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Resting state functional MRI (rs-fMRI) has provided important insights into functional

reorganization in subjects with Multiple Sclerosis (MS) at different stage of disease.

In this cross-sectional study we first assessed, by means of rs-fMRI, the impact of

overall T2 lesion load (T2LL) and MS severity score (MSSS) on resting state networks

(RSNs) in 62 relapsing remitting MS (RRMS) patients with mild disability (MSSS < 3).

Independent Component Analysis (ICA) followed by dual regression analysis confirmed

functional connectivity (FC) alterations of many RSNs in RRMS subjects compared to

healthy controls. The anterior default mode network (DMNa) and the superior precuneus

network (PNsup) showed the largest areas of decreased FC, while the sensory motor

networks area M1 (SMNm1) and the medial visual network (MVN) showed the largest

areas of increased FC. In order to better understand the nature of these alterations

as well as the mechanisms of functional alterations in MS we proposed a method,

based on linear regression, that takes into account FC changes and their correlation with

T2LL and MSSS. Depending on the sign of the correlation between FC and T2LL, and

furthermore the sign of the correlation with MSSS, we suggested the following possible

underlying mechanisms to interpret altered FC: (1) FC reduction driven by MS lesions, (2)

“true” functional compensatory mechanism, (3a) functional compensation attempt, (3b)

“false” functional compensation, (4a) neurodegeneration, (4b) pre-symptomatic condition

(damage precedes MS clinical manifestation). Our data shows areas satisfying 4 of these

6 conditions (i.e., 1,2,3b,4b), supporting the suggestion that increased FC has a complex

nature that may exceed the simplistic assumption of an underlying compensatory

mechanism attempting to limit the brain damage caused by MS progression. Exploring

differences between RRMS subjects with short disease duration (MSshort) and RRMSwith
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similar disability but longer disease duration (MSlong), we found that MSshort and MSlong

were characterized by clearly distinct pattern of FC, involving predominantly sensory and

cognitive networks respectively. Overall, these results suggest that the analysis of FC

alterations in multiple large-scale networks in relation to radiological (T2LL) and clinical

(MSSS, disease duration) status may provide new insights into the pathophysiology of

relapse onset MS evolution.

Keywords: relapsing remitting multiple sclerosis, resting state fMRI, functional connectivity, functional

impairment, resting state networks

INTRODUCTION

Multiple Sclerosis (MS) is a chronic disease characterized by
the presence of multifocal inflammatory demyelinated plaques
distributed over space and time within the central nervous
system (CNS) (1, 2). The course of the MS disease is highly
varied and unpredictable. The clinical measurement of disease
progression in terms of the rate at which disability accumulates in
an individual is challenging. Magnetic Resonance Imaging (MRI)
has contributed significantly not only to diagnosis, by depicting
white matter demyelinating lesions, but also to the study of
mechanisms of disease and of functional alterations.

In a 20-year follow-up MRI study of lesion load and disability,
Fisniku et al. (3) showed that a concurrent change in white
matter lesion load on T2-weighted scans and expanded disability
status scale (EDSS) scores in the first 5 years of the disease
is indicative of long-term disability. Increasing brain lesion
load and brain atrophy have also been found to correlate with
the progression of cognitive impairment in MS (4). Indeed,
changes in brain gray matter—rather than the white matter—
have been shown to predict long-term physical disability and
cognitive impairment in a number of studies (5–8). A review
by Langer-Gould et al, though, identified sphincter symptoms
as the most robust predictor of long-term physical disability (9).
More recently, deep gray matter alterations and in particular
thalamic atrophy have gained increasing relevance in the study of
MS. For example, a study on subjects with radiologically isolated
syndrome (RIS) has provided evidence that thalamic atrophy
may precede clinical manifestations of CNS demyelination,
therefore suggesting the thalamus may be a key region to check
for early signs of neurodegeneration in MS (10). Furthermore,
thalamic atrophy has also been found to correlate with cognitive
decline and disability, suggesting that thalamic volume may be
a clinically relevant biomarker to assess the neurodegenerative
disease process in MS (11, 12).

From a functional point of view, studies using task-
related functional MRI (fMRI) have often demonstrated greater
responses in cortical areas, particularly in early stageMS patients,
when compared with healthy controls. These differences are
generally interpreted as evidence of compensatory mechanisms
to ameliorate cognitive or sensorimotor deficits in the initial
stages of the disease (13–17). Together with altered functional
connectivity between brain regions during cognitive tasks,
such effects imply the use of brain reserve to limit cognitive
impairment (18). Increased functional connectivity (FC) in

MS has also been reported in task-free conditions, that is,
resting state functional MRI (rs-fMRI). One longitudinal rs-
fMRI study reported that increased FC was detected after the
advent of new lesions, which was interpreted as an attempt
to compensate for tissue damage (19). It remains to be
verified whether such a functional reorganization leads to a
preservation of wellbeing. For example, an increased FC in
clinically isolated syndrome (CIS) patients without conventional
lesions has been suggested as a risk factor for MS (20).
Interestingly, recent studies in Relapsing Remitting MS (RRMS)
have reported a positive correlation between increased FC
in thalamic or in fronto-parietal regions and fatigue scores,
suggesting that increased FC might be a maladaptative process
(21, 22). Other studies have reported evidence of positive
correlation between areas of increased FC and structural
damage (23) or have found an association between increased
functional connectivity in distinct systems involving attention
and cognitive control with decreased cognitive ability at early
stages of MS (24), challenging the concept of functional
compensation in MS. Nevertheless, a recent study of Rocca
et al. showed that also the reverse condition is possible,
reporting the evidence of reduced FC correlated with better
neuropsychological performance in a large cohort of MS subjects
(25), furtherly questioning the interpretation of altered FC in
MS.

