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Clinicians are regularly faced with the difficult challenge of diagnosing consciousness
after severe brain injury. As such, as many as 40% of minimally conscious patients
who demonstrate fluctuations in arousal and awareness are known to be misdiagnosed
as unresponsive/vegetative based on clinical consensus. Further, a significant minority
of patients show evidence of hidden awareness not evident in their behavior. Despite
this, clinical assessments of behavior are commonly used as bedside indicators of
consciousness. Recent advances in functional high-density electroencephalography
(hdEEG) have indicated that specific patterns of resting brain connectivity measured at
the bedside are strongly correlated with the re-emergence of consciousness after brain
injury. We report case studies of four patients with traumatic brain injury who underwent
regular assessments of hdEEG connectivity and Coma Recovery Scale-Revised (CRS-R)
at the bedside, as part of an ongoing longitudinal study. The first, a patient in an
unresponsive wakefulness state (UWS), progressed to a minimally-conscious state
several years after injury. HOEEG measures of alpha network centrality in this patient
tracked this behavioral improvement. The second patient, contrasted with patient 1,
presented with a persistent UWS diagnosis that paralleled with stability on the same alpha
network centrality measure. Patient 3, diagnosed as minimally conscious minus (MCS-),
demonstrated a significant late increase in behavioral awareness to minimally conscious
plus (MCS+). This patient’s hdEEG connectivity across the previous 18 months showed
a trajectory consistent with this increase alongside a decrease in delta power. Patient 4
contrasted with patient 3, with a persistent MCS- diagnosis that was similarly tracked
by consistently high delta power over time. Across these contrasting cases, hdEEG
connectivity captures both stability and recovery of behavioral trajectories both within
and between patients. Our preliminary findings highlight the feasibility of bedside hdEEG
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assessments in the rehabilitation context and suggest that they can complement clinical
evaluation with portable, accurate and timely generation of brain-based patient profiles.
Further, such hdEEG assessments could be used to estimate the potential utility of
complementary neuroimaging assessments, and to evaluate the efficacy of interventions.

Keywords: consciousness, electroencephalography, brain networks, longitudinal assessment, disorders of
consciousness, minimally conscious state, unresponsive wakefulness state

INTRODUCTION

Recent years have seen substantial advances in the research and
development of both behavioral tools and imaging methods to
detect the level of awareness in patients with prolonged disorders
of consciousness (pDOC), defined as those persisting 4 weeks or
more after injury (1). Nonetheless, making an accurate clinical
diagnosis remains challenging with the most recent figures
indicating a misdiagnosis rate of almost 40%, when based on
clinical consensus (2).

One of the factors contributing to this rate of misdiagnosis
is the lack of a standardized diagnostic tool, or a gold standard
for establishing the state of consciousness of a patient. The Coma
Recovery Scale-Revised (CRS-R) (3) is considered the most valid
scale for the systematic assessment of behavioral awareness in
these patients (4) and has helped to identify those patients that
have been misdiagnosed based on clinical examination (1). The
CRS-R has subscales of assessment along different dimensions
of behavioral responsiveness, which aim to distinguish those
patients that show reflexive responses only (Unresponsive
Wakefulness State/Vegetative State; UWS/VS), to those who
show a degree of awareness with/without command following
(Minimally Conscious State; MCS-/MCS+ respectively), to
those who have emerged from minimal consciousness, as
evidenced by functional object use and/or functional and
accurate communication (Emerged from Minimally Conscious
State; EMCS). Unfortunately, the 40% misdiagnosis rate comes
from a large proportion of the MCS patients misdiagnosed as
UWS in the absence of systematic behavioral assessment with
methods like the CRS-R (2, 5).

Cases of some misdiagnosed patients have been found to
demonstrate covert awareness using imaging techniques such
as functional magnetic resonance imaging [fMRI (6, 7)] and
electroencephalography [EEG (8)]. This highlights the potential
utility of imaging techniques to assist with diagnosis in pDOC,
especially considering that patients have typically sustained
extremely severe brain injury that can lead to deficits to language,
motor or general attention and arousal functioning that could
lead to a failure to detect consciousness using a behavioral scale
(9). Advances in neuroimaging, particularly fMRI, have found
specific paradigms to measure cognition and have identified
neural correlates, including prominently the Default Mode
Network, which are associated with consciousness state in pDOC
(10-13). Prominently, fMRI has been used to detect covert
awareness and conscious experience in a significant minority of
patients (6, 14).

