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In the last decades, a number of Diffusion Weighted Imaging (DWI) based techniques

have been developed to study non-invasively human brain tissues, especially white

matter (WM). In this context, Constrained Spherical Deconvolution (CSD) is recognized

as being able to accurately characterize water molecules displacement, as they emerge

from the observation of MR diffusion weighted (MR-DW) images. CSD is suggested

to be applied on MR-DW datasets consisting of b-values around 3,000 s/mm2 and

at least 45 unique diffusion weighting directions. Below such technical requirements,

Diffusion Tensor Imaging (DT) remains the most widely accepted model. Unlike CSD,

DTI is unable to resolve complex fiber geometries within the brain, thus affecting

related tissues quantification. In addition, thanks to CSD, an index called Apparent Fiber

Density (AFD) can be measured to estimate intra-axonal volume fraction within WM.

In standard clinical settings, diffusion based acquisitions are well below such technical

requirements. Therefore, in this study we wanted to extensively compare CSD and DTI

model outcomes on really low demanding MR-DW datasets, i.e., consisting of a single

shell (b-value = 1,000 s/mm2) and only 30 unique diffusion encoding directions. To

this end, we performed deterministic and probabilistic tractographic reconstruction of

two major WM pathways, namely the Corticospinal Tract and the Arcuate Fasciculus.

We estimated and analyzed tensor based features as well as, for the first time, AFD

interpretability in our data. By performing multivariate statistics and tract-based ROI

analysis, we demonstrate that WM quantification is affected by both the diffusion model

and threshold applied to noisy tractographic maps. Consistently with existing literature,

we showed that CSD outperforms DTI even in our scenario. Most importantly, for the first

time we address the problem of accuracy and interpretation of AFD in a low-demanding

DW setup, and show that it is still a biological meaningful measure for the analysis of

intra-axonal volume even in clinical settings.

Keywords: diffusion MRI, DTI, CSD, AFD, tractography, white matter quantification, corticospinal tract, arcuate

fasciculus
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INTRODUCTION

In the last decades diffusionMRI allowed to study non-invasively
white matter (WM) by analyzing water molecules diffusion
process in vivo (1). Diffusion Tensor imaging (DTI) was the
first model historically developed to describe tridimensional
water anisotropic motion in the brain (2). DTI is based on
the estimation of diffusion tensors, i.e., order 3 positive definite
matrices: tensor eigensystem describes water apparent diffusivity
(the eigenvalues) in three main orthogonal directions (the
eigenvectors) (3). Taking into account tensor model, tissues
quantification has been characterized over the years by means
of several scalar indices, such as fractional anisotropy (FA)
and mean diffusivity (MD) (4). These values have been shown
to correlate with WM integrity in normal vs. pathological
conditions (5, 6).

Although a number of improvements were performed to
get more reliable estimates (7–10), tensor model suffers from
severe limitations, like the inability to resolve complex fiber
configurations within a voxel (11–14). A number of techniques
have been thus developed to overcome such limitations, like
multi-tensor models (15–17), Q-ball imaging (18), Constrained
Spherical Deconvolution (CSD) (19–21) and Diffusion Spectrum
Imaging (22).

CSD is a modified high angular resolution diffusion imaging
(HARDI) based model (18, 23) that investigates water motion by
fitting a set of rotational and spherical harmonics to determine
the so-called fiber Orientation Distribution Function (fODF) (21,
22). CSD attempts to individuate all fiber populations insisting
over WM voxels based on a representative one-fiber population
signal, the so-called response function.

From CSD framework it is possible to derive indices to
quantify at voxel-wise level WM fiber bundles (24, 25); compared
to DTI based features, these indices are unbiased with respect
to the presence of multiple fiber bundles insisting inside the
same voxel. In particular, in Raffelt’s paper (25) apparent fiber
density (AFD) has been introduced: based on the properties of
diffusion signal, AFD attempts to estimate intra-axonal volume
fraction (26) of each distinct fiber bundle insisting over WM
voxels. AFD has been recently successfully applied in normal as
well as pathological conditions (27, 28).

In current literature, like other HARDI based methods, CSD
and AFD are recommended to be employed in diffusion datasets
with relatively high b-values (3,000 s/mm2) and a minimum
of 45 distinct encoding diffusion directions (19). At the same
time, other tissue quantifications techniques, e.g., NODDI (29)
or CHARMED (30), involve schemes with multiple shells (i.e.,
multiple b-values).

Currently, especially in clinical environments, a huge number

of acquisition protocols make use of datasets with lower b-values

(1,000–1,200 s/mm2), and fewer unique directions (∼30). This
happens because of the old machine used, or mainly because they

require less time to be accomplished. Time factor is indeed of
huge importance when dealing with patients, who are usually
less tolerant and collaborative due to their particular conditions.
In such scenarios, the common approach is to stick with tensor
model and related analyses. Despite that, in the last years an

emerging number of studies applied CSD on datasets derived
from a setup that is below the recommended standards, see for
instance (31–33).

In this study we aim at systematically investigating the amount
of information achievable within the CSD framework on real
data with a very low-demanding setting, i.e., when employing
a single shell (b-value = 1,000 s/mm2) and 30 unique diffusion
gradient directions. To this end, we compared CSD outcomes
with DTI model ones, which is the gold standard with those
settings. We performed tractographic reconstruction and related
tract-based ROI analysis (TB-RA) of two well-known pathways,
namely the Corticospinal Tract (CST) and the Arcuate Fasciculus
(AF). Deterministic as well as probabilistic tractography were
implemented and compared based both on DTI and CSD
models (21, 34–37). By means of multivariate statistics we
subsequently analyzed tissue quantification dependence on the
diffusion model adopted as well as on the threshold levels
applied to noisy tractographic maps. Most importantly, for
the first time with the abovementioned hardware settings, we
focus on the biological meaningfulness of AFD to understand
whether it can be still considered a valid surrogate of intra-
axonal volume fraction. Eventually, based on the TB-RA,
we investigate the nature of the relationship between AFD
and FA.

MATERIALS AND METHODS

MRI Protocol and Pre-processing
Thirteen right-handed healthy subjects (6 women and 7 males,
mean age 32.4 years, age range 25–42 years) without any
history of neurological disease were recruited for this study.
Before MRI acquisitions, each participant signed a written
informed consent. The entire study was approved by the
Ethical Committee of IRCCS Centro Studi Neurolesi “Bonino-
Pulejo”; investigation has been conducted in accordance with the
Declaration of Helsinki. MRI acquisition protocol was performed
on a 3T Achieva Philips scanner (Philips healthcare, Best, The
Netherlands)mounting a 32-channel SENSE head coil. Following
datasets were collected:

I. Structural T1-weighted 3D high-resolution Fast Field Echo
(FFE) sequence; TR = 25ms; TE = 4.6ms; flip angle 30◦;
FOV 240 × 240 mm2; in plane reconstruction matrix 240 ×
240; voxel size 1× 1× 1 mm3.

II. Single-shot echo-planar diffusion weighted sequence (DW-
EPI); TR = 11,884ms; TE = 54ms; FOV 240 × 240 mm2;
scan matrix 120 × 120; in-plane resolution 2 × 2 mm2, axial
slice thickness 2mmwithout inter-slice gap. One unweighted
b0 volume and 30 diffusion encoding directions covering a
half sphere were acquired. B-value was set to 1,000 s/mm2.

For each subject, motion and eddy current distortions artifacts
occurring on DW volumes were corrected by means of eddy
FSL tool (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). Rotational part
of transformations originating from correction process was
subsequently applied to gradient directions. To obtain an
estimation of AFD that could be comparable across subjects,
the same preprocessing pipeline suggested in Raffelt et al. (25)
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was adopted. Therefore, b0 volume was used to estimate a
multiplicative bias field by means of fast FSL routine. After
applying bias field to b0 and DW images, all volumes were
normalized by dividing by the median b0 intensity measured
on an WM mask. T1w image was later on co-registered to
preprocessed DWs following a scheme previously reported
(38): in brief, CSF probability maps were estimated separately
for b0 and T1 images by means of New Segment option
of SPM8 (https://www.fil.ion.ucl.ac.uk/spm/). B0-based CSF
probability map was then up-sampled to the same resolution
of T1; flirt and fnirt FSL commands were subsequently
employed to warp T1-based CSF probability map to the b0
based one. Estimated warping field was eventually applied to
structural scan.