An understanding of brain function in MS may be better
served by looking across the many functional networks in the
brain, as the diffuse brain injuries present in MS are best
revealed when co-varying fluctuations of the blood-oxygen-level-
dependent (BOLD) signals are identified across widely dispersed
neural structures (26). These networks are most readily evident
during periods of minimal cognitive demand, that is, when rs-
fMRI is used to reveal resting state networks (RSNs). These RSNs
engage distinct brain regions that exhibit unique spontaneous
patterns of low-frequency (around 0.01–0.1Hz) synchronisations
and by inference functional connectivity (FC) (26, 27). Looking
at resting state is particularly suited for disorders such as MS
in which individuals may show cognitive impairments. For
example, the default mode network (DMN) is a RSN that has
particular relevance as a surrogate marker for early dementia
(28, 29). Examination of rs-fMRI has provided important insights
into the functional reorganization of the brain in subjects with
early relapsing MS (3–5 years disease duration) (30) as well as in
MS subjects at more advanced disease stage (31) or with longer
disease duration (32).
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In this study, we used an advanced rs-fMRI approach to focus
on network changes associated with radiological and clinical
scores. First of all, we performed a traditional analysis to see
which RSNs are affected by RRMS in a cohort of patients with
mild impairments. Then, given that MS can be described as a
multisystem disconnection syndrome (33), this work performed
a comprehensive advanced analysis of the functional status of
the principal large-scale RSNs focusing on identifying patterns of
RSN FC impairment that discriminate mild RRMS from healthy
subjects. To better understand the nature of the detected FC
alterations we formulated a priori hypotheses of mechanisms
based on FC correlations with radiological and clinical metrics.
We also compared RRMS subjects with short disease duration
(MSshort or early MS) with those with longer disease duration
(MSlong or established MS) to assess the impact of disease
duration on FC.

MATERIALS AND METHODS

Subjects
MRI acquisitions were performed on 91 subjects. Based on
the McDonald criteria (34) 62 subjects with RRMS (age 38.58
± 8.25, MSSS = 2.89 ± 1.87) were recruited for the study
from the Christchurch Hospital (Christchurch, New Zealand).
The twenty-nine healthy controls (HC) aged 34.45 ± 10.17
years had no previous history of neurological disorders. All
MS patients had been relapse free and clinically stable for at
least 1 month before study entry and 10 were receiving disease
modifying medications. Neurological, neuropsychological and
MRI assessments were scheduled over 1 month in 3 visits.
Neurological findings not attributable to MS and psychiatric
symptoms (e.g., cerebrovascular disease, tumors, brain surgery,
depressive disorder as measured by Beck Depression Inventory
(BDI) with BDI > 19 cut-off) were defined as exclusion criteria.
The RRMS group was also subdivided (labeled MSshort and
MSlong) based on their disease duration (35). The MSshort group
comprised 36 subjects with early RRMS (defined as≤5 years from
symptom onset, aged 37.34 ± 8.82, MSSS = 2.95 ± 1.99). The
MSlong group included 26 subjects with a more established RRMS
disease duration (between 5 and 15 years from symptom onset,
aged 40.62 ± 7.26, MSSS = 2.86 ± 1.79). All subjects received
an MRI scan and clinical assessment by a multidisciplinary team
at the New Zealand Brain Research Institute (NZBRI). The study
was approved by the Lower South regional ethics committee of
New Zealand and written informed consent was provided by all
participants.

Clinical-Neurological Assessment
All patients underwent clinical assessment, including relapse
history, Expanded Disability Status score (EDSS) (36), and
Modified Fatigue Impact Scale (MFIS) (37). MS severity score
(MSSS) (38) was calculated for all patients. Patients were assessed
for depression using the Beck Depression Inventory (BDI-II)
(39), while subjects’ premorbid IQ was estimated with the
Wechsler Test of Adult Reading (WTAR) (40). All participants
performed the Montreal Cognitive Assessment (MoCA) (41)
and 11 standard neuropsychological tests covering four cognitive

domains: executive function (letter fluency, category fluency,
Stroop interference) (42), memory (episodic learning and recall
were assessed (both visual) with the Brief Visual Memory Test,
BVMT) (43), attention and working memory [Stroop colors,
word reading, Symbol Digit Modality Test (SDMT), Paced
Auditory Serial Addition Test (PASAT)] (44), and visuospatial
function [Judgment of Line Orientation (45), Rey Complex
Figure copy (46)]. All patients were also assessed using the
MS Functional Composite (MSFC) test (47). MSFC score was
calculated from three components: (i) the average scores from
the four trials on the 9-HPT, (ii) the average scores of two 25-
Foot Timed Walk trials and (iii) the number correct from the
PASAT-3. Raw test scores were converted to z-scores using age-
adjusted and gender-adjusted normative data for each test and
then averaged for each domain.

MRI Acquisition
All scans were acquired in a single session on a 3T General
Electric Signa HDxt MR scanner (General Electric Medical
Systems, Milwaukee, WI) with head coil.

All subjects underwent MRI examination that included:

- rs-fMRI: T2∗ Gradient Echo (GRE), echo planar imaging
(EPI) sequence (TR/TE= 2500/35ms; voxel size= 3.75× 3.75
× 4 mm3, FOV= 240mm, 37 slices, 240 volumes, acquisition
time = 10:10min). During fMRI acquisition subjects were
asked to keep their eyes open while fixating on a cross; this
method may improve reliability relative to “eyes closed” (48).

- T1 volumetric imaging (for anatomical reference): 3D T1-
weighted inversion-prepared spoiled gradient recalled-echo
acquisition (IR-SPGR): TR/TE = 2.8/6.6ms, TI = 400ms;
flip angle = 15◦, acquisition matrix = 256 × 256 × 180;
reconstruction matrix = 512 × 512 × 180 FOV = 240mm;
voxel size= 0.48× 0.48× 1 mm3, 180 slices) was acquired for
anatomical reference.

Conventional MRI sequences were also acquired for lesion
detection:

- T2 Flair Spin-Echo (SE): TE/TR = 11/500ms, TI = 2250ms,
FOV= 220mm, voxel size= 0.43× 0.43× 3 mm3.

- T2 Propeller: SE, TE/TR= 98/3700ms, FOV= 220mm, voxel
size= 0.43× 0.43× 3 mm3.

- T1 SE: TE/TR= 12/500ms, FOV= 220mm, voxel size= 0.43
× 0.43× 3 mm3.

