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We described the cerebello-cerebral functional connectivity in a subject who developed

a manic state after a cerebellar lesion. Whole brain investigation, performed by means of

an advanced MRI examination, evidenced an isolated lesion involving the left lobules

VI, VIIa (crus I), and IX and the posterior area of the vermis. The cerebello-cerebral

functional connectivity analysis detected a pattern of altered connectivity in specific areas

of the prefrontal-striatal-thalamic circuits that are typically altered in bipolar subjects

during the manic state. Specifically, a pattern of hypo-connectivity was found between

the cerebellum and cerebral regions known to be implicated in emotion modulation

and social interaction. Conversely, a pattern of hyper-connectivity was found between

the cerebellum and posterior cerebral cortical regions that are involved in sensorimotor

functions. The present study represents the first evidence that dysregulation of cerebral

networks consequent to a cerebellar lesion is at the root of bipolar disorder, at least the

manic state, and provides a new framework for interpreting cerebellar modulation in the

regulation of mood in specific psychiatric conditions.

Keywords: mania, cerebellum, MRI, bipolar disorder, mood

INTRODUCTION

Mania is a period of 1 week or more in which a person’s normal behaviour changes and includes a
euphoric state and is a condition typical of bipolar disorder. Although there is increasing evidence
that the cerebellum is connected to cortical areas involved in the pathophysiology of psychiatric
disorders (1–3), no studies have specifically investigated the cause-effect relationship between
cerebellar damage and the development of emotional dysregulation in terms of manic/depressive
mood.

However, in the last 20 years, increasing evidence has changed the view of the cerebellum from a
structure specifically implicated in motor control to a structure involved in higher-order cognitive
and emotional functions (4–6).

Moreover, the clinical description of the Cerebellar Cognitive Affective Syndrome (CCAS) (6)
allowed to define a constellation of behavioral and cognitive symptoms consequent of a cerebellar
pathology (6).

Furthermore, neuroimaging studies have demonstrated the existence of anatomical correlations,
organized in reciprocal loops, between the sensorimotor and association areas of the cerebral cortex
and distinct anatomical and functional cerebellar regions (7–9).
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These studies have demonstrated that the anterior cerebellar
lobes (lobules I/II through V) are connected with the
sensorimotor cortices, while the posterior cerebellar lobes
(lobules VI through IX) are connected with the association
cortices (10–13). Furthermore, the posterior vermis, including
parts of lobule IX, is connected with limbic networks implicated
in emotional and behavioural processing (14). This part of the
cerebellum has been defined as the “limbic cerebellum” (15).

Despite these connections between the limbic cerebellum and
the well-known limbic cerebral networks, only very few studies
on patients affected bymood swings have addressed the cerebellar
role in mood alterations (16).

Taking into account all these considerations, it is possible to
hypothesize that a lesion in the limbic cerebellum plays a key role
in affecting mood and behaviour.

The aim of the present study was to provide some insights
into this issue, showing that the disruption of specific cerebello-
cortical circuits can cause the development of mood disorders.

To test this hypothesis, we analysed cerebello-cerebral
connectivity in a patient who suffered a severe manic mood state
after a cerebellar accident.

Taking into account the aim of the study, the dentate nucleus
(DN) was chosen as region of interest (ROI) for the seed-based
analysis. Indeed, the cerebellar information ultimately converges
on Purkinje neurons and is, then, funneled out through the
neurons of the DN, through which the cerebellum communicates
with the other parts of central nervous system. Thus, when the
Purkinje cells are affected as consequence of a cerebellar cortical
lesion, the connections between the DN, which represents the
sole output of the cerebellar cortex, and its target regions may
be also altered.

Case Report
MT is a 43-year-old right-handed woman who used to work as
a lawyer. At the age of 42 years, she had suffered a rupture of
the cerebellar arteriovenous malformation (AVM), which was
treated with embolization (July 2014). Ten months after the
lesion (May 2015), she was admitted to the Ataxia Laboratory
of IRCCS Fondazione Santa Lucia. A neurological examination
revealed severe ataxia with a total motor score of 46/100 on the
International Cooperative Ataxia Rating Scale (ICARS) (17).

During the anamnestic interview, no cognitive problems
were apparent prior to the cerebellar lesion. However, episodes
of inappropriate behaviours were described in childhood,
although they had been underestimated by MT’s parents.
The patient’s major complaint was the worsening of some
symptoms (i.e., impulsiveness) and the onset of other behavioural
abnormalities, also confirmed by the husband, and included
referred hallucinations, together with a euphoric state similar
to a manic mood phase. These symptoms arose after the
cerebellar accident; they were already present in September
2014 (5 months after the acute event) and worsened over
time.

