62% in acute
state and of 67.9% in chronic DA depletion state, whilst the γ

band increased by 1258.4% and of 261.6% in chronic state, in
acute and chronic depletion states, respectively (Figures 2A, 3A;
Supplementary Tables 1A,B, 4A).

These results underlid that the cortical oscillatory activity in
low frequencies range seems to be negatively affected by DA-
depletion states, with exception of α band, that instead did not
change in any conditions. On the contrary, the DA-depletion
states tend to increase the oscillations in high frequencies
ranges (Lβ, Hβ, and γ band). In addition, the results show
that the cortical activity seems to be affected not just in
chronic DAergic denervation but also in acute state, induced
by TTX.

Effects of DA-Depletion on MTh Oscillatory
Activities
In the MTh (Supplementary Tables 2A,B; Figures 2B, 3B),
the acute and chronic DA depletion affected differently the
oscillatory activity. In particular, the δ (0.0745 ± 0.0024 in
CTL, 0.0601 ± 0.0027 in acute state and 0.062 ± 0.0047
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FIGURE 2 | δ (delta), θ (theta), and α (alpha) bands of the cortex (Cx), the MTh and the NRT (from top), in control, acute (TTX-infused rats) and

chronic (6-OHDA-denervated rats) DA-depletion states. *p < 0.016, Mann Whitney Test.

in chronic state) did not change in DA depletion states in
comparison to CTL. The θ and α bands decreased in acute
state (θ: 0.0315 ± 0.0007 in CTL, 0.0235 ± 0.0005 in acute
state and 0.0262 ± 0.0017 in chronic state; CTL vs. acute state
p = 0.004, CTL vs. chronic state p = 0.037, acute vs. chronic
state p = 0.337. α: 0.0094 ± 0.0003 in CTL, 0.0064 ± 0.0003
in acute state and 0.0081 ± 0.0004 in chronic state; CTL vs.
acute state p = 0.004, CTL vs. chronic state p = 0.025, acute
vs. chronic state p = 0.01). In particular, θ band decreased
of 25.5% in acute state, whilst α band decreased of 31.7% in
acute state (Supplementary Table 4B). Similarly, the Lβ and Hβ

bands decreased just in acute DA depletion of 34.6 and 35.7%,
respectively (Supplementary Table 4B), respectively (Lβ: 0.0052
± 0.0002 in CTL, 0.0034 ± 0.00009 in acute state and 0.0053 ±

0.0002 in chronic state; CTL vs. acute state p = 0.004, CTL vs.
chronic state p = 1, acute vs. chronic state p = 0.004. Hβ: 0.0019
± 0.00004 in CTL, 0.0012 ± 0.00003 in acute state and 0.0019 ±
0.00004 in chronic state, CTL vs. acute state p = 0.004, CTL vs.
chronic state p= 0.262, acute vs. chronic state p= 0.004).

The γB decreased in both acute and chronic DA depletion
state of 71.8 and 30.8%, respectively (0.0011 ± 0.00004 in CTL,
0.0003 ± 0.00002 in acute state and 0.0008 ± 0.00001 in chronic
state; CTL vs. acute state p = 0.004, CTL vs. chronic state
p= 0.004, acute vs. chronic state p= 0.004).

Interestingly, these results show that the MTh oscillatory
activity is strongly and mainly affected by acute DA depletion
state. Indeed, TTX, but not 6-OHDA, with exception of δ and
γ bands, induced the decrease of all analyzed bands.
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FIGURE 3 | Lβ (low beta), Hβ (high beta) and γ (gamma) bands of the cortex (Cx), the MTh and the NRT (from top), in control, acute (TTX-infused rats) and chronic

(6-OHDA-denervated rats) DA-depletion states. *p < 0.016, Mann Whitney test.

Effects of DA-Depletion on the NRT
Oscillatory Activities
In the NRT (Supplementary Tables 3A,B; Figures 2C, 3C), the
acute and chronic DA depletion states changed all the analyzed
bands. In particular, δ (0.0806 ± 0.005 in CTL, 0.0010 ± 0.00007
in acute state and 0.0408± 0.0032 in chronic state, CTL vs. acute
state p= 0.004, CTL vs. chronic state p= 0.004, acute vs. chronic
state p = 0.004), θ (0.0347 ± 0.0018 in CTL, 0.002 ± 0.0002 in
acute state and 0.0163 ± 0.0013 in chronic state, CTL vs. acute
state p= 0.004, CTL vs. chronic state p= 0.004, acute vs. chronic
state p = 0.004), α (0.013 ± 0.0008 in CTL, 0.002 ± 0.0001 in
acute state and 0.0063 ± 0.0005 in chronic state, CTL vs. acute
state p= 0.004, CTL vs. chronic state p= 0.004, acute vs. chronic
state p= 0.004) and Lβ (0.0101± 0.0007 in CTL, 0.0073± 0.0001

in acute state and 0.0074± 0.0001 in chronic state, CTL vs. acute
state p= 0.004, CTL vs. chronic state p= 0.004, acute vs. chronic
state p = 0.522) bands decreased in both acute and chronic DA
depletion state. Hβ (0.0032± 0.00005 in CTL, 0.0083± 0.0003 in
acute state and 0.0022± 0.000043 in chronic state, CTL vs. acute
state p= 0.004, CTL vs. chronic state p= 0.004, acute vs. chronic
state p= 0.004) and γ (0.0014± 0.00003 in CTL, 0.059± 0.0017
in acute state and 0.00097 ± 0.00003 in chronic state, CTL vs.
acute state p = 0.004, CTL vs. chronic state p = 0.004, acute vs.
chronic state p= 0.004) increased in acute state and decreased in
chronic state.

