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Bayesian network is an increasingly popular method in modeling uncertain and complex

problems, because its interpretability is often more useful than plain prediction. To

satisfy the core requirement in medical research to obtain interpretable prediction with

high accuracy, we constructed an inference engine for post-stroke outcomes based

on Bayesian network classifiers. The prediction system that was trained on data of

3,605 patients with acute stroke forecasts the functional independence at 3 months and

the mortality 1 year after stroke. Feature selection methods were applied to eliminate

less relevant and redundant features from 76 risk variables. The Bayesian network

classifiers were trained with a hill-climbing searching for the qualified network structure

and parameters measured by maximum description length. We evaluated and optimized

the proposed system to increase the area under the receiver operating characteristic

curve (AUC) while ensuring acceptable sensitivity for the class-imbalanced data. The

performance evaluation demonstrated that the Bayesian network with selected features

by wrapper-type feature selection can predict 3-month functional independence with an

AUC of 0.889 using only 19 risk variables and 1-year mortality with an AUC of 0.893

using 24 variables. The Bayesian network with 50 features filtered by information gain

can predict 3-month functional independence with an AUC of 0.875 and 1-year mortality

with an AUC of 0.895. We also built an online prediction service, Yonsei Stroke Outcome

Inference System, to substantialize the proposed solution for patients with stroke.

Keywords: stroke, bayesian network, prognostic model, machine learning classification, decision support

techniques, imbalanced data

INTRODUCTION

A stroke is the second most common cause of death in the world and a leading cause of long-
term disability. Patients with stroke have higher mortality than age- and sex-matched subjects
who have not experienced a stroke. It is also reported that strokes recur in 6–20% of patients, and
approximately two-thirds of stroke survivors continue to have functional deficits that are associated
with diminished quality of life (1). Such disability after stroke can be measured by the modified
Rankin scale that categorizes functional ability from 0 to 6 (2–4). To discriminate the effect of
clinical treatment for patients with ischemic stroke, a score on the modified Rankin scale 0–2 is
widely applied for the indication of functional independence after stroke (2).
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There are many prognostic models for the functional
outcomes and risk of death after stroke. However, an agreed set of
guidelines or reporting for the development of prognostic score
models are currently unavailable. In a recent systematic review
of clinical prediction models, the discriminative performances of
models were still unsatisfactory, with the AUC values ranging
from 0.60 to 0.72, which are similar to the predictability of
experienced clinicians (5).

The prediction of prognosis needs to employ a variety of
statistical, probabilistic, and optimization techniques to learn
patterns from large, complex, and unbalanced medical data.
This complexity challenges researchers to applymachine learning
techniques to diagnose and predict the progress of the disease (6,
7). Machine learning has been expected to dramatically improve
prognosis, and certain applications have achieved remarkable
results (7). These applications have employed various machine
learning techniques including a deep neural network (8), support
vector machine (8, 9), decision trees (10), and ensemble methods
(11, 12) to classify diseases, level of deficits, and morality.
Selecting the optimal solution for a decision problem should
consider the unique pattern of a data set and the specific
characteristics of the problem (13).

The Bayesian network, a machine learning method, predicts
and describes classification based on the Bayes theorem (14).
Bayesian networks are widely used in medical decision support
for their ability to intuitively encapsulate cause and effect
relationships between factors that are stored in medical data
(15, 16). With these characteristics of conditional probabilities,
the Bayesian network can provide interpretable classifiers by logic
inherent in a decision support (17, 18). The parameters and
their dependences with conditional probabilities of the Bayesian
network can be provided either by experts’ knowledge (16, 19) or
by automatic learning from data (20, 21). In addition, Bayesian
networks can be used to query any given node in the network
and are therefore substantially more useful in clinics compared
with classifiers built based on specific outcome variables (22).

In this study, our aim was to investigate the usefulness of
a machine learning method to forecast functional recovery for
independent activities and 1-year mortality in patients with
acute ischemic stroke. We also introduced an online inference
system for predicting functional independence at 3 months and
mortality in 1 year of patients with stroke based on the proposed
Bayesian network.