Tractography
Tensor estimation and DT based tractography were
accomplished using CAMINO package (39) (http://cmic.cs.
ucl.ac.uk/camino/). In this context, tensors fitting was computed
by means of a non-linear constrained procedure (7, 8). After
terminating DT fitting procedures, WM voxels were inspected
in order to detect possible unreal eigenvalues; any implausible
eigenvalue was found in the datasets.

CSD based computations were performed bymeans of MRtrix
software package (40), version 3 (www.mrtrix.org). Subject-
specific response functions were firstly estimated for each DW
dataset (41), and then averaged to produce a study-specific
averaged response function. This latter was subsequently used to
estimate fODF in each diffusion dataset; for those computations,
maximal harmonic order was set to 6.

Deterministic and probabilistic tractographic reconstructions
were performed using track CAMINO command and tckgen
MRtrix command for DTI and CSD, respectively.

For AF tracking, a single seed ROI (s-ROI) was placed
following a procedure previously suggested (42, 43). For CST
tracking, medial (med-CST) and lateral (lat-CST) CST portions
were separately reconstructed. To this end, two cortical s-ROIs
related to the pathways of interest were manually defined by an
expert radiologist (M.G.). When seeding for either the medial
or lateral portion of CST, the other s-ROI was included as
Region of Avoidance (ROA); in addition, another ROA was
placed to impede reaching of the contralateral hemisphere. All
tractographic reconstructions were allowed to propagate within
a mask comprising WM voxels: for each subject, this mask was
created based on segmentation of coregistered T1 as provided
by New Segment SPM8 tool. Prior running tractography,
WM mask was moderately dilated (npass = 3 option of
maskfilter MRtrix command) to permit to the streamlines to
reach GM.

For deterministic DTI and CSD tracking, a single seed
was initialized for each voxel of related s-ROI, whereas 100
streamlines were generated from each voxel being part of seed
ROI for probabilistic tracking.

For deterministic DTI (d-DTI), directional clues were
provided by eigenvector coupled to highest eigenvalue using
FACT algorithm (44). For probabilistic DTI tracking (p-
DTI), uncertainty in principal diffusion direction (PDD)

was determined using the probabilistic index of connectivity
(PICo) (35); Bingham distribution was used to estimate PDDs
distribution. For both reconstruction methods, Runge–Kutta 4th
order for streamline direction interpolation step was used, as
well as an overall FA threshold of 0.2 together with an angular
threshold of 60◦ to avoid unrealistic trajectories for streamlines.

For deterministic CSD (d-CSD), direction corresponding
to highest fODF peak was used; for probabilistic CSD (p-
CSD) tractography we used an algorithm described in Jeurissen
et al. (37). Ifod2 interpolation scheme (45) was employed to
interpolated fODF peak directions at each reconstruction step,
whose length was set to 0.2mm. Minimal fODF amplitude and
angular threshold were set to 0.15 and 60◦, respectively.

Analysis of Tractographic Maps and DTI
Parameters
As first part of our experiment, we aimed at measuring
performances of different tractographic methods in
reconstructing WM fiber bundles under examination. To
this end, we estimated Overlap Fraction (OF) (46, 47). OF was
measured via the following formula:

OF =
100∗Vtarget ∩ Vreference

(

Vreference

) %

in which Vreference represents a tract-based volume defined on
the basis of p-CSD tractographic outcome, whereas Vtarget is
the tract-based volume estimated for all the other methods
(d-DT, p-DTI, and d-CSD). Those tract-based volumes were
created by generating corresponding track density images (TDIs)
(48). TDI is a map in which each voxel is assigned a value
corresponding to the number of streamlines passing through
it. To address the issue of false positive artifacts in streamlines
output, OFs calculation were repeated after thresholding TDIs
at different density levels. For each reconstructed pathway
and method used, maximal density was calculated; then, only
voxels whose density was above a given percentage of that
maximal value were retained. Since streamlines trajectories are
known to be prone to false positive artifacts, we thresholded
TDIs at the following percentages: 0% (raw TDIs), 1, 5, 10%
of the maximal density for that reconstruction. OF analyses
were performed in normalized MNI space: for each subject,
FA maps were warped to match FMRIB58_FA template by
using flirt and fnirt commands. Estimated warping fields were
later on applied to TDIs to obtain those maps in normalized
space.

Tensor features were computed by means of in-house
algorithms written with MATLAB software package (www.
mathworks.com/products/matlab/), release 2015. Thresholded
TDIs were used as masks from which gathering and averaging
following measures: FA, MD, Linear Coefficient (CL), Planar
Coefficient (CP), Spherical Coefficient (CS), Axial (AD), and
Radial (RD) diffusivity. Tensor based maps were created in
native spaces and later on warped using the same warping field
previously estimated to project TDIs into the MNI space.

Impact of tractographic techniques and cutoff levels on tensor
features was investigated bymeans ofmultivariateWilks’ Lambda
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tests using cutoff (levels: 0, 1, 5, 10%) andmethod (levels: d-DTI,
p-DTI, d-CSD, p-CSD) as within-subjects factors; all analyses
were conducted using SPSS statistical package (http://www-01.
ibm.com/software/), release 22. Where necessary, Bonferroni
correction was applied in post-hoc analyses to correct for multiple
comparisons in order to get a global significance type-I error of
0.05.

Estimation of Intra-Axonal Volume Fraction
and Comparison With FA
In the second part of our experiment, we estimated and
analyzed intra-axonal volume fractions in our datasets. This
task has been accomplished in four steps: (i) voxels having a
relatively high FA were isolated; (ii) for each voxel, the highest
fODF lobe amplitude (the peak) and the corresponding peak
direction were detected. (iii) Assuming that fiber population
is pointing along direction provided by highest fODF peak,
intensity of DW volume whose gradient direction was the
more perpendicular to highest peak direction was extracted
for each voxel. This intensity should correspond to DW signal
radial to the fiber population. (iv) Eventually, intensity was
normalized by the intensity of the b0 signal acquired in the same
voxel. Consistently with (25), such normalized value has been
interpreted as an estimate of intra-axonal volume fraction for
that given voxel. Steps i-iv were repeated for four different FA
cutoff levels: 0.7, 0.75, 0.8, 0.85. Selection of voxels based on FA
level, fODF estimation and peak detection were done by using
MRtrix. Final data were gathered and visualized by means of
Matlab.

A deeper investigation of AFD has been accomplished by
performing comparison with one of the mostly known DTI
parameters, namely FA. At this stage the focus was placed on
p-CSD based reconstructions. Of note, we worked in the native
space of our subjects to avoid biases in normalization process of
fODF lobes (28). Firstly, AFD was calculated in all voxels from
which at least one streamline was passing through. To this end
afdconnectivityMRtrix command was adopted. Subsequently, for
each subject and WM pathway analyzed, both linear and cubic
polynomial fits were applied to see how FA was related to AFD.
Fitting results were later on compared each other by estimating
the following F-statistic:

F =

(

SSsmal − SSbig
)

/
(

dfsmall − dfbig
)

SSbig/dfbig

where SSsmal and SSbig are the residual sum of squares of linear
and cubic models having dfsmal and dfbig degrees of freedom,
respectively. With the goal to individuate the most plausible
pattern between the two measures, the value above described was
observed on an F distribution with dfbig−dfsmall and dfbig degrees
of freedom, respectively. A linear fit would of course indicate a
linear relationship; if a cubic “S-shape” fit would instead better
represent FA vs. ADF profiles, a non-linear relationship should
be inferred between AFD and FA, in particular when analyzing
lowest and highest FA values. Curve fitting (robust estimation)
and F-tests were carried out by means of tools available within
Matlab.

The pipelines of both experiments are shown for visualization
purposes at the end of the manuscript (see Figure 5).