The δ, θ, α, and Lβ bands decreased by 98.8, 94.3, 83.4, and
27.8% in acute state, respectively, and by 49.4, 53, 51.4, and
27.2% in chronic state. The Hβ and γ bands increased by 154.8
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and 4055.1% in acute state and decreased by 32.1 and 31.6% in
chronic state (Supplementary Table 4C).

The results show that the NRT is strongly affected by both
acute and chronic DA depletion states, differently from MTh.
Indeed, the δ, θ, α, and Lβ bands, decreased in both DA depletion
states. Interestingly, in the high frequencies range (Hβ and γ

bands), the activity increased in acute DA depletion state and
instead decreased in chronic state.

DISCUSSION

Compelling evidence shows that abnormal oscillatory activity
within the Cx and BG circuit mainly in the β range, but not only,
contributes to motor impairments in PD (13). On the other hand,
the effects of DA depletion in crucial structures of the cortico-
subcortical loop such as the MTh and its principal modulator,
i.e., the NRT have been poorly investigated. In order to shedmore
light on this important field, we investigated band oscillations in
the cortical and subcortical MTh-NRT loop in rats in both acute
and chronic DA-depleted states.

Cortical and NRT δ Band Is Affected by
Acute and Chronic DA Depletion
In line with the observation of a δ decrease in cognitively normal
PD patients (39), we found a reduction of δ wave power at
cortical level in chronic DA-depleted state. In addition, we found
that δ wave also decrease after early acute DA-depletion NRT.
The δ band is associated with sleep modulation and disruption
of this activity reflect sleep-disorders (77). Interestingly, one
of the most common symptom in early stage of PD concerns
sleep deficits (44). In addition, frequencies around δ power
intervals are associated with PD tremor and are detected in the
STN in decision conflict situations (78). Our results showed a
decrement of oscillations in δ frequency in both thalamic nuclei
and Cx.

Cortical and Thalamic θ Band Decreases in
Both Acute and Chronic Depletion State
Contrary to previous reports (79, 80), we observed a decrease
of θ activity in both acute and chronic DA-depleted states in
the three investigated areas. In the NRT we found an increase
in chronic DA depletion state in comparison to acute state,
without nevertheless reach the baseline level. Cavanagh and
colleagues demonstrated that in PD patients the θ power in the
MPC and the STN is associated with decision conflict situations
and that STN-DBS alters this coupling (78). Therefore, θ power
increases in frontal Cx, associated with PD in a specific task
conditions, while it decreases in our anesthetized PD animal
model.

Thalamic α Band Decreases in Acute and
Chronic DA Depletion States
According to previous report, decrease of cortical α power
correlates with dementia (57). Whilst we failed to find any
changes in cortical α band, it decreased in the MTh and the NRT.
In particular, NRT-α power decreased in both acute and chronic

DA depletion in comparison to control, whereas in the MTh it
decreased just in acute state. The power of α frequency was higher
in chronic than acute DA depletion conditions. Consistently, the
thalamus is supposed to be the α band rhythms generator (79), as
postulated by the inhibition-timing hypothesis of α oscillations
(48, 81).

Cortical β Bands Increase in DA Depletion
State, Whilst It Decreases in MTh in Acute
State
The β band is one of the most studied oscillatory activity critically
involved in PD (8, 11, 13, 82). In physiological conditions it
is suppressed by motions (83), whilst its impairment leads to
deficits in complex sensorimotor processes such as repetitive
movements (84, 85) and it is pathophysiological relevant to
bradykinesia (10, 15). More precisely, it has been reported a
correlation between rigidity and bradykinesia and the β band
(86). Moreover, Lβ band (12–30Hz) shows a decrease in power
in response to dopaminergic treatment (87). Hβ power in STN
is enhanced in patients with freezing of gait in comparison to
patients without this common PD characteristic (88). In addition,
the Lβ band is prominent in inattentive state, whilst it has been
observed a shift to Hβ band during walking in the substantia
nigra pars reticulata (SNr) of chronically 6-OHDA-denervated
rats (17).