MATERIALS AND METHODS

Data Set
Subjects for this study were selected from consecutive patients
with acute ischemic stroke who had been registered in the Yonsei
Stroke Registry over a 6.5-year period (January 2007 to June
2013). The Yonsei Stroke Registry is a prospective hospital-
based registry for patients with acute ischemic stroke or transient
ischemic attack within 7 days after symptom onset (23).

During admission, all patients were thoroughly investigated
for medical history, clinical manifestations, and the presence
of vascular risk factors. Every patient was evaluated with 12-
lead electrocardiography, chest x-ray, lipid profiles, and standard

blood tests. All registered patients underwent brain imaging
studies including brain computed tomography (CT) and/or MRI.
Angiographic studies using CT angiography, magnetic resonance
angiography, or digital subtraction angiography were included in
the standard evaluation. Additional blood tests for coagulopathy
or prothrombotic conditions were performed in patients
younger than 45 years. Transesophageal echocardiography was
included in the standard evaluation, except in patients with
decreased consciousness, impending brain herniation, poor
systemic condition, inability to accept an esophageal transducer
because of swallowing difficulty or tracheal intubation, or
lack of informed consent (24). Transthoracic echocardiography,
heart CT, and Holter monitoring were also performed in
selected patients (25). When a patient was admitted more
than twice because of recurrent strokes, only data for the
first admission were used for this study. Initial stroke
severity was determined by National Institute of Health Stroke
Scale (NIHSS) scores and score tertiles were used for the
analysis.

Hypertension was defined as resting systolic blood pressure
≥140mm Hg or diastolic blood pressure ≥90mm Hg after
repeated measurements during hospitalization or currently
taking antihypertensive medication. Diabetes mellitus was
defined as fasting plasma glucose values ≥7 mmol/L or taking
an oral hypoglycemic agent or insulin. Hyperlipidemia was
diagnosed as a fasting serum total cholesterol level≥6.2 mmol/L,
low-density lipoprotein cholesterol ≥4.1 mmol/L, or currently
taking a lipid-lowering drug after a hyperlipidemia diagnosis. A
current smoker was defined as an individual who smoked at the
time of stroke or had quit smoking 1 year before treatment (26).
The collection of variables during admission including clinical,
imaging, and laboratory data were used in statistical analysis and
Bayesian network modeling.

Stroke classification was determined during weekly
conferences based on the consensus of stroke neurologists.
Data including clinical information, risk factors, imaging study
findings, laboratory analyses, and other special evaluations
were collected. Along with these data, prognosis during
hospitalization and long-term outcomes were also determined.
Data were entered into a web-based registry. Stroke subtypes
were identified according to the Trial of ORG 10172 in Acute
Stroke Treatment (TOAST) classification (27).

For target variables in classification, we collected the outcome
variables for patients who were followed in the outpatient clinic
or by a structured telephone interview at 3 months and every
year after discharge. Short-term functional outcomes at 3 months
were determined based on the modified Rankin scale. Major
disability was defined as a score on the modified Rankin scale
of 3–6, as a poor outcome at 3 months after stroke. Deaths
among subjects from January 2001 to December 31, 2013, were
confirmed by matching the information in the death records
and identification numbers assigned to the subjects at birth
(5). We obtained data for the date and causes of death from
the Korean National Statistical Office, which were identified
based on death certificates (28, 29). The institutional review
board of Severance Hospital, Yonsei University Health System,
approved this study and waived the patients’ informed consent
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because of a retrospective design and observational nature of this
study.

Bayesian Networks
The collected data set was used to construct Bayesian networks
for predicting post-stroke outcomes. We extracted a total
of 76 random variables of each instance for patient data.
A Bayesian network consists of a directed acyclic graph
whose nodes represent random variables and links express
dependences between nodes. Suppose random variables Vi ∈

V (1 ≤ i ≤ n). A Bayesian network is described as a directed
acyclic graph G = (V, A, P) with links A ⊆ V × V and P a
joint probability distribution. P, a joint probability over V, is
described as

P(V) =
∏

Vi∈ V

P(Vi

∣

∣π(Vi) ),

where π(Vi) is the set of parent nodes of Vi.
Training Bayesian network classifiers is the process of

parameter learning to find optimal Bayesian structures
estimating parameter set of P that best represents given
data set with labeled instances (13). Given a data set D with
variable Vi, the observed distribution PD is described as a
joint probability distribution over D. The learning process now
measures and compares the quality of Bayesian networks to
evaluate how well the represented distribution explains the given
data set. The log-likelihood is the basic common value used for
measuring the quality of a Bayesian network as follows:

LL (B |D ) =
∑

Vi
log(P(Vi

∣

∣πB(Vi) )),

where B is the Bayesian network over D and
∣

∣πB(Vi) is parent
nodes of Vi in B(13, 30).