RESULTS

Tractographic Reconstruction Accuracy
and Robustness
Results of OF analysis are reported in Table 1 and shown in
Figures 1B–G for visualization purposes: in Table 1, OFs were
averaged over subjects and between hemispheres. For all WM
fasciculi investigated, probabilistic CSD tractography determined
the densest and widest reconstructions in all subjects. As
expected, raw count of voxels traversed by streamlines decreased
as density cutoff increased (Figures 1B–D).

When investigating AF results, differences between
probabilistic CSD based reconstruction and other methods
tended to decrease as density increased; however, all OFs
resulted below 60% (Figure 1E). A different behavior was instead
observed for medial and lateral CST reconstructions if compared
to AF results (Figures 1F,G): in those situations, differences
between p-CSD and OFs measured with other techniques tended
to slightly increase as density cutoff increased. Analysis of lateral
and medial CST portions determined similar results.

Tractographic results obtained by thresholding at 5% of
maximal density are shown for visualization purposes in
Figure 2. TDIs maps obtained from all subjects were warped and
averaged into the MNI space and overlaid onto a reference T1w
template; maps were intensity scaled to maximize visibility. p-
CSD related TDI (in red) provided the best result for AF, either in
terms of tract definition (cyan arrows) as well as in the depiction
of its curvature (black circles appearing in Sagittal views of
Figure 2). Huge differences between p-CSD with respect to d-
DTI (green maps), p-DTI (purple maps) related density images
were observed when comparing reconstruction of medial (green
ellipses) as well as lateral (blue ellipses) CST portions. All these
maps showed how CSTs were well described by p-CSD, whereas
poor results were obtained by the other methods. Deterministic
CSD (orange map) resulted inadequate for providing robust
reconstructions.

TB-RA
In this section we investigated impact of tractographic algorithms
on TB-RAs. In Figure 3 we show FA and MD variation for
AF, medial and lateral CST portions for all density cutoff levels
and reconstruction algorithms. Details of multivariate statistical
analyses results are reported in Table 2. The strong effects
provided both by cutoff and method factors on the estimation
of average FA could be clearly observed: for all WM bundles
under examination, cutoff factor significantly influenced FA
outcome. Post-hoc analyses confirmed a positive linear trend
either for AF (F = 652.755, uncorrected p = 7.87E-12), medial
CST (F = 122.492, uncorrected p = 1.18E-07), and lateral CST
(F = 174.799, uncorrected p = 1.63E-08) portions. At the same
time, post-hoc analyses onmethod sub-levels showed a significant
decrease of p-CSD based FA with respect to all other techniques,
with the only exception of lateral CST based results for
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TABLE 1 | OF analysis results.

Fasciculus Method Cutoff level

0% 1% 5% 10%

Mean Std Mean Std Mean Std Mean Std

AF d-DTI 23.61 3.28 29.94 4.76 45.21 10.03 52.40 16.78

p-DTI 36.87 4.80 33.71 5.19 49.25 9.96 58.71 15.84

d-CSD 36.44 4.61 35.82 5.25 49.27 11.17 54.00 17.20

Medial CST d-DTI 25.86 5.56 10.75 3.58 8.26 3.87 7.00 3.54

p-DTI 41.28 5.63 16.98 5.02 12.72 6.13 10.45 6.29

d-CSD 12.18 5.29 5.77 1.94 4.59 1.68 4.19 1.63

Lateral CST d-DTI 17.60 5.77 6.38 2.55 5.23 2.09 5.02 1.88

p-DTI 33.67 10.40 10.39 4.67 7.32 4.11 6.45 3.59

d-CSD 15.22 6.76 5.84 2.56 4.80 1.86 4.60 1.84

For each density cutoff levels and pathway investigated. Overlap Fraction measures the amount of tract preserved with respect to reference p-CSD tractographic reconstructions.

FIGURE 1 | Intra-axonal volume fraction and OF analysis. (A) Intra-axonal volume fraction estimated with a b-value of 1,000 s/mm2. Theoretic limit and average

estimates obtained on datasets with b-values of 3,000 s/mm2 are shown (continuous lines); mean estimates averaged over all subjects in this study are shown with

dashed lines, one for each FA cutoff. (B–E) Overlap Fraction analysis. Voxels count for each method and density cutoff is shown for AF (B), medial CST (C), and lateral

CST (D) portion reconstructions; data reported are averaged over subjects and between left and right hemispheres. At the same time, OF analysis (E–G, based on

probabilistic CSD reconstruction used as reference (brown bar), shows how both deterministic (blue) and probabilistic (cyan) DTI cause notable underestimation either

for AF (E), medial (F), and lateral (G) CST portions. Whiskers represent one standard deviation. OF, Overlapping fraction; AF, Arcuate Fasciculus; CST, Corticospinal

Tract.

which no significant differences were observed after Bonferroni
correction.

A similar trend was found when investigating MD variation.
Like for FA, cutoff factor resulted always significant, and
post-hoc analyses confirmed a significant negative trend
either for AF (F = 124.023, uncorrected p = 1.11E-07),
medial CST (F = 30.866, uncorrected p = 1.25E-04),
and lateral CST (F = 23.556, uncorrected p = 3.96E-
04) portions. Method factor resulted always significant,
except when inspecting reconstructions of lateral CST. In
a symmetric fashion with respect to FA, post-hoc analyses
showed that MD averaged from voxels traversed by p-CSD
led to systematically higher values if compared to other
techniques.

Analyses of Westin indices as well as of AD and RD yielded
similar results (see Table 2).

AFD Estimation Results and Comparison
With FA
Results of estimated intra-axonal volume fraction in our datasets
were shown in Figure 1A. Estimated fraction was below both
the theoretical intra-cellular volume fraction (26) (80%) as well
as the intra-axonal volume fraction reported in Raffelt et al.
(25), where an average value of 75% was found based on
b = 3,000 s/mm2. In our data, we observed a clear volume
fraction dependence on FA cutoff level for voxels selection:
indeed, based on FA cutoff of 0.7 we estimated an average
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FIGURE 2 | Tractographic results. TDIs maps (thresholded at 5% of the maximal density) obtained from all subjects were warped and averaged in the MNI space for

each method: p-CSD (red) related TDIs show the best results for AF, either in terms of tract definition (cyan arrows) as well as in the depiction of its curvature (black

circles). p-CSD clearly outperforms DTI, shown with green and purple maps for deterministic and probabilistic results, in reconstructing medial (green circles) and lateral

(blue circles) CST portions. Deterministic CSD (orange) is inadequate as well to produce robust reconstructions. AF, Arcuate Fasciculus; CST, Corticospinal Tract.

volume fraction of 55.16% (SD = 2.90%); for 0.75 FA cutoff,
average volume fraction was 56.45% (SD = 3.34%). For voxels
having FA ≥ 0.8, the estimated intra-axonal volume fraction

was 58.97% (SD = 3.00%). Eventually, we estimated an average
intra-axonal volume fraction of 60.51% (SD = 4.95%) based on
voxels having FA equal or above 0.85. These results are shown in
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FIGURE 3 | FA and MD variations due to cutoff used and reconstruction technique adopted. Whiskers represent one standard deviation. AF, Arcuate Fasciculus; CST,

Corticospinal Tract.

Table 3 together with the percentages of voxels involved in the
calculation.

The relationship between AFD and FA in the investigated
pathways are shown in Figure 4. In Figure 4A we reported
histograms of AFDs gathered from all subjects separately for AF,
medial and lateral CST portions. Despite the lack of a nominal
limit, AFD values ranged primarily between 0 and 2. Similar
distributions were observed for all pathways, with a moderate
smaller mode for AF (around 0.7); modes for medial and lateral
CST based AFDs were instead around 0.9.

In Figure 4B statistical results of model selection tests were
shown for all subjects and pathways; to help visualization,
p-values were reported on a log scale. For most of the
comparisons, the polynomial cubic fit was the one that better
represented the data, thus underlying the non-linear nature of
the relationship. A few exceptions were observed in three subjects
when reconstruction the lateral portion of CST, and in one subject
(S5) in which the linear fit over-performed the cubic one. All
p-values are reported in Table 4.

A better understanding of complex covariance between AFD
and FA can be appreciated in Figure 4C. In each panel, scatters
represented FA vs. AFD values gathered from all subjects for each
given pathway. Colors highlight voxels belonging to different
TDIs cutoff levels: 0% (orange), 1% (cyan), 5% (black), 10%
(blue), 30% (light green), and 50% (red).