Structural MRI Analysis
Lesion Load Evaluation and Lesion Filling
For each subject, MS lesions were manually outlined using
Jim software (Jim 4.0 Xinapse System Leicester, UK) on T2
Flair images to quantify T2 lesion load (49). MS lesions were
also manually outlined on 3D T1-weighted (3D T1) images
and filled using an automatic lesion filling program (LEAP)
(50) before performing tissue segmentation procedures in order
to limit potential gray matter (GM) and white matter (WM)
misclassification due to signal abnormalities in the lesion tissue.
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Tissue Segmentation Analysis
For each subject, GM and WM volumes as well as the
total intracranial volume were obtained performing tissue
segmentation on 3D T1 images using SPM8 (Statistical
Parametric Mapping, Wellcome Department of Imaging
Neuroscience Group, London, UK). For each subject, after
lesion filling, 3D T1 images were intensity bias corrected,
tissue classified and registered using linear and non-linear
transformations (DARTEL) within a unified model (51). The
resulted images were then segmented into GM, WM, and
cerebrospinal fluid (CSF) using the customized priors, masked
to remove non-brain tissue voxels, modulated, and finally
smoothed with a 10mm Gaussian kernel (49). For the purposes
of the study, GM volume was calculated in subject space and
divided by the total intracranial volume—defined as the sum of
GM, WM, and CSF segments—in order to obtain a normalized
GM volume index.

rs-fMRI Analysis
For each subject, rs-fMRI images were analyzed using the
Independent Component Analysis (ICA) first at single-
subject pre-processing level (single-ICA) to reliably separate
signal from noise, using the ICA-based Xnoiseifier (FIX)
tool (52) as implemented in FSL (FMRIB Software Library,
version 5.0.9). ICA was then applied at group-level (group-
ICA) on pre-processed rs-fMRI data using the Multivariate
Exploratory Linear Optimized Decomposition into Independent
Components (MELODIC) method in order to characterize the
RSNs (53).

Data Pre-processing
Individual subjects’ pre-processing was performed using FSL
tools and consisted in motion correction, brain extraction,
spatial smoothing using a Gaussian kernel of full-width-at-
half-maximum (FWHM) of 5mm, and high pass temporal
filtering equivalent to 150 s (0.007Hz). Individual rs-fMRI
volumes were than registered to the corresponding structural
3D T1 scan using FMRIB’s Linear Image Registration Tool
(FLIRT) and subsequently to standard space (MNI152) using
FMRIB’s Nonlinear Image Registration Tool (FNIRT) with
default options. Then, each 4-dimensional rs-fMRI dataset
entered single-subject spatial-ICA (single-ICA) decomposition
using MELODIC, with an automatic estimation of the number of
independent components (ICs), which resulted in spatial maps,
each with an associated time course. Model order was estimated
using the Laplace approximation to the Bayesian evidence for
a probabilistic principal component model. For each subject,
single-ICA results were finally processed with the FIX algorithm
to clean rs-fMRI data from noisy and artefactual components.

RSNs Identification
Pre-processed functional data, containing 240 time points
(volumes) for each subject, were temporally concatenated across
subjects to create a single 4-dimensional data set to run the
group-ICA analysis via MELODIC, with an automatic estimation
of the number of ICs. At this level, some of the ICs were identified

as noise while others as RSNs, based on previous literature (53–
56). Group-ICA decomposes data into spatial maps that are the
ICs relative to the total processed dataset (i.e., the enrolled 91
subjects), or the multi-subject ICA components. At group level,
the IC maps are the same for each subject and are used as inputs
for the subsequent dual regression analysis in order to calculate
the statistical inference among groups.

Between Group RSNs Comparison and Global

Alterations Ranking
A non-parametric permutation test, referred to as “dual
regression” (28, 57, 58), was then applied to compare group-
specific FC maps for each IC map. First, this analysis tested the
statistical differences betweenHC andMS using two comparisons
or contrasts (MS < HC andMS > HC). We then investigated the
presence of significant differences in RSN FC between MSshort
and MSlong subjects, by directly testing the MS subgroups with
two further contrasts: MSshort >MSlong and MSshort < MSlong.

In this study, each dual regression analysis was carried out on
the total ICs using age, gender, education level and GM ratio
as additional covariates included in the general linear model
(GLM). The statistical inference at group level was performed
using 5000 permutations. The resulting statistical maps were
family-wise error (FWE) corrected for multiple comparisons,
implementing threshold-free cluster enhancement (TFCE) (59)
using a significance threshold of at least p ≤ 0.05. After that, the
final statistical maps were saved as tstatFCmaps.

In order to study the FC changes within each RSN and to
establish a ranking of the networks in terms of their alterations,
for each considered contrast we calculated a global parameter,
referred to as global FC or gFC (29) which takes into account
both the extension of the clusters and the magnitude of the
FC changes. For each contrast, we used the gFC index only to
produce a bar plot that ranked and compared the RSNs in terms
of their functional alteration (i.e., decreasing/increasing gFC-
values), taking into account both the magnitude and the spatial
extent of their FC changes.

RSNs Correlations With Lesion Load and MSSS
FC changes have been then correlated with the radiological T2LL
score and subsequently with the clinical MSSS index, which
are clinically relevant for MS diagnosis. For this analysis, we
started using the voxels surviving the FWE-corrected threshold
(p ≤ 0.05) in the resulting tstatFC maps (each of MS < HC
and MS > HC). We then used these masks to run a second
permutation analysis using T2 lesion load (T2LL) as the
explanatory variable of interest in the design matrix of the GLM
(60). The new resulting tstat maps were saved as tstatFCT2LL

and included only those RSN voxels that were both FC altered
and significantly (FWE-corrected p ≤ 0.05) correlated to T2LL.
We considered non-null areas within the tstatFCT2LL maps
to calculate parameter estimates, as expressed by Z-values in
individual masked rs-fMRI images, to obtain a numerical value
of the strength of RSNs temporal coherence.

In order to assess whether the alterations in the tstatFCT2LL

maps might correlate with MSSS, we used the tstatFCT2LL maps
as masks to run a third permutation analysis with MSSS as
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explanatory variable of interest. The resulting statistical maps
were saved as tstatFCT2LL_MSSS and included only the areas
within RSNs that were FC altered, significantly correlated (FWE-
corrected p ≤ 0.05) to T2LL and MSSS.

Pearson’s correlation analysis was carried out using SPSS to
obtain a numerical value of the correlation strength between RSN
FC change and T2LL for the non-null areas in the tstatFCT2LL

maps and between RSN FC change + T2LL and MSSS in the
tstatFCT2LL_MSSS maps.

Mechanisms of FC Alterations
In order to facilitate the discussion on the mechanisms of FC
alterations in RRMS we introduced a priori a method of analysis
to help interpreting possible scenarios, as outlined in Table 2 and
in the flowchart diagram of Figure S1 in SupplementaryMaterial.
It is known that FC can be found both increased or decreased in
MS compared to HC (61), but interpretation of such changes is
debated. By analysing possible correlations between FC changes
and T2LL it may be possible to hypothesize mechanisms of
such changes. Specifically, we looked for correlations between FC
and T2LL and searched the data for four possible scenarios: (1)
increased FC correlating with lower T2LL; (2) decreased FC and
higher T2LL; (3) increased FC and higher T2LL; (4) decreased FC
and lower T2LL.While the first two scenarios are straightforward
(see discussion), interpretation of scenarios where T2LL and
FC go in the same direction are less intuitive. For this reason,
we performed a further correlation analysis with the MSSS and
defined the following four further scenarios: (3a) increased FC,
higher T2LL and lower MSSS; (3b) increased FC, higher T2LL,
and higher MSSS; (4a) decreased FC, lower T2LL, lower MSSS;
(4b) decreased FC, lower T2LL, higher MSSS.