Diverse quality measurement methods have been investigated
(31). The algorithm searched the best Bayesian network based
on the Bayesian information criterion (32), Bayesian Dirichlet
equivalence score (19), Akaike information criterion (AIC) (33),
and the maximum description length (MDL) scores (30, 34). In
this study, we used the MDL score to evaluate the quality of a
Bayesian network. The MDL score is described as

MDL = −LL(B |D ) +
log N

2
· |B| ,

where N is the number of instances in D, and |B| is the
number of parameters in B. The smaller the MDL score, the
better the network. The search algorithm, greedy hill-climbing
algorithm (35) in our study, selects the best Bayesian network
by calculating MDL scores of candidate networks. For the type
of Bayesian network structure, we constructed tree-augmented
network (TAN) structures that restrict the number of parents to
two nodes (36).

Prediction Process
The entire process of a Bayesian network-based prediction
system is shown in Figure 1. A total of 76 features were extracted
from the Yonsei Stroke Registry and data preparation process

filtered records with missing outcome variables and exclusion
criteria. For feasible prediction service in clinical environment,
we performed two different feature selection methods.

Feature selection or dimension reduction is the process of
reducing the number of random variables under consideration
by obtaining a set of principal variables (37, 38). Feature
selection improves the overfitting problem caused by irrelevant
or redundant variables that may strongly bias the performance
of the classifier. The definition of feature selection in formal
expression is described in Drugan and Wiering (30) and
Hruschka et al. (39). In many studies, feature selection methods
are categorized into filters, wrappers, or embedded methods
that are applied to the data set in advance of the training
learning algorithm, or to embed feature selection in the learning
process (37, 40). Filter methods select features based on a
performance measure regardless of the employed data modeling
algorithm. The filter approach selects random variables based on
information gain score, ReliefF, or correlation-based method by
ranking variables or searching subset of variables. Information
gain measures the amount of entropy as a measure of uncertainty
reduced by knowing a feature (41–43); ReliefF evaluates the
worth of an attribute by repeatedly sampling an instance and
considering the value of the given attribute for the nearest
instance of the same and the different class (44, 45); and
correlation evaluates the worth of a subset of attributes by
considering the individual predictive ability of each feature along
with the degree of redundancy between them (46, 47). Unlike
the filter approach, wrapper methods measure the usefulness
of a subset of features by actually training a model on it. We
evaluated the performance of Bayesian networks with a reduced
variable set selected by information gain and Bayesian network
algorithms that are popular in filter and wrapper methods (42,
48, 49).

First, we tested the Bayesian network classifier with features
chosen by information gain based on entropy of each feature. The
other feature selection method, considering the characteristics
of Bayesian network classifiers, reduces the variable set by
evaluating the performance of the Bayesian network classifier in
cross-validation in which a search algorithm extracts a subset
of attributes to maximize AUC in prediction (Figure 1). The
optimization for AUC is to solve the imbalance between the
number of survival and mortal subjects.

Using the reduced variables by feature selection, the system
constructed a Bayesian network prediction model to search
optimal Bayesian network structures and parameters. We
evaluated the performance of prediction algorithms using (1) a
basic tree-augmented Bayesian network, (2) a tree-augmented
Bayesian network with features filtered by information gain, and
(3) a tree-augmented Bayesian network with features filtered
by the wrapper of a Bayesian network. The performances of
all Bayesian networks and predictive models were evaluated
based on the AUC, specificity, and sensitivity of 10-fold cross-
validations (50). We also implemented an online prediction
system for post-stroke outcomes embedding the trained
classifiers. In the validation process, we bound the minimum
sensitivity as 0.50 to utilize the trained classifiers in real-world
applications with imbalanced data.
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FIGURE 1 | Process of a prediction system for post-stroke outcomes.