First of all, as expected, as long as cutoff increases FA tends
to increase and its variance to decrease. The lower prevalence of
orange clouds for AF over the panels reporting data collected
from medial and lateral CST portions is likely due to the
substantial overlap of 0 and 1% clouds in the latter two situations.
This latter is a sign of the higher variability when reconstructing
AF.

Overall, a clear positive trend was observed; importantly, in
the bottom right part of all the panels, we could see a huge
number of points for which FA was relatively low (between 0.1
and 0.4), whereas AFD substantially increased. This secondary
trend corresponded to voxels over which crossing or branching
multiple fibers insisted.

Black colored curves showed results of the cubic fit
averaged over all subjects (Figure 4). Shadow represents
standard deviation. It is clear how at the borders a strictly
linear relationship between FA and AFD did not hold.
This phenomenon was especially evident for AF and medial
portion of CST, and confirmed that AFD was able to
span a higher range of fiber geometries configurations; such
geometries could not in turn be exhaustively represented by
FA because of its known limitations. Since for three subjects
a linear fit betted represented the data, by averaging data
obtained from lateral CST, a more flat curve was estimated
(Figure 4).
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TABLE 2 | Tractograms cutoff and tractographic algorithm impact on Diffusion Tensors features.

Parameter WM bundle Multivariate Test: Wilks’ Lambda

Effect Value F Hypothesis df Error df Uncorrected p-value

FA AF Cutoff 0.013 248.212 3.000 10.000 1.10E−09**

Method 0.048 66.103 3.000 10.000 6.76E−07**

Medial CST Cutoff 0.075 41.149 3.000 10.000 6.19E−06**

Method 0.170 16.317 3.000 10.000 3.52E−04**

Lateral CST Cutoff 0.035 92.692 3.000 10.000 1.34E−07**

Method 0.439 4.261 3.000 10.000 0.035*

MD AF Cutoff 0.067 46.772 3.000 10.000 3.43E−06**

Method 0.058 54.244 3.000 10.000 1.72E−06**

Medial CST Cutoff 0.117 25.113 3.000 10.000 5.68E−05**

Method 0.299 7.800 3.000 10.000 0.006**

Lateral CST Cutoff 0.215 12.156 3.000 10.000 0.001**

Method 0.637 1.897 3.000 10.000 0.194

CL AF Cutoff 0.022 149.498 3.000 10.000 1.32E−08**

Method 0.082 37.441 3.000 10.000 9.54E−06**

Medial CST Cutoff 0.087 34.955 3.000 10.000 1.30E−05**

Method 0.128 22.714 3.000 10.000 8.78E−05**

Lateral CST Cutoff 0.040 80.661 3.000 10.000 2.62E−07**

Method 0.232 11.016 3.000 10.000 0.002**

CP AF Cutoff 0.067 46.360 3.000 10.000 3.6E−06**

Method 0.270 9.007 3.000 10.000 0.003**

Medial CST Cutoff 0.027 118.951 3.000 10.000 4.03E−08**

Method 0.988 0.039 3.000 10.000 0.989

Lateral CST Cutoff 0.071 43.875 3.000 10.000 4.61E−06**

Method 0.245 10.294 3.000 10.000 0.002**

CS AF Cutoff 0.013 257.857 3.000 10.000 9.12E−10**

Method 0.068 45.853 3.000 10.000 3.76E−06**

Medial CST Cutoff 0.076 40.320 3.000 10.000 6.80E−06**

Method 0.228 11.263 3.000 10.000 0.002**

Lateral CST Cutoff 0.040 79.778 3.000 10.000 2.76E−07**

Method 0.839 0.638 3.000 10.000 0.607

AD AF Cutoff 0.052 61.140 3.000 10.000 9.78E−07**

Method 0.069 44.727 3.000 10.000 4.22E−06**

Medial CST Cutoff 0.162 17.222 3.000 10.000 2.82E−04**

Method 0.202 13.207 3.000 10.000 8.21E−04**

Lateral CST Cutoff 0.052 60.935 3.000 10.000 9.94E−07**

Method 0.520 3.071 3.000 10.000 0.078

RD AF Cutoff 0.019 175.575 3.000 10.000 6.03E−09**

Method 0.060 52.496 3.000 10.000 2.00E−06**

Medial CST Cutoff 0.098 30.574 3.000 10.000 2.38E−05**

Method 0.158 17.784 3.000 10.000 2.47E−04**

Lateral CST Cutoff 0.049 64.133 3.000 10.000 7.80E−07**

Method 0.337 6.564 3.000 10.000 0.010*

Dependence of DT parameters on cutoff and reconstruction methods (Wilks’ Lambda tests). Asterisks indicate significance at 0.05 (one asterisk) and 0.01 (two asterisks) levels.
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TABLE 3 | Intra-axonal volume fraction.

FA Cutoff Level

0.7 0.75 0.8 0.85

Estimated intra-axonal

volume fraction

55.16%

(2.90%)

56.45%

(3.34%)

58.97%

(3.00%)

6.51%

(4.95%)

Voxels percentage involved in calculation,

compared to a whole brain mask

3.69%

(0.72%)

2.53%

(0.50%)

1.70%

(0.33%)

1.13%

(0.23%)

For each FA cutoff level (0.7, 0.75, 0.8, 0.85), average intra-axonal volume fraction has been estimated from all subjects; standard deviations are reported between brackets. In the

bottom part, percentage of voxels involved in calculations at each cutoff level is reported; such percentage is related to foreground voxels of a whole brain mask obtained on b0 volumes.

Even in this case, standard deviation is reported between brackets.

FIGURE 4 | Relationship between AFD and FA. (A) Distribution of AFD gathered from fiber pathways investigated in all subjects. (B) (uncorrected) p-values of model

selection tests between cubic and linear fits of FA vs. AFD curves for each subject and pathway. Lines represent type I error level of 0.05 both uncorrected (black) and

corrected (red dotted) for multiple comparisons via Bonferroni correction. Significant values indicate that cubic fit outperformed linear one. (C) Scatterplots showing

relationship between AFD and FA. Colors represent different cutoff levels. Black lines represent cubic fit averaged over all subjects. Shaded lines represent standard

deviations. AFD, Apparent Fiber Density; AF, Arcuate Fasciculus; CST, Corticospinal Tract.

DISCUSSION

In this study we compared CSD and DTI model ability in
reconstructing and quantifying two well-known fiber pathways,
the Corticospinal Tract and the Arcuate Fasciculus.

While other pathways could have been investigated, we
preferred to focus on CST and AF for two reasons. First of
all their anatomical configurations, i.e. their width as well as
the smooth changes of direction along their courses, should
in principle ease reconstructions provided by the simpler DTI

model, thus rendering a comparison with CSD consistent and
robust. Secondly, those pathways have been historically widely
investigated by means of DTI model to probe motor and
associative brain networks, both in healthy and pathological
conditions.

CSD and DTI Models
It is known that DTI is unable to resolve multiple fibers
configurations such as bending, kissing, and crossing fibers (3, 5);
more complex models are therefore needed (18, 19, 22). Within
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TABLE 4 | Relationship between AFD and FA.

Subject AF M-CST L-CST

Uncorrected

p-values

Uncorrected

p-values

Uncorrected

p-values

S1 <0.001* <0.001* <0.001*

S2 <0.001* <0.001* 1.000

S3 <0.001* 0.001* <0.001*

S4 <0.001* <0.001* <0.001*

S5 <0.001* 0.012 <0.001*

S6 <0.001* 0.001* 1.000

S7 <0.001* <0.001* <0.001*

S8 <0.001* <0.001* <0.001*

S9 <0.001* <0.001* <0.001*

S10 <0.001* 0.002* <0.001*

S11 <0.001* <0.001* <0.001*

S12 <0.001* <0.001* 1.000

S13 <0.001* <0.001* <0.001*

Uncorrected p-values coming out of F-tests comparing cubic over linear fit. Asterisks

indicate that cubic model fit was the best choice with a p-value lower than 0.05 type-I

threshold after Bonferroni correction. AF, Arcuate Fasciculus; M-CST, Medial Corticospinal

Tract; L-CST, Lateral Corticospinal Tract.

the CSD framework, the estimation of the fODF (19, 21) allows
to properly model diffusion signal; successful applications were
obtained in healthy cohorts as well as in pathological populations
(27, 30, 48).