Here, we found an increment of cortical Lβ and Hβ band in
both acute and chronic DA depletion state. Compared to the Cx,
the thalamic β activity is differently affected by DA depletion. In
MTh, β band power is decreased in acute state. In NRT, the Lβ
band is decreased in both acute and chronic state, whilst the Hβ

band is increased in acute state.
In addition, our results support the idea that β band has

cortical and not thalamic origins (89). In particular, we observed
that the cortical β band increased in both acute and chronic
DA depletion states whilst MTh and NRT bands are differently
modulated. The MTh Lβ and Hβ decreased just in acute state,
whilst NRT Hβ increased in acute state and decreased in chronic
state. The NRT Lβ decreased instead in both acute and chronic
DA depletion states. Interestingly, in chronic state the β band in
the MTh did not change in comparison to control and this may
be due to the fact theMTh is affected by opposite influence by the
Cx and the NRT.

γ Band Is Affected by Both Acute and
Chronic DA Depletion
As it has been previously reported (90, 91), TTX-treated and
6-OHDA-lesioned rats showed an increment of the oscillatory
activity in the Cx in the γ frequency. Similarly, NRT activity
increased, whilst MTh γ activity is decreased. This increase of
cortical and NRT γ band could be considered as a basis for
developing of dyskinesia during levo-dihydroxyphenylalanine
(L-DOPA) treatment. The cortical γ activity is coupled with
thalamic α oscillations (92). We found that cortical γ and
thalamic α bands showed opposite behaviors, indeed the DA
depletion states determined the increment of cortical γ power
and decrement of the thalamic α band.
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CONCLUSION

Taking together, the evidence from literature and the present
results reveal an evident complex oscillatory pattern of neuronal
activity in PD, at the level of different nuclei of BG-thalamic-
cortical network. Furthering our understanding of these aberrant
oscillations will likely contribute to the advance of early diagnosis
based on non-invasive investigation of brain activity.

Our results support the idea that there is not a unique band
responsible of the PD pathological mechanisms, instead all bands
could contribute to the pathological complexity of the oscillatory
activity. Importantly, since the chronic DA depletion state did
not drastically affect the thalamic oscillatory activity, our data
raise the possibility that some aspects of these oscillatory activity
in PD may be promoted by the acute DA loss (69, 70, 93), and
the involvement of the NRT. The injection of TTX in MFB is
accompanied by increase of cortical β and γ bands, as typically
recorded in chronic DA denervation and in PD patients (13, 15,
20). The MTh oscillations change occurs preferentially in acute
DA depletion state, while not in chronic state due to the fact
that it may be compensated by the NRT activity. In the acute
DA depletion state, the changes in different BG circuit sites, such
as SN and GP (69, 70, 93) might instead result in the observed
changes of thalamic activity.

This result could be considered an important starting point
in order to shed some light on the role of the NRT, a structure
usually neglected in PD pathophysiology, in a hypothetical
widely Cx-BG network. Therefore, the thalamic information is
processed in the NRT, and may enhance or suppress thalamic
responsiveness, depending on the relative timing of afferent
inputs and NRT activation (94). The NRT is implicated in a
variety of functions, such as motor, arousal, sleep modulation,
sensory, and associative stimuli coding (95), and each NRT
sector encodes the relative specific information. Nevertheless,
since it is a small and deep brain structure, it is difficult to
investigate it in vivo, and elucidate its specific role in modulating
larger-scale brain activity. Early models of the NRT functions
posit that thalamocortical and NRT neurons are reciprocally
innervated (96), determining the oscillatory phenomena (97, 98).
However, computational models support the idea that an open-
loop could explain the thalamic-NRT circuit. Accordingly, low-
threshold bursting in an open-loop circuit could be consider
a mechanism by which the NRT may paradoxically enhance
thalamocortical activation, depending on the relative timing of
the NRT and thalamocortical neurons (95). This dynamic NRT-
thalamic-cortical loop could explain the hypothetical role of the
NRT for thalamocortical modulation (95).

In pathological conditions, the strong changes of the NRT
oscillatory activities in acute DA depletion state could explain
the absence of acute cortical and the thalamic change and the
later cortical and thalamic changes in chronic DA deficiency
condition.

Our results are in line with the evidence of a strong influence
of the NRT in cortical and thalamic firing mode modulation in
physiological and pathological conditions involving dysfunctions
of acetylcholine, nicotine and DA systems (99). Overall, the
strong impairments of the NRT oscillatory activity in all analyzed
frequencies in both acute and chronic DA depletion states may
suggest a possible critical role of the NRT in both PD motor and
non-motor symptoms, in early and late stages.

Our study has some caveats. Firstly, we have to consider that
findings in PD animal models cannot totally be translated to
human disease state. Moreover, we have to consider that (i) the
dopaminergic depletion is not the unique feature of PD; (ii)
the 6-OHDA lesion does not reflect totally the PD symptoms,
and (iii) the electrophysiological recordings were performed
under urethane anesthesia, rending impossible to explore if
oscillatory activity depends on the motions and/or cognitive
tasks, impaired in PD. In spite of these limitations, we think
that our results represent an important starting point in order
to better understand the changes of thalamo-cortical oscillations
induced by dopaminergic denervation in PD.
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