Therefore, an assessment of her personality andmood changes
was performed by an expert psychotherapist using the Structured
Clinical Interview for DSM IVAxis I Disorders (SCID I) (18) and
the Structured Clinical Interview for DSM IV Axis II Disorders

(SCID-II) (19). It should be noted that, at the time of the patient’s
evaluation, the Italian version of SCID I and SCID II scale
related to the new DSM- 5 criteria (20) was not yet available.
It was determined that MT suffered from borderline personality
organization and bipolar I disorder, mixed episode, as already
described by Lupo et al. (21).

Moreover, an adjustment disorder with a disturbance in
conduct, from which she had been suffering since childhood,
was also diagnosed. In Lupo et al. (21), the authors linked
these behavioural alterations to an abnormal cerebellar influence
during cerebral development due to the congenital nature of the
AVM (21).

The patient was never pharmacologically treated for
psychiatric symptomatology.

The patient’s major psychiatric symptoms, as detected by the
psychological assessment, and experienced during the manic
mood phase, are listed below:

- Euphoria
- Disinhibited and inadequate behaviour (e.g., laughter during
funerals)

- Impairment in social interaction
- Impulsiveness (e.g., spending money irresponsibly)
- Aggressiveness
- Transient stress-related psychotic-like symptoms (e.g.,
hallucinations and dissociative symptoms)

- Emotional lability and mood swings (e.g., from a mild
depression to a euphoric mood state)

- Alexithymia

At the time of psychological assessment (May 2015), a whole
brain investigation was performed by means of an advancedMRI
examination. MT’s lesion affected the left hemispheric regions of
the cerebellum, specifically lobules VI, VIIa (crus I), and IX, and
the posterior area of the vermis, with a sparing of dentate nucleus
(total lesion extent: 3934 mm3). No other cortical or subcortical
lesions were detected (see Figure 1A).

The selective cerebellar lesion was also confirmed by
examination of tomography images (PET).

FIGURE 1 | Comparison between the patient’s MRI scans. (A) MRI in May

2015 (10 months after acute event of July 2014). (B) MRI at follow-up in

January 2016 (8 months after the initial scan).

Frontiers in Neurology | www.frontiersin.org 2 September 2018 | Volume 9 | Article 774

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Lupo et al. Cerebello-Cerebral Network in the Manic State

Furthermore, in January 2016, anMRI follow-up did not show
any modification in comparison with the scan from 8 months
before (see Figure 1B).

METHODS

MRI Data Acquisition Protocol
For the MRI analysis, 20 age-matched females with no history
of psychiatric or neurological illness were enrolled as the control
group [mean age (52.45), standard deviation (5.75)] (see Table 1
for details). A significance test (24) ensured that there was no

TABLE 1 | Demographic characteristics of MT and the control group.

Group N◦ Age Education

(years)

Gender IQ

(cut off: <70)

ICARS motor

score

MT 1 43 18 F 105 46/100

Cnt 20 52.4

(5.75)

– F – –

Cnt, Control Group; F, female; IQ, Intelligence Quotient assessed by Wechsler Adult

Intelligent Scale-Revised (WAIS-R) (22, 23). Age data are reported as the mean and

standard deviation (SD).

difference between MT and control sample age (t = −1,43; p =

0.087).
Both the patient and the controls underwent an MRI

examination at 3T (Magnetom Allegra, Siemens, Erlangen,
Germany) that included the following acquisitions: (1) dual-echo
turbo spin echo [TSE] (TR = 6190ms, TE = 12/109ms); (2)
fast-FLAIR (TR = 8170ms, 204TE = 96ms, TI = 2100ms) for
conventional MRI visualization of the brain; (3) 3D modified
driven equilibrium fourier transform (MDEFT) scan (TR =

1338ms, TE= 2.4ms, matrix= 256× 224× 176, in-plane FOV
= 250 × 250 mm2, slice thickness = 1mm) for structural T1-
weighted imaging of the brain; and (4) T2∗ weighted echo planar
imaging (EPI) sensitized to the blood oxygenation dependent
imaging (BOLD) contrast (TR: 2080ms, TE: 30ms, 32 axial
slices parallel to AC-PC line, matrix: 64 × 64, pixel size: 3 ×

3 mm2, slice thickness: 2.5mm, flip angle: 70◦) for resting state
fMRI. BOLD echo planar images were collected during rest for
a 7min and 20 s period, resulting in a total of 220 volumes.
To characterize the brain anatomy and to ensure the absence
of macroscopic extracerebellar abnormality, the TSE and FLAIR
scans of patient MT, acquired as part of the MRI protocol, were
inspected by an expert neuroradiologist.