The potential application of fMRI to develop a clinical
diagnostic tool is problematic though, as it is not always

readily available, feasible, or affordable, making it unsuitable
for widespread application. While MRI assessments could be
employed where suitable and feasible to build a detailed picture
of brain structure and function, its use for regular patient follow-
up is unlikely to be viable in the typical clinical context. Once
patients leave the acute clinical care setting, they are often
relocated to a rehabilitation center or nursing home for long-
term care and rehabilitation. Typically, they are not followed
up with regular fMRI assessments. Without regular follow-up of
patients who might present variable and delayed improvements
in behavior, it is difficult to determine the prognostic value of
fMRI-based measures.

One promising avenue of neuroimaging research is the use
of high-density EEG (hdEEG). Research has indicated that
functional networks in the brain at rest, captured using various
measures, are associated with the state of consciousness in
pDOC (15-18). In particular, topologically structured networks
of spectral connectivity in the alpha band have been shown
to reflect consciousness levels in both patients (16, 18) and
in healthy participants as they lose and regain consciousness
during sedation (19). This research has repeatedly demonstrated
that resting frontoparietal network connectivity might be an
important EEG-based indicator of the state of consciousness.
Most recently, Chennu et al. (18) showed that such network
metrics estimated from resting state hdEEG could predict CRS-
R diagnosis, 12-month outcomes and the presence/absence of
frontoparietal metabolism [as measured by Positron Emission
Tomography (20, 21)] in a large group of pDOC patients.
Moreover, MCS patients who were misdiagnosed as UWS showed
no differences in any of the measured hdEEG network metrics
to the patients correctly diagnosed as MCS. This suggests that
assessment of hdEEG networks could have both diagnostic and
prognostic clinical value. One major benefit is that hdEEG
assessments can be administered at the bedside, allowing for
regular and repeated assessment to track the patient’s trajectory
of recovery. However, despite this potential, there is a substantial
translational gap to viable clinical applications. The current
national clinical guidelines for pDOC in the United Kingdom
(UK) state that resting EEG cannot discriminate between UWS
and MCS patients (1) and is not currently used routinely in a
clinical setting for diagnostic purposes. This is primarily because,
as it stands, there is no EEG-based clinical tool that has been
developed, standardized or trialed in a large cohort of pDOC
patients.

A related hurdle to the establishment of clinical utility
is the fact that the vast majority of neuroimaging research
in pDOC to date has taken a cross-sectional approach to
compare patient diagnostic groups, using convenience sampling
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conducted at a particular point in time. This has generated
valuable scientific insights about the nature of neural dysfunction
in these states. However, inconsistencies between patients
in regard to assessment methods can lead to poor validity
or replicability, particularly if data collected is combined
from multiple sites. Moreover, information from more fine-
grained measures at the individual patient level can get lost
using a cross-sectional approach. If the aim is to translate
neuroimaging assessments from the bench to the clinic, we
need to demonstrate that longitudinal monitoring in individual
patients can produce consistent estimates of brain activity at the
bedside. To address this translational gap, here we describe our
prospective BETADOC (BEdside Test of Awareness for Disorders
Of Consciousness) research study, which is amongst the first
to apply a consistent method to collect hdEEG assessments
and CRS-R assessments longitudinally in a group of pDOC
patients, by systematically assessing them every 3 months over
a period of 2 years. By conducting repeated and standardized
brain network analyses of the data using a previously published
pipeline (18), we track how fine-grained measures of resting
state brain networks vary and progress alongside the behavioral
trajectory of individual patients. This approach is enabling
us to conduct longitudinal validation of hdEEG network
metrics that we have previously shown to be associated with
diagnosis and prognosis of consciousness in a cross-sectional
study (18).