AFD (25) is a parameter developed with the aim to provide
an estimate of intra-axonal volume fraction; it was shown to be
in close correspondence with intra-axonal volume fraction as
measured in Syková and Nicholson (26).

CSD framework, along with AFD, is recommended to be
applied by using a b-value of at least 3,000 s/mm2 and a
minimum of 45 unique diffusion encoding gradient directions
(19). Other tissue quantification parameters, like those coming
from CHARMED (30) or NODDI (29), require multi-shell
acquisitions as well.

From the other side, DTI is traditionally employed with lower
b-values (1,000–1,200 s/mm2) and lower number of distinct
diffusion directions (30–35). In the last years, CSD was however
extensively applied on datasets with hardware constraints closer
to those adopted for DTI studies (22, 49–51).

In this study we investigated CSD based performances in
comparison to the standard DTI model when very minimal
technical requirements are used (b-value = 1,000 s/mm2, 30
unique diffusion encoding directions). In this scenario, particular
importance was given to the applicability and biological
meaningfulness of AFD.

Tractographic Reconstruction and Tensor
Features Analysis
OF analysis confirmed that, if compared to other approaches
tested here, probabilistic CSD based tractography determined the
densest and widest reconstructions in all subjects investigated.

Differences between p-CSD and other techniques (d-CSD, d-
DTI, and p-DTI) slightly decreased as density increased when
analyzing AF reconstructions in all subjects (Figure 1).

Furthermore, when investigating tractographic
reconstruction of CST, we observed that DTI model markedly
underestimated CST if compared to p-CSD (Figure 1). Unlike
for AF, differences between p-CSD based TDIs and OFs
measured with other techniques tended to increase as density
cutoff increases. This is a sign of the fact that p-CSD depicts CST
in a more homogeneous way if compared to other techniques,
in which a denser kernel pathway is likely reconstructed. It is
worth to remark that the reconstruction of lateral and medial
CST portions led to similar results.

The improvement achieved by probabilistic CSD can be
visually appreciated in Figure 2, in which the warped TDI maps
coming from all subjects were averaged and over-imposed onto a
T1w template in MNI space.

Altogether those results are consistent with previous literature
(13, 52, 53), and confirm that probabilistic CSD is a useful
instrument for a more consistent tractographic reconstruction
in contexts like pre-surgical planning (13, 54), in case-control
studies or in longitudinal analyses.

We furthermore demonstrated that both the tractographic
method adopted and the cutoff chosen to threshold TDIs strongly
influence reconstructions outcomes used to perform TB-RA
of diffusion tensor indices. This statement was confirmed by
multivariate statistical analysis (Table 2).

Regardless to the pathway reconstructed, FA smoothly
increased as density cutoff increased, whereas MD decreased.
These results are not unexpected: an increasing cutoff is indeed
likely going to preserve voxels containing a major dominant fiber
population insists, thus explaining both FA and MD behaviors
(24).

Post-hoc analyses showed that FA was lower when estimated
from voxels detected via p-CSD; this situation was expected,
since p-CSD involves voxels in which multiple fiber populations
insists over, subsequently causing a decrease of FA average.
Symmetrically to what it was observed for FA, post-hoc analyses
showed that MD averaged from voxels traversed by p-CSD was
significantly higher when compared toMD estimated on the basis
of all other techniques. Variation of Westin indices as well as AD
and RD led to similar conclusions.

As already abovementioned, p-CSD involves in TB-RA a
higher number of voxels with multiple fiber bundles insisting
over them. As we have shown, this situation impacts tensor
indices estimation, and therefore might induce to carefully
consider p-CSD applicability in pathological conditions where
well-established variations (e.g., FA decrease) are traditionally
considered linked to WM damages. A possible scenario is the
following: if two distinct fiber populations were to insist over
the same voxel, and only one of them were damaged by a given
disease, we might detect overall FA increase in the patient if
compared to a control. In TB-RA context, by summing over
all possible voxels, the likelihood of not detecting differences in
case-control studies might lead to erroneous results. One might
think that the use of tensor based tractography may prevent such
circumstances to happen. However, this is not the case because
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FIGURE 5 | Pipeline of all the experiments conducted. On the left steps leading to tractographic reconstruction comparisons and TB-RA (steps 2–6) are reported. On

the right steps leading to AFD analysis (steps 2, 7, 8) are instead shown.

the same situation would apply even if DTI model were adopted:
it is indeed known that more than 90% of WM voxels contain
complex geometries (14). As a consequence, the same potential
wrong conclusions may be taken.

The above example puts the emphasis for the need of

quantitative indices that should be able to take into account
complex fiber geometries at the voxel level, and that be unbiased

against such potential troubles. Different indices were considered

in the past to overcome these issues, e.g., the Q-ball based
generalized fraction anisotropy (18), or those based on Diffusion

Kurtosis Imaging (55). As an alternative, multi-compartmental

models were found to better describe non-gaussian water motion
of in presence of complex geometries, like ball and stick (56),

CHARMED (30), or NODDI (29). Thosemodels however require

high signal to noise ratios, a big number of diffusion directions,
or multi-shell acquisitions.

AFD Interpretability at Low b-Values
AFD (25) was introduced to infer about intra-axonal volume
fraction. Authors showed that radial DW signal is strictly linked
to AFD which in turn is roughly proportional to intra-axonal
volume fraction. In that way they found an average value of 75%,
thus highlighting a close correspondence with an estimation of
80% for intra-cellular volume reported in Syková and Nicholson
(26). However, such high correlation was reported to hold at high
b-values (b= 3,000 s/mm2).

In this study we estimated, based on similar assumptions,
an average value of 60% when considering voxels with high FA
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values (≥0.85) (Table 3). The reasons for such divergence may be
manifolds and can be placed in two categories, namely biological
and technical. From the technical point of view, a number of
confounds may contribute to the underestimation intra-axonal
volume fraction. First of all, in this study the estimation of the
radial signal was based on DW volume whose diffusion gradient
was the more transverse with respect to measured fODF peak.
Due to the limited number of DW directions acquired, signal
intensities could be chosen from a limited set of directions. It
might be possible, therefore, that a slightly different spherical
distribution could have contributed to ameliorate estimation
of intra-axonal volume fraction. Moreover, the use of a single
peak to detect underlying fiber direction is more error-prone in
presence of noisy data, whereas an analogous search performed
by integrating over fODF lobes may have led to better results.
Eventually, due to partial volume effect, CSF component might
influence our estimation by causing fictitious increasing of b0
signal and, consequently, a decrease of DW signal (26).

Another set of explanations is more inherently biological:
it has been indeed recently found that the corpus callosum, a
structure traditionally considered highly coherent in terms of
fiber directionality, shows instead a rather elevated dispersion
ranging from 10 to 35◦ (57). Therefore, the fiber dispersion
might cause intra-axonal volume fraction underestimation. It
is known that extra-cellular component decreases its contribute
to diffusion weighted signal when high b-value are used (58);
for lower b-values, like the one we used in the present study,
extra-cellular compartment augments its influence on DW
signal (59) and could potentially contribute to the observed
underestimation.

Other micro-structures might further influence water fraction
estimation due to water exchange between membrane barriers
(60). It should be noted that in Syková and Nicholson (26)
myelin component was considered part of the intra-cellular
compartment. It has been shown that myelin water fraction
ranges around 20% (61), and that the possible contemporary
presence of both myelinated and unmyelinated axons might
decrease the accuracy in myelin estimation (60).

Interestingly, if we were to add to myelin water component
percentage the intra-axonal volume fraction as it was estimated
in this study, we would almost equal the limit that Sykova and
Nicholson measured for intra-cellular volume fraction (26). It
could be however argued that myelin has a minor influence on
our measure due to the short T2 decay of water trapped between
myelin layers (61).