RESULTS

Statistical Characteristics
During the study period, 4,105 consecutive patients with acute
ischemic stroke or transient ischemic attack were registered to
the Yonsei Stroke Registry. Exclusion criteria of this study were
patients with the stroke subtypes other than cryptogenic stroke
including transient ischemic attack (n= 326), foreigner (n= 48),
missing data (n = 29), follow-up loss (n = 97). After exclusion,
a total of 3,605 patients were finally enrolled for this study.
The mean age was 65.9 ± 12.6 years, and 60.7% were men. A
comparison of demographic characteristics between the outcome

at 3 months and death within 1 year is shown at Table 1. Patients
with poor outcome were older, more likely to be women, not a
current smoker, frequently had old stroke, hypertension, atrial
fibrillation, congestive heart failure, peripheral artery obstructive
disease, or anemia. Thrombolysis or endovascular mechanical
thrombectomy, symptomatic intracranial hemorrhage, and
herniation are frequent in patients with poor outcome.
Laboratory data showed that patients with poor outcome showed
lower hemoglobin, hematocrit, albumin, prealbumin, body
weight and higher ESR, fibrinogen, hsCRP, and D-dimer level.
The differences of demographics of patients between survival and
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TABLE 1 | Demographic characteristics and comparison of outcome at 3 months and death within 1 year.

Total Outcome at 3 months Death within 1 year

(N = 3,605) Good outcome

(N = 2,653)

Poor outcome

(N = 952)

p No

(N = 3,171)

Yes

(N = 434)

p

Age 65.9 ± 12.6 64.0 ± 12.3 71.2 ± 11.9 <0.001 64.8 ± 12.4 73.9 ± 11.2 <0.001

Sex <0.001 0.016

F 1,416 (39.3%) 969 (36.5%) 447 (47.0%) 1,222 (38.5%) 194 (44.7%)

M 2,189 (60.7%) 1,684 (63.5%) 505 (53.0%) 1,949 (61.5%) 240 (55.3%)

Hypertension 2,675 (74.2%) 1,940 (73.1%) 735 (77.2%) 0.015 2,675 (74.2%) 1,940 (73.1%) 0.023

Diabetes 1,144 (31.7%) 827 (31.2%) 317 (33.3%) 0.243 1,144 (31.7%) 827 (31.2%) 0.282

Hypercholesterolemia 747 (20.7%) 554 (20.9%) 193 (20.3%) 0.726 685 (21.6%) 62 (14.3%) 0.001

Current smoking 856 (23.7%) 704 (26.5%) 152 (16.0%) <0.001 856 (23.7%) 704 (26.5%) <0.001

Old stroke 472 (13.1%) 301 (11.3%) 171 (18.0%) <0.001 401 (12.6%) 71 (16.4%) 0.038

Atrial fibrillation 813 (22.6%) 482 (18.2%) 331 (34.8%) <0.001 623 (19.6%) 190 (43.8%) <0.001

Coronary artery disease 811 (22.5%) 603 (22.7%) 208 (21.8%) 0.608 717 (22.6%) 94 (21.7%) 0.701

Congestive heart failure 184 (5.1%) 110 (4.1%) 74 (7.8%) <0.001 134 (4.2%) 50 (11.5%) <0.001

Peripheral artery obstructive disease 110 (3.1%) 60 (2.3%) 50 (5.3%) <0.001 85 (2.7%) 25 (5.8%) 0.001

Initial NIHSS score 5.6 ± 6.3 3.4 ± 4.0 11.5 ± 7.5 <0.001 4.8 ± 5.4 11.5 ± 8.4 <0.001

TOAST <0.001 <0.001

LAC 321 (8.9%) 285 (10.7%) 36 (3.8%) 312 (9.8%) 9 (2.1%)

LAA 741 (20.6%) 504 (19.0%) 237 (24.9%) 661 (20.8%) 80 (18.4%)

CE 991 (27.5%) 688 (25.9%) 303 (31.8%) 823 (26.0%) 168 (38.7%)

SOD 89 (2.5%) 68 (2.6%) 21 (2.2%) 80 (2.5%) 9 (2.1%)

UT 668 (18.5%) 498 (18.8%) 170 (17.9%) 587 (18.5%) 81 (18.7%)

UN 785 (21.8%) 607 (22.9%) 178 (18.7%) 703 (22.2%) 82 (18.9%)