The overarching aim of the BETADOC study is to validate
EEG-based metrics that accurately describe changes in the
structure of hdEEG networks as individual patients recover
over time. Using a longitudinal design, we can assess both the
diagnostic and prognostic utility of hdEEG network metrics with
multiple data points collected from each patient. In this original
research report, we show preliminary results from four traumatic
brain injury (TBI) patients in pDOC from the BETADOC project.
The first patient progressed from UWS to MCS-, in contrast
with the second patient who remained in UWS. The third
patient transitioned from MCS- to MCS+, while the fourth
patient remained in MCS-. We juxtapose the trajectories of
individual patients CRS-R scores with hdEEG visualizations
and metrics identified a priori, based on prior research in an
independent sample of patients (18). By demonstrating the
robust relationship between these brain network metrics and
CRS-R scores as patients progress through their individual
trajectories, we provide a first sample of the evidence base
required for viable clinical applications of resting state hdEEG
assessments in pDOC.

MATERIALS AND METHODS
Ethics

This study was carried out in accordance with the
recommendations of the UK National Health Service Research
Ethics Committee for Cambridgeshire. The study protocol was
approved by the committee (reference: 16/EE/0006). Patients’
next-of-kin gave written informed consent prior to enrolment in
the study, in accordance with the UK Mental Capacity Act 2005
and Declaration of Helsinki.

Participants

We included two pDOC patients whose CRS-R scores reflected
a transition to a progressively higher consciousness state across
assessments, one from UWS to MCS- and one from MCS-
to MCS+. These two patients were contrasted with two other
patients whose CRS-R scores remained unchanged and reflected
a stable UWS and MCS- state. All four patients had an etiology
of traumatic brain injury following a road traffic accident (584-
3,251 days since injury). As described further below, they were
assessed using the CRS-R to ascertain behavioral diagnosis,
and with high-density resting EEG to examine their brain
activity. The same researcher (CAB) assessed each patient at their
bedside every 3 months in the neurological center where they
resided.

Coma Recovery Scale-Revised

The Coma Recovery Scale - Revised (CRS-R) is a behavioral
assessment of awareness for pDOC (3). The 23-item scale
is split into subscales that measure the auditory, visual,
motor, oromotor/verbal, communication, and arousal levels
of the patient. Some items are considered to be signs of
consciousness, with the most complex items indicating EMCS.
Formal comparison of available behavioral scales to assess
awareness in this patient group indicated the CRS-R as one of
the most reliable (22). The CRS-R was administered by the same
trained neuropsychologist (CAB) with each patient at each time
point. Time of day, and patient postural position was also noted
although it was requested that patients were sitting upright in
chair if possible.

High-Density EEG Resting State

Fifteen minutes of resting state data was collected using a 128-
channel saline electrode net [Electrical Geodesics (EGI)]. Data
was collected at a sampling rate of 500 Hz and was later down-
sampled to 250 Hz offline. Prior to EEG collection, the CRS-R was
administered to assist with ensuring patients were awake with
their eyes open. Patients’ behaviors and EEG data were monitored
online to ensure recordings were free from seizure activity.

The pre-processing and artifact rejection method was identical
to that in Chennu et al. (18), as visualized in Figure 1. Briefly,
data from electrodes near the eyes, face and neck was removed,
leaving 91 electrodes for further analysis. Data was filtered
at 0.5-45Hz and then epoched to 10-second epochs. Each
epoch thus generated was baseline-corrected relative to the
mean voltage over the entire epoch. Data containing excessive
eye movement or muscular artifact was rejected by a quasi-
automated procedure: abnormally noisy channels and epochs
were identified by calculating their normalized variance and then
manually rejected or retained by visual inspection. After artifact
rejection, there was on average 10.74 min of data (SD = 2.50)
from each assessment for estimation of power and connectivity.
This involved rejection of an average of 17% of the data in
each assessment (SD = 19%). Independent Components Analysis
(ICA) based on the Infomax ICA algorithm (23) was used to
visually identify and reject noisy components (Mean = 41%,
SD = 17%). Finally, previously rejected channels (Mean = 18%,
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information about the topography of connectivity with the modular topology of the network (see Figure 2 legend for details). Graph-theoretic metrics were then

SD = 10%) were interpolated using spherical spline interpolation,
and data were re-referenced to the average of all channels.