It is worth to mention that our results at b = 1,000 s/mm2

are in contraposition with numerical Monte-Carlo simulations
provided in Raffelt et al. (25): there, it was reported that both
restricted and permeable derived radial signals show a higher
ratio between DW and unweighted signal (close to 90%) at low b-
values. Such discrepancy could be likely due to some limitations
in their model assumptions: as it was indeed reported there,
possible relationships between diffusion phenomenon and other
microbiological structures, e.g., myelin layers, may not have been
properly modeled (25).

Pooling together all those considerations, we may conclude
that, even when using a b-value of 1,000 s/mm2, and some

limitations, we were still able to obtain a biologically meaningful
estimation of intra-axonal volume fraction. As a consequence,
we may be able to infer fiber population density even at such
relatively low b-value. To the best of our knowledge, this is the
first study exploring such implication.

AFD and FA
We were particularly interested in showing the relationship
between AFD and FA; it was already demonstrated (25, 27) that
AFD provides richer insights onWM integrity when dealing with
high demanding datasets.

Our aim was to show if the similar results could be confirmed
with a low b-value (1,000 s/mm2) and a limited number of
directions. Statistical analyses (Figure 4B) demonstrated that in
almost all the cases, for all pathways of interest, a non-linear cubic
S-shape relationship was detected (Figure 4C). As expected, for
FA between 0.3 and 0.6, a linear relationship was observed; almost
the same trend was found, for instance, when comparing FA
with intra-axonal volume fraction provided by NODDI scheme
(29). While a primary linear trend was evident, several points for
which FA is relatively low (between 0.1 and 0.4) resulted to be
coupled to AFD data increase. Such patterns were consistent for
almost all subjects and correspond to voxels over which crossing
or branching multiple fibers insist.

When investigating lower AFD values, we observed a relative
high FA variability. Those points may likely correspond to
situations in which multiple fibers have an angular distance
so small to cause the tensor model to wrongly detect a single
pathway pointing in a unique direction, therefore giving biased
FA values. Such patterns caused the cubic S-shape fits we showed
to better predict data in our subjects.

Angular resolution tends to overall decrease when fewer
directions are used, and that could in turn cause inaccuracies in
the correct estimation of complex fiber patterns even for fODF
lobes. However, angular accuracy is by the way inherently more
accurate when measured via CSD over DTI based estimation
(19); therefore we can again conclude that AFD provides a more
meaningful biological information.

CONCLUSIONS

In accordance with existing literature, in this article we confirmed
that CSD outperforms DTI one even in datasets with low
demanding hardware settings (b-value = 1,000 s/mm2 and
30 diffusion encoding directions). Such setup needs to be
preferred over more demanding ones especially when dealing
with patients who are usually less collaborative due to their
conditions.

Moreover, we showed that TB-RA of diffusion tensor
parameters strongly depends on the cutoff chosen for voxels
selection and on the method adopted for tractography, thus
highlighting the importance of a careful check for principled
data handling and analysis. Those considerations both apply to
probabilistic DTI and CSD based tractographic analyses.

For the first time to our knowledge, we demonstrated
that, with some limitations, AFD is a meaningful estimate
of intra-axonal volume fraction when measured on diffusion
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acquisitions which can easily performed in clinical settings.
Therefore, even with b = 1,000 s/mm2 and only 30 diffusion
encoding directions, AFD can provide richer information than
solely tensor features to investigate WM integrity in clinical
studies.

To conclude, it is worth to notice that in this study a relatively
small sample size has been adopted. In the future similar analyses
on bigger populations will be therefore necessary to further
confirm our results.

AUTHOR CONTRIBUTIONS

ACal and AA contributed conception and design of the
study, performed statistical analysis, interpreted data, and
wrote the manuscript. EM contributed conception of the study
and interpreted data. DM, ACac, SM, and GC revised the
manuscript. MG and AQ contributed conception and design
of the study and revised the manuscript. All authors read and
approved the final manuscript.

REFERENCES

1. Le Bihan B, Breton E. Imagerie de diffusion in vivo par résonance magnétique

nucléaire C. R Acad Sci. (1985) 93:27–34.

2. Basser PJ, Jones DK. Diffusion-tensor MRI: theory, experimental design

and data analysis – a technical review. NMR Biomed. (2002) 15:456–67.

doi: 10.1002/nbm.783

3. Le Bihan D, Mangin JF, Poupon C, Clark CA, Pappata S, Molko N, et al.

Diffusion tensor imaging: concepts and applications. J Magn Reson Imaging

(2001) 13:534–46. doi: 10.1002/jmri.1076

4. Westin CF, Peled S, Gudbjartsson H, Kikinis R, Jolesz FA. Geometrical

diffusion measures for MRI from tensor basis analysis. Proc ISMRM (2001)

97:1742.

5. Alexander AL, Hurley SA, Samsonov AA, Adluru N, Hosseinbor AP,

Mossahebi P, et al. Characterization of cerebral white matter properties

using quantitative magnetic resonance imaging stains. Brain Connect. (2011)

1:423–46. doi: 10.1089/brain.2011.0071

6. Bhalsing KS, Kumar KJ, Saini J, Yadav R, Gupta AK, Pal PK. White matter

correlates of cognitive impairment in essential tremor. Am J Neuroradiol.

(2015) 36:448–53. doi: 10.3174/ajnr.A4138

7. Jones DK, Basser PJ. “Squashing peanuts and smashing pumpkins”: how noise

distorts diffusion-weighted MR data. Magn Reson Med. (2004) 52:979–93.

doi: 10.1002/mrm.20283

8. Alexander DC, Barker GJ. Optimal imaging parameters for fiber-

orientation estimation in diffusion MRI. Neuroimage (2005) 27:357–67.

doi: 10.1016/j.neuroimage.2005.04.008

9. Koay CG, Carew JD, Alexander AL, Basser PJ, Meyerand ME. Investigation of

anomalous estimates of tensor-derived quantities in diffusion tensor imaging.

Magn Reson Med. (2006) 55:930–6. doi: 10.1002/mrm.20832

10. Chang LC, Jones DK, Pierpaoli C. RESTORE: Robust estimation of

tensors by outlier rejection. Magn Reson Med. (2005) 53:1088–95.

doi: 10.1002/mrm.20426

11. Jones DK, Cercignani M. Twenty-five pitfalls in the analysis of diffusion MRI

data. NMR Biomed. (2010) 23:803–20. doi: 10.1002/nbm.1543

12. Le Bihan D, Poupon C, Amadon A, Lethimonnier F. Artifacts and

pitfalls in diffusion MRI. J Magn Reson Imaging (2006) 24:478–88.

doi: 10.1002/jmri.20683

13. Farquharson S, Tournier JD, Calamante F, Fabinyi G, Schneider-Kolsky M,

Jackson GD, et al. White matter fiber tractography: why we need to move

beyondDTI. J Neurosurg. (2013) 118:1367–77. doi: 10.3171/2013.2.JNS121294

14. Jeurissen B, Leemans A, Tournier JD, Jones DK, Sijbers J. Investigating

the prevalence of complex fiber configurations in white matter tissue with

diffusion magnetic resonance imaging. Hum Brain Mapp. (2013) 34:2747–66.

doi: 10.1002/hbm.22099

15. Alexander DC, Barker GJ, Arridge SR. Detection and modeling of non-

Gaussian apparent diffusion coefficient profiles in human brain data. Magn

Reson Med. (2002) 48:331–40. doi: 10.1002/mrm.10209

16. Qazi AA, Radmanesh A, O’Donnell L, Kindlmann G, Peled S, Whalen S,

et al. Resolving crossings in the corticospinal tract by two-tensor streamline

tractography: method and clinical assessment using fMRI.Neuroimage (2009)

47:T98–106. doi: 10.1016/j.neuroimage.2008.06.034

17. Chen DQ, Zhong J, Hayes DJ, Behan B, Walker M, Hung PSP, et al. Merged

group tractography evaluation with selective automated group integrated

tractography. Front Neuroanat. (2016) 10:96. doi: 10.3389/fnana.2016.00096

18. Tuch DS. Q-ball imaging. Magn Reson Med. (2004) 52:1358–72.

doi: 10.1002/mrm.20279

19. Tournier JD, Calamante F, Gadian DG, Connelly A. Direct estimation

of the fiber orientation density function from diffusion-weighted MRI

data using spherical deconvolution. Neuroimage (2004) 23:1176–85.