Areas identified as having different FC-values betweenMSshort
and MSlong were also classified in comparison with the above
table of differences between the entire MS cohort and HC.

Non-imaging Statistics
Statistical analyses were carried out using SPSS (version
21.0; SPSS, Chicago, IL, USA). Demographic, behavioral and
radiological differences between groups were assessed with
different tests depending on the typology of the variables
(binary, normally or non-normally distributed). Specifically,
χ2-test was performed to compare frequency distributions
of gender in the three groups. One-way analysis of variance
(ANOVA) with Bonferroni correction was used to assess
statistical differences among groups (HC and MS; HC, MSshort
and MSlong) in age. Non-parametric Kruskal-Wallis test was
applied to test differences among the groups in education level,
clinical indices (WTAR, BDI and MSFC, see section Clinical-
Neurological Assessment for details) and neuropsychological
scores (MoCA, PASAT, and attention, memory, executive,
visuospatial cognitive domains). Non-parametric Mann-
Whitney U-test was performed to test differences between
MSshort and MSlong groups in EDSS, MSSS, MFIS, disease
duration and lesion load (T2LL). A Pearson’s correlations
analysis was performed to assess the association between the RSN
FC change and T2LL for the non-null areas in the tstatFCT2LL

maps and between RSN FC change + T2LL and MSSS in the

tstatFCT2LL_MSSS maps (see section RSNs Correlations With
Lesion Load and MSSS for details). Results were Bonferroni
corrected for multiple comparisons and a statistical threshold of
p ≤ 0.05 was considered significant.

RESULTS

Clinical and Neurological Characteristics
The demographic and clinical scores for the HC,MS, andMSshort
andMSlong subgroups are provided inTable 1. Except forMoCA,
both MS groups performed worse than HC on all clinical and
neuropsychological measures. A significant difference was found
for age between HC and MS (p= 0.05) and in particular between
HC and MSlong subjects (p = 0.041), with MSlong group older
than HC. Significant differences were found in disease duration
(p< 0.001) and EDSS score (p= 0.008) when comparingMSshort
and MSlong groups, with higher EDSS scores observed in MSlong.
The mean MSFC score was significantly reduced in both MSshort
and MSlong compared with HC (Mann-Whitney test, MSshort:
p= 0.003; MSlong: p= 0.012), but no significant differences were
observed in MSFC between MSshort and MSlong. Both MS groups
also had significantly higher BDI scores (Mann-Whitney test,
MSshort: p= 0.008; MSlong: p= 0.003 than HC. MFIS, MSSS, and
T2 lesion load (i.e., T2LL) were not significantly different between
MSshort and MSlong (measures not relevant for HC).

RSNs Identification
ICA processing on rs-fMRI images resulted in 35 independent
components, 18 of which were classified as RSNs based on
their frequency spectra and spatial patterns (29, 53, 54, 56).
The remaining 17 components probably reflected artifacts like
movement, physiological noise or cerebro-spinal fluid (CSF)
partial volume effects (62).

The identified 18 RSNs were: medial visual network (MVN),
lateral visual network (LVN), precuneus network (PN), superior
precuneus network (PNsup), sensory motor networks area
M1 (SMNm1), and area S2 (SMNs2), auditory network (AN),
executive control network (ECN), default mode network (DMN),
anterior default mode network (DMNa), frontal cortex network
(FCN), language networks (LN) anterior (a) and posterior (p),
right (R) and left (L) ventral attention networks (VAN), salience
network (SN), task positive network (TPN) and cerebellar
network (CBLN). The cortical regions associated with identified
RSNs are provided as Supplementary Material (Figure S2).

MS vs. HC: RSNs Comparison and Ranking
of the RSN Alterations
The analysis of FC within the 18 identified RSNs revealed that 16
networks, includingMVN, LVN, PN, PNsup, SMNm1, AN, ECN,
DMN, DMNa, FCN, LNa, LNp, LVAN, SN, TPN, and CBLN,
were functionally impaired in MS compared to HC. Only RVAN
and SMNs2 did not show any significant FC impairment when
comparing MS to HC.

When looking at the global profile of FC impairments
resulting from the group analysis, large (more than 1000 voxels)
significantly FC reduced (p < 0.01) areas in MS compared to HC
(i.e., MS < HC contrast) were observed in the frontal cortex,
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TABLE 1 | Demographic and clinical characteristics.