Using a multitaper method with five Slepian tapers (24),
spectral and cross-spectral decompositions within the canonical
delta (0.5-4 Hz), theta (4-8 Hz) and alpha (8-13 Hz) frequency
bands were computed at bins of 0.1 Hz. Spectral power values
were normalized by dividing the power at each bin by the
total power over all three bands and multiplying by 100
(17). Alongside, the cross-spectral decomposition was used
to estimate the debiased weighted phase lag index (dwPLI)
(25) metric of connectivity between every pair of electrodes.
dwPLI minimizes the effects of volume conduction on the
estimation of brain connectivity, and is further minimally biased
at small sample sizes (25). Within each frequency band, dwPLI
values at the peak frequency of the oscillatory signal across
all channels were used to represent the connectivity between
channel pairs. From each subject’s dataset, the dwPLI values
across all channel pairs were used to construct symmetric 91 x
91 dwPLI connectivity matrices for the delta, theta and alpha
bands.

The dwPLI matrices thus constructed were thresholded
proportionally to preserve 90-10% of the largest dwPLI values in
steps of 2.5%. Specifically, at the 90% threshold, only the 10% of
the weakest network edges were discarded. At the 10% threshold,
90% of the weakest edges were discarded. This lowest threshold
of 10% ensured that the average degree was not smaller than 2
log(N), where N is the number of nodes in the network (i.e.,
N = 91). This in turn guaranteed that the resulting networks
could be estimated (26). Further, graph connection densities

within this range of thresholds have been shown to be sensitive
to the estimation of “true” topological structure therein (27, 28).
After applying each of these thresholds, matrices were
binarised, i.e., non-zero values were set to 1. These matrices were
then modeled as networks with channels as nodes and binarised
dwPLI values as connections between them. These networks
were analyzed using graph theory algorithms to calculate a
pre-defined set of summary metrics previously evaluated in
an independent dataset (18)-clustering coefficient, characteristic
path length, modularity, participation coefficient and modular
span-at each value of the proportional threshold. The clustering
coeflicient of a network captures its local efficiency (26), while
the characteristic path length measures the average topological
distance between pairs of nodes in a graph, providing a measure
of global efficiency (26). Modularity, calculated here using the
Louvain algorithm (29), is a network metric that captures the
degree to which the nodes of a network can be parcellated into
densely connected, topologically distinct modules (30). Given a
modular decomposition, the participation coefficient of a node
is an inter-modular measure of its centrality (31). A larger
standard deviation in participation coefficient of network nodes
indicates a diversity of connectivity, and hence the presence
of hub nodes that link many modules together in an efficient
network. Here, we used the standard deviation of participation
coefficients to measure network centrality as the presence of
diversely connected nodes with central hubs (32, 33). Finally,
modular span is average weighted topographical distance (over
the scalp) spanned by a module identified in a network (16).
Network metrics were averaged over all connection densities
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considered, to reduce them down to scalar values when plotting
them alongside CRS-R scores.

For each patient, the measures were normalized for plotting
to show the percentage of change relative to the first assessment
in that patient. Further, to estimate the stability of each brain-
based metric estimated at each assessment, we repeated the above
power, connectivity and network analyses 25 times, each time
randomly sampling 80% of the retained epochs. The minimum
and maximum values obtained over the 25 repetitions were
represented as error bars during plotting.

The above data analysis pipeline was implemented using
EEGLAB (34), FieldTrip (35), the Brain Connectivity Toolbox
(36), and custom MATLAB scripts. The pipeline was automated
except for manual checks for and removal of artifactual channels,
trials and independent components.

RESULTS

Patient 1: UWS to MCS-

Patient 1 (age range: 45-50) was first admitted to hospital
nearly 9 years previous to the first hdEEG assessment (3,251
days since injury). Glasgow Coma Scale (GCS) at time of
incident was unavailable. At the time of the first assessment,
the patient had been in a prolonged UWS with no means
of communication, tetraparesis and cognitive difficulties since
their injury. There was a noted history of seizures and also
some hospital admissions for chest infections. The patient
was being treated using Sodium Valproate for management of
seizures.

Figure 2A shows this patient’s trajectory of CRS-R scores from
UWS to MCS-, evidenced by visual pursuit on the visual subscale
of the CRS-R. The cross-sectional study in an independent group
of patients conducted by Chennu et al. (18) showed that the
measure of EEG networks that distinguished UWS from MCS-
patients was alpha network centrality, measured as the standard
deviation of participation coeflicients across the nodes in the
network [see Figure 1C in Chennu et al. (18)]. Further, they
showed that these hubs were located along a frontoparietal axis
of nodes with high connectivity in both locked-in patients and
healthy controls [see Figure 1A in Chennu et al. (18)].