doi: 10.1016/j.neuroimage.2004.07.037

20. Tournier JD, Calamante F, Connelly A. Robust determination of the

fibre orientation distribution in diffusion MRI: non-negativity constrained

super-resolved spherical deconvolution. Neuroimage (2007) 35:1459–72.

doi: 10.1016/j.neuroimage.2007.02.016

21. Tournier JD, Yeh CH, Calamante F, Cho KH, Connelly A, Lin CP. Resolving

crossing fibres using constrained spherical deconvolution: validation using

diffusion-weighted imaging phantom data. Neuroimage (2008) 42:617–25.

doi: 10.1016/j.neuroimage.2008.05.002

22. Wedeen VJ, Wang RP, Schmahmann JD, Benner T, Tseng WY, Dai

G, et al. Diffusion spectrum magnetic resonance imaging (DSI)

tractography of crossing fibers. Neuroimage (2008) 41:1267–77.

doi: 10.1016/j.neuroimage.2008.03.036

23. Healy DM Jr, Hendriks H, Kim PT. Spherical deconvolution. J Multivar Anal.

(1998) 67:1–22. doi: 10.1006/jmva.1998.1757

24. Dell’Acqua F, Simmons A, Williams SCR, Catani M. Can spherical

deconvolution provide more information than fiber orientations?

Hindrance modulated orientational anisotropy, a true-tract specific index to

characterize white matter diffusion. Hum Brain Mapp. (2013) 34:2464–83.

doi: 10.1002/hbm.22080

25. Raffelt D, Tournier JD, Rose S, Ridgway GR, Henderson R, Crozier

S, et al. Apparent Fibre Density: a novel measure for the analysis of

diffusion-weighted magnetic resonance images. Neuroimage (2012) 59:3976–

94. doi: 10.1016/j.neuroimage.2011.10.045

26. Syková E, Nicholson C. Diffusion in brain extracellular space. Physiol Rev.

(2008) 88:1277–340. doi: 10.1152/physrev.00027.2007

27. Scheck SM, Pannek K, Raffelt DA, Fiori S, Boyd RN, Rose SE. Structural

connectivity of the anterior cingulate in children with unilateral cerebral

palsy due to white matter lesions. Neuroimage Clin. (2015) 9:498–505.

doi: 10.1016/j.nicl.2015.09.014

28. Raffelt DA, Tournier JD, Smith RE, Vaughan DN, Jackson G, Ridgway

GR, et al. Investigating white matter fibre density and morphology

using fixel-based analysis. Neuroimage (2016) 144(Pt A):58–73.

doi: 10.1016/j.neuroimage.2016.09.029

29. Zhang H, Schneider T, Wheeler-Kingshott CA, Alexander DC.

NODDI: Practical in vivo neurite orientation dispersion and density

imaging of the human brain. Neuroimage (2012) 61:1000–16.

doi: 10.1016/j.neuroimage.2012.03.072

30. Assaf Y, Basser PJ. Composite hindered and restricted model of diffusion

(CHARMED) MR imaging of the human brain. Neuroimage (2005) 27:48–58.

doi: 10.1016/j.neuroimage.2005.03.042

31. Mormina E, Longo M, Arrigo A, Alafaci C, Tomasello F,

Calamuneri A, et al. MRI tractography of corticospinal tract and

arcuate fasciculus in high-grade gliomas performed by constrained

spherical deconvolution: qualitative and quantitative analysis.

AJNR Am J Neuroradiol. (2015) 36:1853–8. doi: 10.3174/ajnr.

A4368.

32. Wilkins B, Lee N, Gajawelli N, Law M, Leporé N. Fiber estimation and

tractography in diffusion MRI: development of simulated brain images and

Frontiers in Neurology | www.frontiersin.org 13 August 2018 | Volume 9 | Article 716

https://doi.org/10.1002/nbm.783
https://doi.org/10.1002/jmri.1076
https://doi.org/10.1089/brain.2011.0071
https://doi.org/10.3174/ajnr.A4138
https://doi.org/10.1002/mrm.20283
https://doi.org/10.1016/j.neuroimage.2005.04.008
https://doi.org/10.1002/mrm.20832
https://doi.org/10.1002/mrm.20426
https://doi.org/10.1002/nbm.1543
https://doi.org/10.1002/jmri.20683
https://doi.org/10.3171/2013.2.JNS121294
https://doi.org/10.1002/hbm.22099
https://doi.org/10.1002/mrm.10209
https://doi.org/10.1016/j.neuroimage.2008.06.034
https://doi.org/10.3389/fnana.2016.00096
https://doi.org/10.1002/mrm.20279
https://doi.org/10.1016/j.neuroimage.2004.07.037
https://doi.org/10.1016/j.neuroimage.2007.02.016
https://doi.org/10.1016/j.neuroimage.2008.05.002
https://doi.org/10.1016/j.neuroimage.2008.03.036
https://doi.org/10.1006/jmva.1998.1757
https://doi.org/10.1002/hbm.22080
https://doi.org/10.1016/j.neuroimage.2011.10.045
https://doi.org/10.1152/physrev.00027.2007
https://doi.org/10.1016/j.nicl.2015.09.014
https://doi.org/10.1016/j.neuroimage.2016.09.029
https://doi.org/10.1016/j.neuroimage.2012.03.072
https://doi.org/10.1016/j.neuroimage.2005.03.042
https://doi.org/10.3174/ajnr.A4368.
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Calamuneri et al. WM Quantification at Low b-Values

comparison of multi-fiber analysis methods at clinical b-values. Neuroimage

(2015) 109:341–56. doi: 10.1016/j.neuroimage.2014.12.060

33. Milardi D, Arrigo A, Anastasi G, Cacciola A, Marino S, Mormina E, et al.

Extensive direct subcortical cerebellum-basal ganglia connections in human

brain as revealed by constrained spherical deconvolution tractography. Front

Neuroanat. (2016) 10:29. doi: 10.3389/fnana.2016.00029

34. Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. In vivo fiber tractography

using DT-MRI data. Magn Reson Med. (2000) 44:625–32. doi: 10.1002/1522-

2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O

35. Jones DK. Determining and visualizing uncertainty in estimates of fiber

orientation from diffusion tensor MRI. Magn Reson Med. (2003) 49:7–12.

doi: 10.1002/mrm.10331

36. Parker GJM, Haroon HA, Wheeler-Kingshott CAM. A framework for a

streamline-based probabilistic index of connectivity (PICo) using a structural

interpretation of MRI diffusion measurements. J Magn Reson Imaging (2003)

18:242–54. doi: 10.1002/jmri.10350

37. Jeurissen B, Leemans A, Jones DK, Tournier JD, Sijbers J. Probabilistic

fiber tracking using the residual bootstrap with constrained spherical

deconvolution. Hum Brain Mapp. (2011) 32:461–79. doi: 10.1002/hbm.21032

38. Besson P, Dinkelacker V, Valabregue R, Thivard L, Leclerc X, Baulac M, et al.

Structural connectivity differences in left and right temporal lobe epilepsy.

Neuroimage (2014) 100:135–44. doi: 10.1016/j.neuroimage.2014.04.071

39. Cook PA, Bai Y, Nedjati-Gilani S, Seunarine KK, Hall MG, Parker GJ, et al.

Camino: open-source diffusion-MRI reconstruction and processing. In: 14th

Scientific Meeting of the International Society for Magnetic Resonance in

Medicine. Seattle, WA (2006).