HC (n = 29) MS (n = 62) MSshort (n = 36) MSlong (n = 26) p

Gender (female/male) 21/8 47/15 30/6 17/9 > 0.2

Age (years) 34.45 ± 10.17 38.58 ± 8.25 37.34 ± 8.82 40.62 ± 7.26 < 0.05a,c

Education (years) 13.62 ± 2.19 13.03 ± 2.53 13.43 ± 2.73 12.38 ± 2.17 > 0.05

WTAR 107.62 ± 7.08 104.65 ± 9.40 104.29 ± 9.90 105.15 ± 9.05 > 0.1

Disease duration (years) n.a. 5.27 ± 4.08 2.29 ± 1.22 9.46 ± 2.80 < 0.001d

EDSS n.a. 1.77 ± 1.18 1.42 ± 0.90 2.23 ± 1.40 0.008d

MSSS n.a. 2.89 ± 1.87 2.95 ± 1.99 2.86 ± 1.79 > 0.05

MFIS n.a. 7.45 ± 4.66 7.69 ± 4.95 7.15 ± 4.53 > 0.1

BDI 4.45 ± 5.24 8.32 ± 6.10 8.29 ± 6.90 8.23 ± 5.20 < 0.05a,b,c

PASAT (z score) 0.21 ± 1.05 0.62 ± 1.22 0.56 ± 1.07 0.70 ± 1.44 > 0.1

SDMT (z score) 0.29 ± 1.03 0.12 ± 0.91 0.04 ± 0.92 0.21 ± 0.93 > 0.2

MSFC 0.36 ± 0.46 0.11 ± 0.70 0.04 ± 0.58 0.18 ± 0.86 < 0.05a,b,c

MoCA 28.68 ± 1.51 28.29 ± 1.76 28.17 ± 1.82 28.46 ± 1.72 > 0.2

Executive (z score) 0.80 ± 0.54 0.39 ± 0.77 0.46 ± 0.76 0.28 ± 0.81 > 0.05

Memory (z score) 0.71 ± 0.68 0.47 ± 0.79 0.43 ± 0.84 0.50 ± 0.74 > 0.3

Attention (z score) 0.02 ± 0.71 0.32 ± 0.71 0.29 ± 0.76 0.36 ± 0.66 > 0.1

Visuospatial (z score) 0.27 ± 0.55 0.04 ± 0.59 0.13 ± 0.52 0.09 ± 0.68 > 0.05

Composite z score 0.44 ± 0.49 0.18 ± 0.53 0.22 ± 0.53 0.12 ± 0.68 > 0.05

T2 lesion load (mL) n.a. 16.63 ± 22.23 16.49 ± 23.77 16.82 ± 20.84 > 0.1

WTAR, Wechsler Test of Adult Reading; EDSS, Expanded Disability Status score; MSSS, MS severity score; MFIS, Modified Fatigue Impact Scale; BDI, Beck Depression Inventory;

PASAT, Paced Auditory Serial Addition Test; SDMT, Symbol Digit Modality Test; MSFC, MS Functional Composite; MoCA, Montreal Cognitive Assessment. Mean and SD are reported.

A chi-square test was used to test difference in gender, whereas one-way ANOVA test was used to test difference in age. Non-parametric Kruskal-Wallis and Mann-Whitney tests were

used to test all the other measures. Significant findings are shown in bold.
aSignificant difference between HC and MS.
bSignificant difference between HC and MSshort.
cSignificant difference between HC and MSlong.
d Significant difference between MSshort and MSlong.

TABLE 2 | Proposed analysis and hypothesis of mechanisms of functional connectivity (FC) alterations in MS.

Scenario Analysis Hypothesis of mechanism

FC T2LL MSSS

Scenario 1 FC reductions driven by MS lesions

Scenario 2 True functional compensation

Scenario 3a Functional compensation attempt

Scenario 3b False functional compensation

Scenario 4a Neurodegeneration (reduced FC not due to MS lesions)

Scenario 4b Pre-symptomatic condition (damage precedes clinical manifestation of MS)

Multiple-scenarios have been hypothesized to interpret the role of FC changes within the resting state networks (RSNs) of MS subjects. Each proposed mechanism describes a specific

relation between FC changes, overall lesion load (T2LL) and MS severity score (MSSS).

mainly involving the medial frontal gyrus of DMNa, and the
precuneus area of PNsup and TPN (Figure 1). Decreased FC
areas were also found in the anterior cingulate cortex (BA10)
and the fusiform gyrus (BA19) involving SN. Coherent results
were found when looking at the order ranking of RSNs according
to the gFC index, the DMNa and PNsup networks showing the
largest and most severe FC reductions in MS (Figure 1).

Furthermore, large areas of significantly increased FC
(p < 0.01) were observed in MS group compared with HC
(i.e., MS > HC) in the right supplementary motor area,

cingulum, right fusiform gyrus and the most anterior part of
the precuneus, mainly involving SMNm1 (Figure 1). Extended
areas of increased FC were also found in the inferior and middle
occipital gyri of MVN. Further areas of increased FC were
detected in the left middle temporal gyrus, mainly involving
LVAN, as well as in both left and right insula areas and in
the frontal middle gyrus of ECN. Coherent results were found
even when considering the gFC network ranking that highlighted
SMNm1 and MVN as the most affected networks for the
MS > HC contrast (Figure 1).
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FIGURE 1 | Altered FC in RSNs of MS vs. HC. On the left: in blue, brain areas showing significantly reduced FC (p ≤ 0.01 FWE-corrected) within the RSNs in MS

compared to HC (i.e., MS < HC). The blue bar plot on the bottom shows, for MS < HC, the ranking of the RSNs according to their gFC alteration: DMNa and PNsup

(highlighted with an asterisk mark in the bar plot) resulted the networks with the largest FC reductions in MS. On the right: global map showing on top, in red, the RSN

voxels that resulted to have a significantly increased FC (p ≤ 0.01 FWE-corrected) in MS vs HC (i.e., MS > HC). The details of each RSN alteration for MS > HC are

reported in the red bar plot on the bottom right: SMNm1, MVN (highlighted with an asterisk mark in the bar plot) resulted as the top-ranked altered networks.

Correlations Between FC Changes, T2LL
and MSSS
When comparing MS to HC, results show that there are at least
4 possible combinations of correlations between T2LL and FC
and MSSS in a number of areas of the brain (see Figure 2 for a
visual description of these findings). These can be also linked to
scenarios depicted in Table 2:

1) Low FC and high T2LL (Table 2: Scenario 1): Areas of reduced
FC in MS compared to HC were found to correlate negatively
with T2LL in MVN (posterior cerebellar declive), PN (right
posterior cingulate cortex, BA19), CBLN (left cerebellar lobule
VI), LVN (left cerebellar Crus I), SN (right inferior and medial
temporal gyrus, BA37), and TPN (right cerebellar Crus I).

2) High FC and low T2LL (Table 2: Scenario 2): Areas of
increased FC in MS compared to HC were found to correlate
negatively with T2LL in areas of MVN (left calcarine and
cuneus, BA30), SMNm1 (left precuneus, BA7), ECN (left
superior and medial frontal gyrus), LVAN (left angular gyrus),
and LVN (right superior occipital gyrus and cuneus, BA18,
BA19).

3) High FC and high T2LL (Table 2: Scenario 3a or b): Areas of
increased FC in MS compared to HC were found to correlate
positively with T2LL in MVN (left superior occipital gyrus
and cuneus, BA19), PNsup (right precuneus), AN, ECN (left

anterior cingulate cortex, BA10), LVAN (BA40), LNa (left
precentral gyrus, BA44) and FCN (BA11). Of these areas,
those in MVN, ECN, LNa and FCN showed also positive
correlations with MSSS (Table 2: Scenario 3b).

4) Low FC and low T2LL (Table 2: Scenario 4a or b):
Areas of reduced FC in MS compared to HC were
found to correlate positively with T2LL in DMNa
(right superior and medial frontal gyri) and TPN (right
precentral gyrus, BA6). These areas were also found
to positively correlate with MSSS (Table 2: Scenario
4b).