Here, within a single patient over a longitudinal period, we
observed a visually evident association between their CRS-R
score (Figure 2A) and this measure, the normalized alpha band
participation coefficient (Figure 2B), as the patient progressed
from a UWS to an MCS- diagnosis. Figure 2C plots 3D network
topographs visualizing alpha connectivity measured at each
assessment. We recorded the highest CRS-R score of 8 at the 6th
assessment, when frontoparietal connectivity was most evident in
the patient’s alpha band network (Figure 2C, far right).

Patient 2: Stable UWS

Patient 2 (age range: 20-25) was admitted to hospital more
than 19 months previous to the first hdEEG assessment (584
days since injury). The GCS at time of incident was unavailable.
The patient was noted to have widespread intraparenchymal
contusions, subarachnoid and subdural hemorrhages as well as
base of skull fractures. The patient underwent decompressive
craniectomy for raised intercranial pressure and since then, had

a cranioplasty. The patient had hydrocephalus and underwent
ventriculoperitoneal shunt insertion. The patient’s clinical course
was complicated with autonomic storming which was managed
with Propranolol and Clonodine. At the time of assessment, the
patient showed only reflexive behaviors with tetraparesis and no
effective means of communication.

Figure 3A shows this patient’s trajectory of CRS-R scores,
indicating a diagnosis of UWS throughout. Only three
assessments were obtained from this patient, Over these
assessments, there was no change observed in CRS-R diagnosis
and behavior remained reflexive, with either presence/absence
of reflexive responses noted at each assessment in the CRS-R
sub-scales. Alongside, there was relatively little variation in alpha
network centrality (Figure 3B) across assessments. We observed
elevated connectivity during the last assessment (Figure 3C),
corresponding with the highest CRS-R score recorded in this
patient.

Patient 3: MCS- to MCS+

Patient 3 (age range: 20-25) was admitted to hospital almost 2
years previous to the first assessment (633 days since injury). This
patient was noted to have grade 3 diffuse axonal injury, diffuse
subarachnoid hemorrhage and intraventricular hemorrhage as
well as bilateral frontotemporal contusions. Their clinical course
was complicated by delayed onset rhabdomyolysis, multi-organ
failure including acute renal failure for which they had renal
replacement therapy. They also suffered a cardiac arrest resulting
in hypoxic brain injury.

Approximately 9 months following injury the patient
was noted to have a Glasgow Coma Scale (GCS) score
of 6/15 and an EEG analysis of event-related potentials
completed during their stay in a rehabilitation center showed
positive in response to visual stimuli, but auditory ERPs were
only positive for stimuli on the right. The patient’s clinical
course was complicated by seizures and recurrent aspiration
pneumonia, supraventricular tachycardia and autonomic
storming. They are currently treated with Phenytoin for seizure
management.

Figure 4A shows this patient’s trajectory of CRS-R scores
from an MCS- to an MCS+ state across time, evidenced by
reproducible movement to command on the auditory function
scale and inconsistent but intentional attempts to communicate
using eye-blinks. Chennu et al. (18) showed that the best hdEEG
discriminator of MCS- vs MCS+ patients was delta power [see
Figure 1C in Chennu et al. (18)]. In this individual patient, the
change in mean normalized delta power validated this finding,
inversely mirroring changes in CRS-R over the transition from
MCS- to MCS+ (Figure 4B).

Further detail is provided by the delta power topography
in Figure4C. At assessment 3, we recorded a low CRS-R
score of 4 and a diagnosis of UWS, as the patient was less
responsive (despite the application of deep pressure stimulation
recommended by CRS-R guidelines). Consistent with this,
delta power was relatively high at almost all channels, and
dominated over 90% of total spectral power (Figure 4B). This
proportion then dropped to just over 50% at assessments
5 and 6, when we recorded improved CRS-R scores of 8
and 15.