UI 10 (0.3%) 3 (0.1%) 7 (0.7%) 5 (0.2%) 5 (1.2%)

Anemia 617 (17.1%) 361 (13.6%) 256 (26.9%) <0.001 450 (14.2%) 167 (38.5%) <0.001

Thrombolysis 485 (13.5%) 272 (10.3%) 213 (22.4%) <0.001 377 (11.9%) 108 (24.9%) <0.001

Symtomatic ICH 92 (2.6%) 10 (0.4%) 82 (8.6%) <0.001 43 (1.4%) 49 (11.3%) <0.001

Herniation 105 (2.9%) 3 (0.1%) 102 (10.7%) <0.001 38 (1.2%) 67 (15.4%) <0.001

Body weight 62.9 ± 11.1 64.0 ± 10.9 60.0 ± 11.2 <0.001 63.6 ± 11.0 57.8 ± 10.8 <0.001

hgb 13.8 ± 2.0 14.0 ± 1.9 13.3 ± 2.2 <0.001 14.0 ± 1.9 12.7 ± 2.3 <0.001

hct 40.6 ± 5.6 41.1 ± 5.3 39.3 ± 6.1 <0.001 41.0 ± 5.3 37.9 ± 6.5 <0.001

esr 23.9 ± 22.2 21.2 ± 20.1 31.3 ± 25.8 <0.001 22.1 ± 20.6 36.5 ± 28.8 <0.001

pt 1.0 ± 0.5 1.0 ± 0.3 1.0 ± 0.7 0.123 1.0 ± 0.5 1.0 ± 0.2 0.002

Albumin 4.2 ± 0.5 4.3 ± 0.4 4.0 ± 0.5 <0.001 4.3 ± 0.4 3.9 ± 0.6 <0.001

Prealbumin 223.7 ± 72.6 239.0 ± 69.9 205.6 ± 71.6 <0.001 233.3 ± 69.8 186.8 ± 71.4 <0.001

Fibrinogen 322.8 ± 94.3 316.1 ± 83.9 341.5 ± 116.8 <0.001 320.1 ± 88.5 342.5 ±

128.5

0.001

hsCRP 11.3 ± 48.4 7.5 ± 49.7 22.2 ± 42.7 <0.001 9.2 ± 48.4 27.3 ± 45.5 <0.001

D-dimer 779.0 ± 3846.1 418.4 ± 1704.4 1788.2 ±

6834.6

<0.001 464.5 ±

1759.3

3079.8 ±

9723.3

<0.001

death within 1 year were similar with functional outcome at 3
months. D-dimer levels were significantly higher in patients who
died within 1 year compared with survivors (3079.8 ± 9723.3 vs.
464.5± 1759.3, p < 0.001).

Structure and Parameters of Bayesian
Networks
As we described in Figure 1, two different feature selection
techniques were performed in our experiment: variables selected
by information gain with ranking or variables selected by a

wrapper embedding Bayesian network with greedy stepwise
subset selection in cross-validation. The top-ranked variables in
the filter by information gain and the wrapper of the Bayesian
network in forecasting functional independence at 3 months
are shown in Figures 2A,B, and variables for predicting 1-
year mortality are shown in Figures 2C,D. The most affective
factor for functional recovery prediction was Initial NIHSS,
while D-dimer ranked top in 1-year mortality prediction.
The common variables for predicting post-stroke outcomes
were Initial NIHSS, D-dimer, hsCPR, and Age. However, the
subset-searching algorithm selects a method differently from the
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FIGURE 2 | Top 15 variables in dimension reduction for post-stroke outcome prediction: (A) variables filtered by ranks of information gain for predicting functional

independence at 3 months, (B) variables selected by the wrapper of the Bayesian network classifier with greedy subset selection for predicting functional

independence at 3 months, (C) variables filtered by ranks of information gain for predicting 1-year mortality, and (D) variables selected by the wrapper of the Bayesian

network classifier with greedy subset selection for predicting 1-year mortality.

rankingmethod that evaluates the individual variables separately;
thus, certain variables were excluded from the selected subset
even though their ranks are high in individual evaluation.