MSshort vs. MSlong: RSNs Comparison and
Ranking of the RSN Alterations
Direct comparison of the MSshort and MSlong groups revealed
several areas of significantly greater FC (p < 0.01) in MSshort
(i.e., MSshort > MSlong) both in left and right parietal areas
of the supramarginal gyrus, right precuneus, thalamus, and
posterior cingulate cortex, mainly involving the TPN, LVN,
and RVAN (Figure 3). The gFC network ranking reported
coherent results, showing TPN, LVN, and RVAN as the top-
ranked RSNs with a different gFC for the MSshort > MSlong
contrast. Overlapping these areas onto the maps of alterations
corrected for T2LL and MSSS from the whole MS group
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FIGURE 2 | Global maps of FC alterations which correlate with the overall lesion load (T2LL) and MSSS. Findings have been interpreted according to the

multiple-scenario hypothesis presented in Table 2: four of the six proposed mechanism have been identified and represented as a map: (1) reduced FC driven by

lesion (magenta voxels, corresponding to reduced FC areas in MS that negatively correlated at p ≤ 0.05 FWE-corrected with T2LL); (2) true functional compensation

(blue voxels, corresponding to increased FC areas in MS that negatively correlated with T2LL); (3) false functional compensation (red voxels, corresponding to

increased FC areas in MS that positively correlated with T2LL and MSSS); (4) pre-symptomatic condition (green voxels, corresponding to decreased FC areas in MS

that positively correlated with T2LL and MSSS).

compared to HC (Figure 2), 4.36% of the greater FC in
MSshort > MSlong corresponds to regions interpreted as true
functional compensation areas (Table 2: Scenario 2) in the

precuneus and in the superior frontal gyrus. Only 0.3 and 0.1%
of the altered regions in MSshort > MSlong overlap respectively
with reduced FC driven by lesions (Table 2: Scenario 1) in the
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anterior cingulum and with areas interpreted as evidence of
pre-symptomatic condition (Table 2: Scenario 4b) in the medial
frontal gyrus.

When considering the MSshort < MSlong contrast, areas of
significantly reduced FC (p < 0.01) in MSshort compared to
MSlong were observed in the left middle cingulum and the
right precuneus and fusiform gyrus (BA37) of PNsup, in the
right inferior occipital gyrus (BA19) of LNp, in the middle
frontal gyrus of ECN as well as in both right and left middle
temporal gyrus of AN (Figure 3). PNsup, LNp, followed by ECN
and AN, also resulted as the most gFC altered networks in
MSshort < MSlong (Figure 3). Moreover, when overlapping these
areas to areas of alterations corrected for T2LL and MSSS at
whole group level (Figure 2), 1.2% corresponds to regions of true
functional compensation (Table 2: Scenario 2) in the cingulate
gyrus, while 0.5% overlaps with areas of reduced FC driven by
lesions (Table 2: Scenario 1) in the inferior temporal gyrus. Only
0.2 and 0.02% of the altered regions in MSshort < MSlong overlap
respectively with pre-symptomatic condition (Table 2: Scenario
4b) in the superior frontal gyrus and with false functional
compensation (Table 2: Scenario 3b) in the inferior frontal
gyrus.

DISCUSSION

In the current study, we used ICA and dual regression techniques
to investigate whether and how functional connectivity within
the RSNs is affected by the disease in a mild cohort of RRMS
subjects. Results confirm a widespread functional alteration,
expressed as both areas of decreased and increased FC, of
almost all the RSNs, compared to HC. This result supports the
interpretation of MS as a multisystem disconnection syndrome
(33). Compared to HC, RRMS subjects show decreased FC in
two RSNs: DMNa and PNsup, both of which are cognitive
networks involved in high cognitive functioning such as working
memory, memory retrieval, and future-oriented thinking (63).
FC reductions within the DMN and precuneus in RRMS patients
has been reported previously (64, 65) and ascribed to factors, such
as brain hypometabolism and hypoperfusion. The mechanisms
of FC alterations are still debated and future multi-modal and
longitudinal studies should aim to pin down the origin of such
damage.

Our results highlight that, compared to HC, RRMS subjects
have increased FC involving two different RSNs: SMNm1, which
play a role in motor-control functioning, and MVN, which
is involved in visual and language functions (66). Evidence
of increased FC within the RSNs of MS patients’ brain has
now been observed in multiple studies with and without the
presence of conventional lesions (19, 20, 67, 68). Taken together
these studies support the hypothesis that increased FC may
be a beneficial compensatory mechanism occurring at least at
early stages of MS (69) which is lost in more advanced disease
(31). Interestingly, the same pattern of increased FC linked to
white matter (WM) damage, followed by a subsequent global
FC reduction has been demonstrated using an empirical model
by Tewarie et al. (70). FC increase has also been linked to

cognitive reserve and the ability of one’s brain to adapt and delay
cognitive decline (18, 71). Nevertheless, the hypothesis that an
increased FC can be considered as evidence of brain functional
reorganization processes (either beneficial or maladaptive) is still
to be established (72, 73).

In order to help fostering novel discussions on this topic we
propose to analyse FC changes in relation to other pathological
markers. Given the specificity of demyelinating lesions to MS,
their diagnostic role and their long term predicted value, we
believe that T2LL is an important factor to be studied in
association with FC changes, at least in the first instance.
Furthermore, a clinical score like the MSSS can introduce
evaluation of disease severity that encompasses both EDSS and
disease duration. Other factors could be equally considered in
alternative models to the one that we proposed, such as thalamic
atrophy form longitudinal data, which has been suggested as a
potentially relevant biomarker to assess the neurodegenerative
disease process in MS (12). Other specific clinical aspects could
also be included in the model, such as fatigue scores, cognitive
tests or even non-conventional MRI biomarkers such as iron
accumulation (21, 74, 75). Given the cross-sectional nature of our
data, here we included gray matter (GM) volume (as opposed to
atrophy) as a covariate in the statistical comparison of FC maps
between groups.