Frontiers in Neurology | www.frontiersin.org

August 2018 | Volume 9 | Article 676


https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles

Bareham et al. hdEEG Assessments in Disorders of Consciousness

A ‘o uws S an B .
0 X 80 2
o B " ® MCS- = 7
36 o A auditory © 60
3] o
(] o—a WV visual O 40
54 \ < motor 5 - -
5 » v v » verbal D% 1
2r ¢ ¢ v 1 =% O communication % 0= _r/
- ¥ ¢ arousal < -
o Lx Ly LY Lk O L -20
1 2 3 4 5 6 1 2 3 4 5 6
Assessment Assessment

Alpha Connectivity

Modules

Z
o
o
@
O
@
Q
@
@

FIGURE 2 | Patient 1 (UWS to MCS-) - CRS-R scores, subscores and diagnosis at each assessment (A) are juxtaposed with the normalized standard deviation of
participation coefficients estimated from the patient’s hdEEG alpha band network at each assessment (B). Consecutive assessments were separated by 3 months.
Error bars indicate range of values obtained over 25 repetitions over random subsamples of the original data. (C) visualizes alpha band network topographs at each
assessment. In each topograph, the color map over the scalp depicts degrees of nodes in the network (left color scale). Arcs connect pairs of nodes, and their
normalized heights indicate the strength of connectivity between them. The color of an arc identifies the module to which it belongs, with groups of arcs in the same
color highlighting connectivity within a module (right color scale). Topological modules within the network were identified by the Louvain algorithm (16, 18). For visual
clarity, of the strongest 30% of connections, only intramodular connections are plotted.

A g g g0l B
o 0 =
N © 40
CIE 4 D %
0 g 20 _
QP o @ @ 3 /
0
» N » S Q\_
< ]
0! L u; O -20 . . .
1 2 3 1 2 3
Assessment Assessment
O UWS
A auditory
g 2 WV visual
& = < motor
o [e]
Q = » verbal
& O communication
¢ arousal

FIGURE 3 | Patient 2 (Stable UWS)- (A) shows this patient’s trajectory of CRS-R scores and stable diagnosis. Correspondingly, (B) demonstrates the relatively
consistent standard deviations of the alpha band participation coefficients. (C) presents alpha band network topographs at each assessment.

Frontiers in Neurology | www.frontiersin.org 6 August 2018 | Volume 9 | Article 676


https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles

Bareham et al.

hdEEG Assessments in Disorders of Consciousness

&

topography at each assessment.

A 5 o) O Uws < 20/ B
o © MCS- ey
5 O MCS+ g
310 - g 0
D A auditory X
o WV visual S
Q5 y < motor £ -20
© K o » verbal ZO
< icati = 2
§ § g é $ 3 O communication b
O—a—Q—F0 O ¢ arousal -40
1 2 3 4 5 6 1 2 3 4 5 6
Assessment Assessment
c Relative Delta Power (%)

2 3 4 5 6 I
FIGURE 4 | Patient 3 (MCS- to MCS+) - The trajectory of CRS-R scores (A) is juxtaposed with normalized delta power, averaged over all channels (B). The
relationship between these measures indicates that changes in CRS-R scores were inversely associated with delta power. (C) plots normalized delta power

100%

50

Patient 4: Stable MCS-

Patient 4 (age range 30-35) was admitted to hospital nearly 4
years previous to the first assessment (1,406 days since injury).
Their GCS score was 3/15 at the scene. The patient sustained a
right acute subdural hemorrhage as well as multiple skull vault
fractures. The patient underwent decompressive craniectomy
and later developed hydrocephalus that was managed with an
external ventricular drain (since removed). The patient’s clinical
course was complicated with autonomic storming which required
treatment with Bisoprolol and Clonodine. The patient also
developed sepsis that was treated with intravenous antibiotics.
It was noted that further imaging showed a left middle cerebral
artery territory infarct.

Figure 5A shows this patient’s very stable trajectory of CRS-R
scores. The patient’s diagnoses on the CRS-R remained at MCS-
throughout the assessments, evidenced by consistent visual
pursuit. All other behaviors remained reflexive. In contrast to
Patient 3, who showed a progression in normalized delta power
alongside a progression in CRS-R scores, Figure 5B shows this
patient’s stable plateau in delta power that did not change
from the first to subsequent assessments. Figure 5C shows
that normalized delta power remained high across assessments
consistent with a diagnosis of persistent MCS-.

For completeness, Supplementary Figure 1 depicts trajec-
tories of alpha network centrality in Patients 3 and 4, and
conversely, normalized delta power in Patients 1 and 2.