FIGURE 2 | (A) Multislice axial (z) view of the left DN mask superimposed on the spatially unbiased atlas template of the cerebellum and brainstem (SUIT) (25). L, left;

R, right. (B,C) Cerebello-cerebral functional connectivity differences in MT compared to the control group. Clusters of significant hypo-connectivity (B) and

hyper-connectivity (C) with cerebellar DN are shown in coronal (y), sagittal (x), and axial slices (z). X, Y, Z in the MNI space. Results considered significant at p < 0.001

uncorrected after FWE correction at the cluster level.
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According to the inclusion criteria, conventional MRI scans of
control subjects were also reviewed to exclude any pathological
conditions affecting the brain.

Resting State fMRI Data Preprocessing
Data were pre-processed using Statistical Parametric Mapping
[Wellcome Department of Imaging Neuroscience; SPM8
(http://www.fil.ion.ucl.ac.uk/spm/)] and in-house software
implemented in MATLAB (The Mathworks Inc., Natick,
Massachusetts, USA). For each subject, the first four volumes
of the fMRI series were discarded to allow for T1 equilibration
effects. The pre-processing steps included correcting for
head motion, compensating for slice-dependent time shifts,
normalizating to the EPI template in Montreal Neurological
Institute (MNI) coordinates provided with SPM8, and smoothing
with a 3D Gaussian Kernel with 8 mm3 full-width at half
maximum. For each data set, motion correction was checked to
ensure that the maximum absolute shift did not exceed 2mm and
the maximum absolute rotation did not exceed 1.5◦. The global
temporal drift was removed using a 3rd-order polynomial fit,
and the signal was regressed against the realignment parameters
and the signal averaged over whole brain voxels to remove
other potential sources of bias. Then, all images were filtered
by a phase-insensitive bandpass filter (pass band 0.01–0.08Hz)
to reduce the effect of low-frequency drift and high-frequency
physiological noise.

Seed-Based Analyses
Based on the side of the lesion, the left DN was chosen as the ROI
for the seed-based analysis. Thus, a left DN mask was extracted
with reference to the spatially unbiased atlas template of the
cerebellum and brainstem (SUIT) (25) (Figure 2A) and resliced
into EPI standard space.

TABLE 2 | Functional hypo-connectivity results between the DN and cerebral

cortex regions.

Cluster size

(NoV)

Coordinates Cluster peak

Z-score

Brain region

x y z

625 −14 34 22 4.96 L-Paracingulate

cortex

−8 16 28 4.62 L-Cingulate cortex

−30 40 12 4.58 L-Frontal Pole

150 30 56 8 5.12 R-Frontal Pole

36 50 10 3.42

32 42 10 3.33

232 16 10 16 4.45 Caudate

147 −24 −8 60 4.33 L-Superior Frontal

Gyrus

−18 −14 42 3.99

−18 −2 52 3.88

MNI coordinate space (x, y, z) and peak Z-score of the peak voxels showing the greatest

significant differences in a cluster are reported. Only regions that survived after correction

for multiple comparisons (FWE corrected p < 0.05, clusters formed with uncorrected

voxels p < 0.001 at cluster level) were considered. NoV, number of voxels; L, left; R, right.

Themean time course of the voxels within the chosen ROI was
extracted for every participant and used as a regressor in a 1st-
level SPM analysis, thus extracting the voxels in the whole brain
showing a significant correlation with the DN. At the second
level, a two-sample t-test model was used to explore differences in
connectivity between the left DN and the rest of the brain in the
patient compared to the controls, assuming equality of variance
between the groups.

Between-group statistical significance was set at p < 0.05
FWE-corrected at the cluster level (clusters formed with
uncorrected voxels p < 0.001 at the cluster level).

RESULTS

When comparing the pattern of left DN functional connectivity
in the patient against the control group, a pattern of altered
FC of the left DN with regions of both left and right cerebral
cortex was apparent (see Tables 2, 3 for details). Specifically,
a large cluster of hypo-connectivity was found between the
left DN and the anterior cerebral cortical regions with peak
voxels of significant hypo-connectivity centered in the bilateral
frontal pole, including the dorsolateral prefrontal cortex and
the orbitofrontal cortex, the left superior frontal gyrus, the left
paracingulate and anterior cingulate cortex, and the caudate
nucleus (see Figure 2B). Conversely, a pattern of hyper-
connectivity was found between the left DN and posterior
cerebral cortical regions, with peak voxels of significant hyper-
connectivity centered in the right superior parietal lobule,
right post-central gyrus and bilateral lateral occipital cortex
(Figure 2C).

TABLE 3 | Functional hyper-connectivity results between the DN and cerebral

cortex regions.