More specifically, to better understand the nature of
increased/decreased FC findings in MS in the present paper we
investigated areas that are functionally altered and modulated
by the overall lesion load (T2LL), known to be predictive
of long-term disability (76). Moreover, within these areas, we
questioned the relevance of compensatory mechanisms through
further associations with disease severity using MSSS. In the
first instance, this specific correlation study has been carried out
considering the RRMS group as a whole, independently of disease
duration. Results of this exploratory approach suggest indeed
that the interpretation of FC decreases or increases as result of
either neural disruption or compensatory brain plasticity may
be an oversimplification as the scenarios presented by the data
are indeed several. Associations with clinical scores of disease
severity, as represented by the MSSS have been used here to
help identifying possible hypothesis of FC changes in MS that
we have summarized in Table 2. We suggest that areas with
reduced FC and greater T2LL are considered as regions of true
“FC reductions driven by MS lesions”, while network areas with
increased FC but lower T2LL are considered as regions of “true
functional compensation”. The MSSS was not investigated in
these areas because it would have not changed our proposed
interpretation of mechanism, based mainly on the predictive
value of T2LL for long-term disability. There are counterintuitive
scenarios, though, where the increased FC correlates with higher
T2LL and others where a reduced FC is associated with a lower
T2LL. These correlations are difficult to interpret; therefore,
we propose that the sign of the correlation between FC and
MSSS scores can discriminate whether FC alterations (both
increased or decreased), also positively correlated with T2LL,
are compensatory or maladaptive. We propose to consider as a
“functional compensation attempt” the mechanism driving areas
where an increased FC is associated with a greater T2LL in
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FIGURE 3 | Areas with altered FC in RSNs of MSshort compared to MSlong patients. On the left: magenta voxels show the areas of significantly greater FC (p ≤ 0.01,

FWE-corrected) in the MSshort > MSlong contrast. On the right: aquamarine voxels represent the global map of the areas found with significantly lower FC (p ≤ 0.01,

FWE-corrected) in MSshort compared to MSlong (i.e., MSshort < MSlong ). Interestingly, the direct comparison of MSshort and MSlong highlighted a distinct pattern of

FC differences. Below the brain representations of areas of differences, bar plots show, for each considered contrast, the ranking of the RSNs according to their gFC

parameter. In each bar plot we colored in red the top-ranked networks for MSshort > MSlong and in blue the top-ranked networks for the MSshort < MSlong contrast.

Note that the top-ranked networks (marked with an asterisk) in one contrast (e.g., MSshort > MSlong) are also some of the bottom-ranked network in the opposite

contrast (MSshort < MSlong).

patients with a low MSSS. In other words, despite the greater
damage represented by a greater T2LL, patients presenting
areas satisfying this scenario are actually doing well in terms
of their MSSS. When areas of increased FC and greater T2LL
correlate with greater MSSS, instead, we argue that this can be
considered as an indication of “false functional compensation”
because the increased FC is associated with worse focal pathology
(T2LL) and a worse clinical score (MSSS). Areas showing a
decreased FC, associated with both a lower T2LL and MSSS,
can be considered as areas where the functional damage may
result from a “pre-symptomatic condition”, i.e., the functional
damage (reduced FC) may precede the clinical manifestation
of MS (low MSSS) and is not driven by focal damage (low
T2LL). In this context, whether this scenario of reduced FC
can be considered a compensatory attempt is debatable, but
plausible. An interesting argument could be to interpret these
changes in terms of a reduced brain functional reserve (18).
On the contrary, a combination of reduced FC and T2LL
associated with greater MSSS could be considered as evidence
of damage due to neurodegeneration, i.e., the reduced FC is
not caused by MS lesions (low T2LL), but may result from the
presence of a coexistent non-focal neurodegenerative alteration
resulting in higher clinical impairment as shown by the MSSS.

Advanced microstructural and metabolic imaging, together with
a longitudinal study design, could add value to the proposed
mechanistic interpretation and demonstrate its validity.

Searching for areas satisfying the proposed scenarios, our data
shows that only four combinations are present in this cohort (see
Figure 2 and also Table S1 reported as Supplementary Material):

- FC reductions driven by MS lesions: in the inferior temporal
gyrus and in the cerebellum;

- pre-symptomatic condition: in the frontal lobe (BA6 and BA9);
- true functional compensation: in the cuneus, precuneus and in

the superior frontal gyrus;
- false functional compensation: in the cuneus and in the middle

and superior frontal gyrus (in particular BA10-11).

Results do not show areas satisfying the condition of
neurodegeneration nor the condition of functional compensation
attempt.

It is very interesting to note that according to the proposed
interpretation of FC changes, areas of reduced FC in the
cerebellum and in the temporal lobe satisfy the hypothesis of
scenario 1 and may reflect FC reductions driven by MS lesions,
while decreased FC in the frontal areas (see Figure 4) satisfies
the criteria for scenario 4b and may reflect the presence of a
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FIGURE 4 | Magenta voxels: areas satisfying the condition of reduced FC driven by lesion (Table 2: Scenario 1), mainly located in the cerebellum (crus I and lobule VI)

and in the temporal areas (middle and inferior temporal gyri). Green voxels: areas satisfying the criteria for the pre-symptomatic condition (Table 2: Scenario 4b),

mainly located in the frontal lobe (superior frontal gyrus).

pre-symptomatic pathological condition (i.e., functional damage
prior to clinical manifestation of MS, i.e., T2LL and MSSS).
Given the connectivity between the cerebellum and the frontal
lobe (77) and under the assumption of the validity of the
proposed multiple-scenario scheme (Table 2), one may wonder
whether this pre-symptomatic reduced FC may be driven by
cerebellar alterations or by thalamic atrophy, both known to
be relevant in MS (12, 75, 78, 79). Future longitudinal studies
may be able to answer this intriguing question. Interestingly,
areas of increased FC can be found in the cuneus, precuneus,
and superior frontal gyrus. Part of these areas satisfy the
criteria for scenario 2, which is associated to the proposed
hypothesis of true compensatory mechanism, while another
non-overlapping part of them satisfy the criteria for scenario
3b, which is associated to the proposed hypothesis of false
compensation. Unfortunately, the present cross-sectional study
cannot inform as to the evolution of such alterations and
thereby determine the consequential nature of the findings
(e.g., did false compensation areas previously respond as true
compensation?) or whether these are independent mechanisms
of action of the pathology. However, these findings support the
suggestion that increased FC has a complex nature that may
exceed the simplistic assumption of an underlying compensatory
mechanism attempting to limit the brain damage caused by MS
evolution, exploiting or exhausting the brain functional reserve.
Indeed, these considerations suggest that we cannot exclude an
increased FC in MS may even represent a maladaptive response
to the brain functional-structural deterioration. Another aspect

to consider for future studies is the heterogeneity of the
underlying T2 lesion pathology. This aspect of lesions is
currently under investigation in several studies (80–82), using
more specific sequences since these biophysical differences
cannot be fully characterized by means of standard clinical MR
scans. Dedicated sequences would help characterizing not only
persistent black holes, but also different aspects of demyelination,
inflammation, and microstructure alterations of lesions and to
correlate them with altered FC.