Using the result of feature selection, we trained three tree-
augmented Bayesian network classifiers; (1) Tree-augmented
Bayesian network with the entire dataset, (2) tree-augmented
Bayesian network with features filtered by ranking of information
gain, and (3) tree-augmented Bayesian network with features
filtered by the wrapper of the Bayesian network classifier (see
Figure 3). The predictive performance for 3-month outcomes
is shown in Figure 3A. The classifier trained with features
chosen by the Bayesian network’s subset evaluation performs in
prediction of 3-month functional recovery with the specificity
of 0.931, accuracy of 0.643, and AUC of 0.889 (95% CI,
0.879–0.899) although the sensitivity (0.643) is slightly lower
than other algorithms. The tree-augmented Bayesian network
without feature selection achieved the AUC of 0.875 (95%
CI, 0.864–0.886), but the highest sensitivity of 0.684; and the
Bayesian network with features by ranking of information
gain obtained the AUC of 0.875 (95% CI, 0.864–0.886) and
mid-level performance between two other algorithms. The
Bayesian network classifier with feature selection achieved best
performance in most metrics except sensitivity, although it
reduced the variable set from 76 variables to 19 variables,
resulting in a great reduction in model construction time.

In prediction of 1-year mortality, AUCs of three algorithms
were not significantly different (0.892 with 95% CI, 0.872–
0.912; 0.895 with CI, 0.875–0.915; and 0.893 with CI, 0.873–
0.913). All algorithms achieved higher specificities in predicting
1-year mortality than those for the prediction of functional
independence (0.915 vs. 0.897 with a basic Bayesian network,
0.915 vs. 0.898 with a Bayesian network with features
filtered by information gain, and 0.943 vs. 0.931 with a
Bayesian network with features chosen by the wrapper
of the Bayesian network classifier). The Bayesian network
algorithm with feature selection for 1-year mortality cuts out
the entire variable set to 24 variables that curtail network
construction time. The final Bayesian networks predicting
functional recovery and 1-year mortality are shown in Figures 4,
5, respectively.

Online Interactive System for Predicting
Post-stroke Outcomes
To realize decision support using Bayesian network classifiers, we
embedded our final Bayesian networks into an online inference
system, Y-SOIS (Yonsei-Stroke Outcome Inference System,
https://www.hed.cc/?a=Yonsei_SOIS), that enables answering
post-stroke outcomes when users provide available risk variables.
Figure 6 shows the screenshots of Y-SOIS.
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FIGURE 3 | Performance evaluation of Bayesian network-based classifiers: (A) performance of classifiers forecasting 90-day functional independence and (B)

performance of classifiers for 1-year mortality prediction.

FIGURE 4 | Bayesian network for predicting functional independence at 3 months. The tree-augmented Bayesian network used 19 variables selected by the wrapper

of the Bayesian network for prediction.

DISCUSSION

Interpretability is a core requirement for machine learning
models in medicine, because both patients and physicians need
to understand the reason behind a prediction (51). This study
presents an evaluation of Bayesian networks in providing post-
stroke outcomes estimates based on the collected demographic
data, lab result, and initial neurological assessment. The stroke-
specific variables were selected from a large stroke registry,
and our experiment filtered those variables into the Bayesian
network-suitable reduced set. The trained Bayesian networks
were embedded in our online prediction system.

Strength of a Bayesian Network on Stroke
Outcome Measurements
Research on stroke outcomes is essential for both clinical
care and policy development, because approximately two-thirds
of stroke survivors continue to experience functional deficits
and approximately 1 of 10 patients died within 1 year (5).
The prediction of post-stroke outcomes thus requires high
accuracy in classification along with the understandable result
that can be explained to patients. A Bayesian network can
intuitively make connections between variables in medical data
and provide interpretable determination in medical decision
(17, 18). Therefore, Bayesian networks are well suited for
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FIGURE 5 | Bayesian network for predicting 1-year mortality. The tree-augmented Bayesian network used 24 variables selected by the wrapper of the Bayesian

network for prediction.

representing uncertainty and causality in prediction for patients
with stroke. In recent machine learning studies, a Bayesian
neural network is focused on a state of the art method which
estimates predictive uncertainty (52). In Kendall and Gal (53),
a Bayesian deep learning framework combines input-dependent
aleatoric uncertainty together with epistemic uncertainty, to
solve the black-box problem in deep learning. Constructing
Bayesian networks enables medical diagnosis or prediction with
incomplete and partially correct statistics, because it determines
causes and effects based on the conditional probability between
variables (54).