Cluster size

(NoV)

Coordinates Cluster peak

Z-score

Brain region

x y z

176 34 −76 12 4.54 L-Lateral Occipital

Cortex

220 −6 −82 30 4.52 L-Cuneal cortex

−14 −86 18 4.32 L-Lateral Occipital

cortex

−19 −92 30 4.00 L-Occipital pole

377 16 −40 72 4.50 R-Post-central

gyrus

20 −46 56 4.22 R-Superior Parietal

lobe

14 −24 72 4.00 R-Precentral gyrus

251 20 −76 42 4.33 R-Lateral Occipital

cortex

22 −62 34 3.96 R-Precuneus

10 −82 38 3.79 R-Cuneal cortex

MNI coordinate space (x, y, z) and peak Z-score of the peak voxels showing the greatest

significant differences in a cluster are reported. Only regions that survived after correction

for multiple comparisons (FWE corrected p < 0.05, clusters formed with uncorrected

voxels p < 0.001 at cluster level) were considered. NoV, number of voxels; L, left; R, right.
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A detailed report of the seed-based analyses with MNI
coordinates and peak-z scores is summarized in Tables 2, 3.

DISCUSSION

Through an in-depth neuroimaging data analysis, the present
study aimed to demonstrate the mechanism through which a
cerebellar lesion may affect mood states.

According to the CCAS (6), it is known that the dysregulation
of affect and behaviour occurs mainly when lesions involve the
limbic cerebellum (15). Indeed, in a meta-analysis by Stoodley
and Schmahmann (12), the authors showed that the posterior
lobes VI and VII, including crus I and crus II, are specifically
involved in cognitive and emotional functions (12). In particular,
damage to the posterior vermis, including parts of lobule IX, is
most often associated with emotional lability, flattened affect, and
disinhibited behaviour (12).

Thus, considering MT’s lesion, we found strong associations
between our findings and the anatomo-functional topography
previously described. Indeed, MT’s lesion affected the left lobules
VI, VIIa (crus I), and IX and the posterior area of the vermis.

Analysing the patient’s FC data, the rs-fMRI showed an hypo-
connectivity between the left DN and regions in the frontal
pole (i.e., the dorsolateral prefrontal cortex, orbitofrontal cortex,
superior and middle frontal gyrus), paracingulate cortex (the
anterior cingulate cortex), and caudate nucleus (Figure 2B).

Conversely, a pattern of hyper-connectivity was found
between the left DN and posterior cerebral cortical regions
(Figure 2C), which are involved in sensorimotor functions.

Considering the cluster of regions in which we found
hypo-connectivity in MT, it has to be highlighted that these
regions are known to be implicated in cognition, emotion
modulation, regulation of affective states and social interaction
both in bipolar and borderline patients (26, 27). Furthermore,
similar hypo-connectivity changes have been evidenced in
several regions of the prefrontal cortex and striatum during
the manic state in bipolar subjects (27–29). In particular,
two distinct cortico-subcortical networks have been linked to
the depressive and manic state conditions of bipolar disorder

(16). Specifically, manic states are commonly associated with
decreased activation in the ventral prefrontal cortex, anterior
cingulate, and striatum, consistent with the hypothesis of a loss
of ventral prefrontal modulation of the limbic brain duringmania
(30, 31).

Within this framework, the study of our patient’s functional
connectivity may advance interesting insights. Indeed, MT’s
manic state is probably caused by the structural changes
following the cerebellar lesion that have modified the functional
connectivity between the cerebellum and the cortico-subcortical
networks specifically involved in the manic state (16, 26, 31, 32).

Moreover, our results are in line with the fMRI data of
Shaffer et al. (16) that found a functional activity reduction in
the cerebellar vermis and in the left cerebellar hemisphere more
pronounced in the manic group, suggesting the cerebellum as a
possible key region for the regulation of the manic episodes (16).
The similarity between functional activations in the manic group

of Shaffer et al. (16) and MT’s cerebello-cortical FC alterations is
congruent with the manic mood of our patient.

In a previous work (21), we described the case of MT,
proposing a link between cerebellar lesion, and the presence
of behavioural disturbances from childhood that merged into a
personality disorder after the cerebellar accident in adulthood.
In the present study, we demonstrate a dysregulation of the
cerebello-cerebral network in specific areas that are known to
be altered in the manic state in bipolar patients (16, 26, 30–
32). Because the mood disorder appeared after the cerebellar
lesion in our patient, and her rs-fMRI evidenced an impaired
functional connectivity between the cerebellum and the same
areas affected during the manic phase in bipolar patients
(16), this evidence proves for the first time the association
between cerebellar FC alterations and the onset of a manic
state.

CONCLUSIONS

The present study demonstrates an association between aberrant
cerebello-cortical FC and the onset of a manic state. Specifically,
our results show that there is an overlap between the areas of the
prefrontal-striatal-thalamic circuits that are altered in the manic
state of bipolar disorder and the regions with impaired functional
connectivity in our patient that presented a manic state after an
isolated cerebellar lesion.

Taken together, these results help to fill the gap in the
mechanisms through which cerebellar modulation may regulate
mood state in specific psychiatric conditions.
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