40. Tournier JD, Calamante F, Connelly A. MRtrix: diffusion tractography

in crossing fiber regions. Int J Im Syst Technol. (2012) 22:53–66.

doi: 10.1002/ima.22005

41. Tournier JD, Calamante F, Connelly A. Determination of the appropriate

B value and number of gradient directions for high-angular-resolution

diffusion-weighted imaging. NMR Biomed. (2013) 26:1775–86.

doi: 10.1002/nbm.3017

42. Catani M, Thiebaut de Schotten M. A diffusion tensor imaging

tractography atlas for virtual in vivo dissections. Cortex (2008) 44:1105–32.

doi: 10.1016/j.cortex.2008.05.004

43. CataniM, Jones DK, Ffytche DH. Perisylvian language networks of the human

brain. Ann Neurol. (2005) 57:8–16. doi: 10.1002/ana.20319

44. Mori S, Crain BJ, Chacko VP, Van Zijl PCM. Three-dimensional tracking of

axonal projections in the brain by magnetic resonance imaging. Ann Neurol.

(1999) 45:265–9.

45. Tournier J, Calamante F, Connelly A. Improved probabilistic streamlines

tractography by 2nd order integration over fibre orientation distributions. In:

Proceedings of the 18th Annual Meeting of the International Society of Magnetic

Resonance in Medicine. Stockholm (2010).

46. Anbeek P, Vincken KL, van Osch MJP, Bisschops RHC, van der Grond

J. Probabilistic segmentation of white matter lesions in MR imaging.

Neuroimage (2004) 21:1037–44. doi: 10.1016/j.neuroimage.2003.10.012

47. Dyrby TB, Søgaard LV, Parker GJ, Alexander DC, Lind NM, Baaré, WFC,

et al. Validation of in vitro probabilistic tractography. Neuroimage (2007)

37:1267–77. doi: 10.1016/j.neuroimage.2007.06.022

48. Calamante F, Tournier JD, Jackson GD, Connelly A. Track-density

imaging (TDI): Super-resolution white matter imaging using whole-

brain track-density mapping. Neuroimage (2010) 53:1233–43.

doi: 10.1016/j.neuroimage.2010.07.024

49. Arrigo A, Mormina E, Calamuneri A, Gaeta M, Granata F, Marino S,

et al. Inter-hemispheric claustral connections in human brain: a constrained

spherical deconvolution-based study. Clin Neuroradiol. (2015) 27:275–81.

doi: 10.1007/s00062-015-0492-x

50. Arrigo A, Calamuneri A, Mormina E, Gaeta M, Quartarone A, Marino

S, et al. New insights in the optic radiations connectivity in the human

brain. Invest Ophthalmol Vis Sci. (2016) 57:1–5. doi: 10.1167/iovs.15-

18082

51. Arrigo A, Calamuneri A, Milardi D, Mormina E, Rania L, Postorino

E, et al. Visual system involvement in patients with newly diagnosed

parkinson disease. Radiology (2017) 285:885–95. doi: 10.1148/radiol.2017

161732

52. Kristo G, Leemans A, de Gelder B, Raemaekers M, Rutten GJ, Ramsey N.

Reliability of the corticospinal tract and arcuate fasciculus reconstructed with

DTI-based tractography: implications for clinical practice. Eur Rad. (2013)

23:28–36. doi: 10.1007/s00330-012-2589-9

53. Li Z, Peck KK, Brennan NP, Jenabi M, Hsu M, Zhang Z, et al.

Diffusion tensor tractography of the arcuate fasciculus in patients with

brain tumors: comparison between deterministic and probabilistic

models. J Biomed Sci Eng. (2013) 6:192–200. doi: 10.4236/jbise.2013.

62023

54. Mormina E, Arrigo A, Calamuneri A, Alafaci C, Tomasello F, Morabito

R, et al. Optic radiations evaluation in patients affected by high-

grade gliomas: a side-by-side constrained spherical deconvolution and

diffusion tensor imaging study. Neuroradiology (2016) 58:1067–75.

doi: 10.1007/s00234-016-1732-8

55. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional kurtosis

imaging: the quantification of non-gaussian water diffusion by means

of magnetic resonance imaging. Magn Reson Med. (2005) 53:1432–40.

doi: 10.1002/mrm.20508

56. Behrens TEJ, Woolrich MW, Jenkinson M, Johansen H. Characterization and

propagation of uncertainty in diffusion-weighted MR imaging. Magn Reson

Med. (2003) 50:1077–88. doi: 10.1002/mrm.10609

57. Mollink J, Kleinnijenhuis M, Sotiropoulos SN, Ansorge O, Jbabdi S, Miller KL.

Diffusion restriction along fibres: How coherent is the corpus callosum? In:

Proceedings of the International Society for Magnetic Resonance in Medicine.

Sidney (2015)

58. Clark CA, Le Bihan D. Water diffusion compartmentation and anisotropy

at high b values in the human brain. Magn Reson Med. (2000) 44: 852–9.

doi: 10.1002/1522-2594(200012)44:6<852::AID-MRM5>3.0.CO;2-A

59. Niendorf T, Dijkhuizen RM, Norris DG, van Lookeren Campagne M,

Nicolay K. Biexponential diffusion attenuation in various states of brain

tissue: implications for diffusion-weighted imaging. Magn Reson Med. (1996)

36:847–57. doi: 10.1002/mrm.1910360607

60. Mohammadi S, Carey D, Dick F, Diedrichsen J, Sereno MI, Reisert

M, et al. Whole-brain in-vivo measurements of the axonal G-ratio

in a group of 37 healthy volunteers. Front Neurosci. (2015) 9:441.

doi: 10.3389/fnins.2015.00441

61. Zhang J, Kolind SH, Laule C, MacKay AL. Comparison of myelin water

fraction from multiecho T2 decay curve and steady-state methods. Magn

Reson Med. (2015) 73:223–32. doi: 10.1002/mrm.25125

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Calamuneri, Arrigo, Mormina, Milardi, Cacciola, Chillemi,

Marino, Gaeta and Quartarone. This is an open-access article distributed under the

terms of the Creative Commons Attribution License (CC BY). The use, distribution

or reproduction in other forums is permitted, provided the original author(s) and

the copyright owner(s) are credited and that the original publication in this journal

is cited, in accordance with accepted academic practice. No use, distribution or

reproduction is permitted which does not comply with these terms.

Frontiers in Neurology | www.frontiersin.org 14 August 2018 | Volume 9 | Article 716

https://doi.org/10.1016/j.neuroimage.2014.12.060
https://doi.org/10.3389/fnana.2016.00029
https://doi.org/10.1002/1522-2594(200010)44:4<625::AID-MRM17>3.0.CO;2-O
https://doi.org/10.1002/mrm.10331
https://doi.org/10.1002/jmri.10350
https://doi.org/10.1002/hbm.21032
https://doi.org/10.1016/j.neuroimage.2014.04.071
https://doi.org/10.1002/ima.22005
https://doi.org/10.1002/nbm.3017
https://doi.org/10.1016/j.cortex.2008.05.004
https://doi.org/10.1002/ana.20319
https://doi.org/10.1016/j.neuroimage.2003.10.012
https://doi.org/10.1016/j.neuroimage.2007.06.022
https://doi.org/10.1016/j.neuroimage.2010.07.024
https://doi.org/10.1007/s00062-015-0492-x
https://doi.org/10.1167/iovs.15-18082
https://doi.org/10.1148/radiol.2017161732
https://doi.org/10.1007/s00330-012-2589-9
https://doi.org/10.4236/jbise.2013.62023
https://doi.org/10.1007/s00234-016-1732-8
https://doi.org/10.1002/mrm.20508
https://doi.org/10.1002/mrm.10609
https://doi.org/10.1002/1522-2594(200012)44:6$<$852::AID-MRM5$>$3.0.CO;2-A
https://doi.org/10.1002/mrm.1910360607
https://doi.org/10.3389/fnins.2015.00441
https://doi.org/10.1002/mrm.25125
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles

	White Matter Tissue Quantification at Low b-Values Within Constrained Spherical Deconvolution Framework
	Introduction
	Materials and Methods
	MRI Protocol and Pre-processing
	Tractography
	Analysis of Tractographic Maps and DTI Parameters
	Estimation of Intra-Axonal Volume Fraction and Comparison With FA

	Results
	Tractographic Reconstruction Accuracy and Robustness
	TB-RA
	AFD Estimation Results and Comparison With FA

	Discussion
	CSD and DTI Models
	Tractographic Reconstruction and Tensor Features Analysis
	AFD Interpretability at Low b-Values
	AFD and FA

	Conclusions
	Author Contributions
	References