Given that this was only a cross-sectional study, to investigate
the possible presence of FC evolution patterns, we assessed the
effect of disease duration on the FC alterations in the same mild
RRMS cohort. Moreover, we believe that disease duration is often
overseen to give more attention to other aspects of MS such as
disability, but from the results of this study it is clear that the
length of the disease affects patterns of functional alterations.
In turns, understanding the mechanisms of these patterns could
help understanding disease evolution. Dividing the MS cohort by
disease duration provided an opportunity to study and compare
rs-fMRI patterns in two clinical subgroups: (i) a subgroup in
the early stage of relapsing remitting MS (disease duration <5
years, MSshort) and (ii) a subgroup at a later stage who have a
mild relapsing remitting form of MS (disease duration >5 years,
MSlong).

Our results show that the widespread FC alterations within
the RSNs differentially characterized RRMS patients depending
on their disease duration. More importantly, this RRMS subjects
with shorter (MSshort) and longer (MSlong) disease duration are
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differentially characterized by patterns of FC alterations affecting
different large-scale networks. Specifically, results show that
MSshort present reduced FC compared to MSlong subjects in a
large portion of the fronto-temporo-parietal cortex involving
prevalently cognitive RSNs (in particular PNsup, LNp and
ECN, see Figure 3). On the other hand, MSshort subjects
show greater FC compared to MSlong in more sensory areas
(primary somatosensory of TPN and part of the visual areas of
LVN) mainly located in the parieto-occipital cortex (Figure 3).
Notably, the involvement of both sensory and cognitive RSNs
in the two groups appear almost complementary (i.e., the top-
ranked altered RSNs in one contrast—e.g., MSshort > MSlong –
appear as the bottom-ranked altered networks in the opposite
contrast—e.g., MSshort < MSlong), suggesting that specific
temporal dynamics may characterize MS evolution involving
neuroplasticity processes and mechanisms exploiting the brain
functional reserve (83). Furthermore, the areas of greater FC
in MSshort subjects (compared to MSlong) show the largest
overlap with the map of true functional compensation identified
according to the criteria of the multiple-scenario hypothesis (see
Table 2). Noteworthy is that the long-term course of relapse-
onset MS is variable, and in MSshort, it is reasonable to anticipate
that some will have a favorable evolution (i.e., becoming like
MSlong subjects) while others will accumulate disability from
future relapses or the development of secondary progression.
However, whether marked early FC abnormalities are able to
predict a less favorable disease progression is unclear, and can
only be addressed in a prospective longitudinal study.

Some considerations need to be addressed with respect to the
study’s limitations. From a technical point of view, in order to
reduce structured noise artifacts arising from head motion and
physiological processes, rs-fMRI data used in this study were
treated with the ICA-FIX algorithm which operates a robust but
non-aggressive denoising of resting state signals (52). A further
possible limitation is that the acquisition of B0-fieldmaps was
not included in the MRI protocol for this study. Therefore,
rs-fMRI images have not been corrected for B0-inhomogeneities
during the pre-processing step. Moreover, in this study the MS
group was found significantly older than the HC group (see
Table 1), although the distributions of age in the two groups were
strongly overlapping (see Figure S3 in Supplementary Material).
Given this difference, age was added as additional covariate
in the GLM model (see Materials and Methods at section
Between Group RSNs Comparison and Global Alterations
Ranking). Furthermore, to exclude whether the observed group
differences in FC is due to age we run a further dual regression
analysis using age as explanatory variable of interest, which
means that the contrast vector is non-null (i.e., 1/−1 to test
for positive/negative effect of age on FC) for the age column
and null elsewhere in the GLM design matrix. This verification
analysis resulted in no voxels surviving the significant threshold
of p = 0.05 FWE-corrected, indicating that age does not affect
the FC results we obtained in this study. Moreover, in this study
significant differences were found in BDI and also inMSFC when
comparing MS to HC. Interestingly, no significant difference
between groups was observed in the PASAT test, which is also
the third component of MSFC. Therefore, it would be worth

in future studies to investigate whether the RNS FC changes
between MS to HC might be influenced by their differences
in BDI and MSFC. From a study design point of view, the
present work is a cross-sectional investigation and although the
alterations within the RSNs indicate a dysfunction of the system,
influenced by focal damage as well as by disease duration,
their implication for MS prognosis will require appropriate
longitudinal data. In order to test the validity of the proposed
interpretation of FC changes in this mild cohort of MS subjects,
future studies should learn from the results and consider not
only a longitudinal design, but also a multi-modal approach. The
present study also investigated mechanisms of FC changes in a
mild cohort of RRMS. An interesting question would be to assess
a larger cohort of patients composed of different MS phenotypes,
including progressive patients, to see whether our findings could
be linked to brain reserve against physical disability as suggested
in Sumowski et al. (84).

CONCLUSIONS

This exploratory study investigates for the first time a voxel-
wise correlation between FC and focal damage (T2LL) followed
by a further voxel-wise correlation with a clinical score (MSSS).
This can be considered as a basic model on which to build
further analysis, for example using longitudinal measures of
local atrophy (e.g., in the thalamus) or to include specific
clinical or neuropsychological scores. Furthermore, this study
addresses also the impact of disease duration on FC changes.
As a whole, RSN FC analysis shows that functional alterations
in MS at a network level cannot be simply described in
terms of compensatory mechanisms or of loss of function. The
analysis of FC changes in relation to overall T2 lesion load
and MSSS suggests that the interpretation of FC alterations
within RSNs is complex, and may include mechanisms, which
involve but are not limited to true functional compensations.
Of particular interest are the predominant correlations of FC
reductions and T2LL in the cerebellum and the finding satisfying
the proposed hypothesis of pre-symptomatic alterations in the
frontal lobe, both worth further investigations. Our findings
show also that FC alterations in MS are influenced by disease
duration. Indeed, RRMSwith shorter and longer disease duration
are characterized by distinct patterns of FC alterations with a
differential involvement of sensory and cognitive RSNs. Despite
the limitations of a cross-sectional design, this study suggests that
novel approaches to study FC alterations in multiple large-scale
networks may provide new insights in the pathophysiology that
underlies the evolution of relapse onset MS. Further longitudinal
studies are needed to confirm our hypothesis of the mechanisms
that drive FC changes in RRMS and to assess whether FC findings
are able to predict the future course of the disease.
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