DISCUSSION

We have demonstrated a longitudinal approach to the systematic
assessment of pDOC patients using a combination of behavioral
and brain-based methods at their bedside in a residential
neurological center. This is a novel framework that goes beyond

most existing research in pDOC, which has typically conducted
cross-sectional assessments by transporting patients to specialist
hospital centers with advanced neuroimaging facilities. The
BETADOC study aims to translate the wealth of neuroscientific
evidence generated from these previous studies to the clinical
context. This study, to our knowledge, is the first to do so in
the UK. Our preliminary findings show that measures of hdEEG
networks were correlated with behavioral variations in individual
pDOC patients assessed repeatedly at 3-monthly intervals.

hdEEG Assessments in pDOC

We have explored the reliability and stability of hdEEG measures
in the contrasting cases considered. Patients 1 and 3 show
a progressive transition in CRS-R diagnoses, whilst patients
2 and 4 showed a stable level of behavioral responsiveness
over time. Evidence from behaviorally stable patients 2 and 4
lends to the specificity and validity of the hdEEG measures
previously identified with cross-sectional analysis (18). Here, the
same measures identified as important to detect corresponding
within-subject transitions in consciousness were similarly able
to demonstrate stability in patients with a persistent and
unchanging diagnosis.

In patient 1, whose behavioral scores progressed from UWS
to MCS-, we found that the centrality of the patient’s alpha band
network, as measured by participation coeflicients, tracked this
improvement longitudinally. This finding was consistent with
and extends beyond the cross-sectional analysis in Chennu et al.
(18) indicating that standard deviation of alpha participation
coeflicients was the best discriminator of UWS vs MCS- patients
at the group level. The weak alpha connectivity evident in Patient
I'shdEEG network during initial assessments was congruent with
a CRS-R diagnosis of UWS. Nevertheless, the patients hdEEG
network evolved over many months of repeated assessments, and
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we observed the presence of increased frontoparietal connectivity
at the 6th assessment, in keeping with an increased CRS-R score
and behavioral evidence of consciousness. Broadly speaking,
there is considerable evidence linking the presence of robust
frontoparietal alpha networks with conscious awareness, from
research into other altered states, including sleep (37) and
sedation (19, 38) in particular. That hdEEG metrics derived from
alpha connectivity can track fine-grained longitudinal changes
in behavioral state of an individual pDOC patient, even after a
long intervening period since the original brain injury (7 years
in case of Patient 1), is valuable new knowledge that speaks to
the clinical utility of repeated hdEEG network assessments of
consciousness.

Diverse Metrics Contribute to

Discriminative Utility

However, this is not to suggest that graph-theoretic metrics are
uniquely useful in this context. A relatively simpler estimation
of delta band power best discriminated MCS- from MCS+
patients in Chennu et al. (18). Here too, we found that in
Patient 3, who progressed from MCS- to MCS+, decrease in
delta power was associated with this improvement. In contrast to
Patient 3, Patient 4 showed relatively little change in their MCS-
state, consistent with a stable level of delta power over multiple
assessments. This is in congruence with another independent
report of large-scale screening of hdEEG-derived measures by
Sitt et al. which showed that different measures were best able
to discriminate different states of consciousness (17), and could
be beneficially combined. Further, Sitt et al. too reported both
positive and negative correlations between hdEEG measures
and states of consciousness. More generally, increased power
and connectivity in low frequency bands has been reported in
pDOC (39), and attributed to partial cortical deafferentation and

the consequent intrinsic tendency of such weakly interacting
neuronal oscillators to synchronize (40).

From Theory to Practice

Taken together, our preliminary findings from the BETADOC
project highlight the potential for clinical utility of hdEEG
assessments to provide detailed and valuable information about
brain activity in individual pDOC patients, across a range of
behavioral and clinically relevant stratifications of consciousness.
As highlighted earlier, one of the strengths of this project is the
longitudinal approach to patient assessment.