Prediction With Imbalanced Data
Often real-world data sets are predominately composed of
normal instances with only a small percentage of interesting
instances; therefore, class imbalance is one of the most important
challenges (55). Our study also has heavily unbalanced classes
in mortality prediction (3,171:434). Suppose entire positive
instances were classified into negative class; then the accuracy
is 0.880 in 1-year mortality prediction, although mortality
is not predicted at all. Most machine learning algorithms
train classifiers mainly searching for higher accuracy; therefore,
the minority class is less considered in the training process.
To challenge this imbalanced classification, a number of
techniques have been proposed (56): oversampling approaches
create minority instances by simple duplication or synthetic-
minority oversampling technique (SMOTE) (57–59); certain
classifiers with undersampling beat oversampling (60); cost-
sensitive methods weigh higher penalty on misclassification

of the minority class (61); and bagging, boosting, and hybrid
approaches utilize feedback from misclassification in previous
stages of learning (62).

In addition to the capability of interpretable prediction and
reduced uncertainty, a Bayesian network is strong machine
learning in classifying an imbalanced data set as investigated
in Drummond and Holte (60) and Monsalve-Torra et al.
(63). In Monsalve-Torra et al. (63), the Bayesian network
outperformed radial basis function and multilayer perceptron
in sensitivity. In our experiment, the learning process searched
the best Bayesian network structure and parameters for the
highest AUC while it guarantees at least 0.5 in sensitivity.
A more computation-expensive searching algorithm such as
repeated hill climbing might be helpful to increase sensitivity in
classification.

Visualized Probability of Outcomes After
Stroke
Bayesian networks can also provide a visual graph structure.
We constructed a tree-augmented Bayesian network structure
that shows an association between nodes. This visualization of
conditional probability might be helpful for clinical reasoning.
For example, a Bayesian network can provide the association
among symptomatic intracranial hemorrhage, higher initial
NIHSS score, or higher 1-year mortality with conditional
probability, as shown in Figure 5. Therefore, our prediction
model of post-stroke outcomes differs from the black-box
concept of other machine learning methods (54).
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FIGURE 6 | Screenshots of an online prediction system, Y-SOIS (Yonsei Stroke Outcome Inference System). (A) Y-SOIS forecasts the functional independence at 3

months and (B) Y-SOIS forecasting the 1-year mortality.

The reduction of dimension is also helpful to visualize
inference of prediction. The results demonstrated that the
Bayesian network classifier with a reduced variable set can adapt
the size of a network for better interpretability with a minimal or
better impact on other performance.

Predictors of Post-stroke Outcomes
In this study, the information gain analysis showed that “D-
dimer” was the highest feature in predicting 1-year mortality.
We previously reported that a high D-dimer level by itself
appeared to be associated with an increased risk of mortality

(64). D-dimer can be found to be elevated in various thrombotic
and inflammatory conditions, including ischemic heart disease,
infection, or malignancy. These conditions are frequently found
in patients with stroke and can increase the risk of mortality
(65). However, patients with comorbid diseases were frequently
excluded from the clinical trials, so there are no guidelines
and evidence whether to treat or not patients with serious
comorbid diseases in real clinical practice. In this respect,
providing information of the impact of the comorbid condition
with a Bayesian network might be helpful to predict the
outcomes.
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LIMITATIONS AND FUTURE DIRECTION

This study was conducted in a single university hospital
and focused on those of East Asian descent. To provide
generalizability on our prediction system, we will include
various cohorts including different ethnics or patients who
received thrombolysis or endovascular thrombectomy. We
have plan to apply the interpretable prediction for the
SECRET (SElection CRiteria in Endovascular thrombectomy
and Thrombolytic therapy) study, which is a nationwide
registry for hyperacute stroke. Consecutive patients who received
intravenous thrombolysis and/or endovascular thrombectomy
were registered (Clinical Trial Registration: NCT02964052).
Bayesian network analysis of this specific condition can be used to
predict outcome in patients with hyperacute stroke. We will also
enlarge our training data including data of various populations by
applying the proposed solution to global data archives. Additive
risk predictors might be selected as determinant features in a

Bayesian network, and it makes the prediction system more
applicable in a global clinical environment.
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