Though we have focused on the correspondence between
longitudinal changes hdEEG metrics and CRS-R scores here to
demonstrate their face validity, the aim of these metrics is not
solely to track the CRS-R. Indeed, there are specific data points
where there are apparent mismatches between the hdEEG metric
and the CRS-R. For example, Patient 3 had similar CRS-R scores
at assessments 2 and 4 but different levels of normalized delta
power. The magnitude of change in a hdEEG metric, which is
unbounded, is not expected to exactly match the magnitude of
change in CRS-R, which is by definition bounded between 0
and 23. Rather, we expect that the availability of hdEEG metrics
at the bedside could complement the CRS-R by providing brain-
based information that cannot be ascertained exclusively via
behavioral examination. In doing so, hdEEG assessments could
be valuable in reducing the rate of misdiagnosis in practice. As an
example, in patients diagnosed with aphasia or with language-
related deficits, the behavioral communication necessary for
administering the CRS-R might not be possible. In such cases
where behavioral assessment is difficult to administer reliably,
the entirely passive assessment of conscious state estimated
by hdEEG activity could be useful. More generally, having
multiple assays of consciousness in individual patients should
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eventually lead to more accurate estimation, as is known to be the
case with repeated CRS-R assessments (41). Indeed, combining
diagnostic information from multiple complementary modalities
of assessment would promote a rational, consilience-based
approach. This is because the ground truth about the patient’s
subjective conscious state is fundamentally uncertain (42). In
the absence of a gold standard for consciousness, convergent
information from multiple modalities would increase clinical
confidence in the estimation of conscious state. Conversely,
divergence, for example where hdEEG indicates a higher
conscious state than the CRS-R, can prognosticate the eventual
recovery of behavioral consciousness (18).

Another distinct context in which hdEEG assessments add
value beyond complementing behavioral assessments is in
the identification of patients with the potential for hidden
consciousness not expressed in their behavior. This possibility,
demonstrated prominently with command following using
tennis imagery in seemingly UWS patients (6, 7), has led to
the realization that such patients present with a dissociation
between cognitive and motor function, rather than unresponsive
unconsciousness (43). In these patients, a CRS-R assessment
would fail to identify any signs of consciousness due to its
absence in behavior. In this context, previous cross-sectional
research has highlighted that assessment of hdEEG networks can
identify robust alpha connectivity networks in UWS patients
who demonstrate evidence of command following with tennis
imagery (16). This points to the particular utility of hdEEG
assessments in this significant minority of patients who would be
misdiagnosed even with systematic behavioral assessment at the
bedside.

Finally, the repeatability of hdEEG assessments at the bedside
serves as the basis for future work toward demonstrating its
utility in the clinical context. Indeed, while the diagnostic and
prognostic value of EEG has been highlighted in previous
cross-sectional studies of pDOC (8, 16-18, 44, 45), our early
evidence speaks to its value within the context of the individual.
This is important for advancing beyond the state of the art,
from research to clinical practice. Should regular and repeated
hdEEG assessments be incorporated into a clinical framework,
they could assist with informing clinical decision making on
behalf of the patient, addressing an unmet need highlighted in
clinical guidelines (1). In particular, as these assessments can
be reliably conducted at the bedside, they could be used to
identify patients who might benefit from further examination, be
it with clinical or neuroimaging methods. Further, we advance
the case for exploiting the repeatability of these assessments to
evaluate therapeutic and pharmacological interventions. As these
often have mixed results in clinical populations (46), hdEEG
could be used to better understand the underlying causes of this
variable response to treatment. Ultimately, this will contribute
to a more evidence-based application of precision medicine
tailored to the specific needs and individual histories of pDOC
patients.

Limitations

The findings reported here are preliminary, due to the
limited number of patients we were able to include from an
ongoing longitudinal study, and hence caution is warranted in

their interpretation. In particular, equal numbers of repeated
assessments in a large cohort of patients would be ideal for
characterizing the trajectory of change in behavior and hdEEG
measures. This would enable us to not only arrive at a more
accurate behavioral diagnosis, but also identify patients with
clear evidence of sustained recovery, in contrast to patients with
ongoing fluctuations in behavior. Future research will aim to
discover and describe the range of trajectories observed at the
cohort level.

Another limitation worth noting is that the patients presented
here all had traumatic etiology, hence generalization to other
etiologies needs to be the focus of further investigation.
Nevertheless, the results presented here are promising as, in this
small sample, they suggest that regular and repeated assessment
of patients can track variation in CRS-R and brain networks over
time. In doing so, our findings point to the potential utility of
hdEEG for complementing systematic behavioral assessments at

the bedside.
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