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Background: Endovascular treatment (EVT) is effective for stroke patients with a

large vessel occlusion (LVO) of the anterior circulation. To further improve personalized

stroke care, it is essential to accurately predict outcome after EVT. Machine learning

might outperform classical prediction methods as it is capable of addressing complex

interactions and non-linear relations between variables.

Methods: We included patients from the Multicenter Randomized Clinical Trial of

Endovascular Treatment for Acute Ischemic Stroke in the Netherlands (MR CLEAN)

Registry, an observational cohort of LVO patients treated with EVT. We applied the

following machine learning algorithms: Random Forests, Support Vector Machine, Neural

Network, and Super Learner and compared their predictive value with classic logistic

regression models using various variable selection methodologies. Outcome variables

were good reperfusion (post-mTICI ≥ 2b) and functional independence (modified Rankin

Scale ≤2) at 3 months using (1) only baseline variables and (2) baseline and treatment

variables. Area under the ROC-curves (AUC) and difference of mean AUC between the

models were assessed.

Results: We included 1,383 EVT patients, with good reperfusion in 531 (38%)

and functional independence in 525 (38%) patients. Machine learning and logistic

regression models all performed poorly in predicting good reperfusion (range mean

AUC: 0.53–0.57), and moderately in predicting 3-months functional independence

(range mean AUC: 0.77–0.79) using only baseline variables. All models performed well

in predicting 3-months functional independence using both baseline and treatment
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variables (range mean AUC: 0.88–0.91) with a negligible difference of mean AUC

(0.01; 95%CI: 0.00–0.01) between best performing machine learning algorithm (Random

Forests) and best performing logistic regression model (based on prior knowledge).

Conclusion: In patients with LVO machine learning algorithms did not outperform

logistic regression models in predicting reperfusion and 3-months functional

independence after endovascular treatment. For all models at time of admission

radiological outcome was more difficult to predict than clinical outcome.

Keywords: ischemic stroke, prediction, machine learning, endovascular treatment, functional outcome,

reperfusion

INTRODUCTION

Endovascular treatment (EVT) is effective for ischemic stroke
patients with a large vessel occlusion (LVO) of the anterior
circulation. EVT results in a number needed to treat of 2.6 to
reduce disability by at least one level on the modified Rankin
Scale (mRS) (1). A recent meta-analysis showed a positive
treatment effect of EVT across patient subgroups including
different age groups, varying stroke severity, sex, and stroke
localization (1). However, many clinical and imaging predictors
or their combinations were not considered in the subgroup
analysis. Moreover, the RCTs that provided the data differed in
their patient selection criteria. To further improve personalized
stroke care, it is essential to accurately predict outcome and
eventually differentiate between patients who will and will not
benefit from EVT.

Machine learning belongs to the domain of artificial
intelligence and provides a promising tool in pursuing
personalized outcome prediction, which is increasingly used
in medicine (2–7). The machine learning methodology allows
discovering empirical patterns in data through automated
algorithms. In some clinical settings machine learning
algorithms outperform classical regression models, such as
logistic regression, possibly through more efficient processing
of non-linear relationships and complex interactions between
variables (6, 8), although poorer performance has also been
observed (9).

In this study, we used multiple machine learning algorithms
and logistic regression with multiple variable selection methods
to predict radiological and clinical outcome after EVT in a cohort
of well-characterized stroke patients. We hypothesized that
machine learning algorithms outperform classic multivariable
logistic regression models in terms of discrimination between
good and poor radiological and clinical outcome.

METHODS

Patients
We included patients registered between March 2014 and
June 2016 in the Multicenter Randomized Clinical Trial of
Endovascular Treatment for Acute Ischemic Stroke in the
Netherlands (MR CLEAN) Registry. The MR CLEAN Registry
is an ongoing, national, prospective, open, multicenter,
observational monitoring study covering all 18 stroke

intervention centers that perform EVT in the Netherlands,
of which 16 participated in the MR CLEAN trial (10). The
registry is a continuation of the MR CLEAN trial collaboration
and includes all patients undergoing EVT (defined as entry into
the angiography suite and receiving arterial puncture) for acute
ischemic stroke in the anterior and posterior circulation. In the
current analysis we included those patients who adhered to the
following criteria: age 18 years and older, treatment in a center
that participated in theMRCLEAN trial, and LVO in the anterior
circulation (internal carotid artery (ICA), internal carotid artery
terminus (ICA-T), middle (M1/M2) cerebral artery, or anterior
(A1/A2) cerebral artery), shown by CT angiography (CTA) or
digital subtraction angiography (DSA) (11).

Clinical Baseline Characteristics
We assessed the following clinical characteristics at admission:
National Institutes of Health Stroke Scale (NIHSS), Glasgow
Coma Scale, medical history (TIA, ischemic stroke, intracranial
hemorrhage, subarachnoid hemorrhage, myocardial infarction,
peripheral artery disease, diabetes mellitus, hypertension,
hypercholesterolemia), smoking, laboratory tests (blood
glucose, INR, creatinine, thrombocyte count, CRP), blood
pressure, medication (thrombocyte aggregation inhibitors, oral
anticoagulant drugs, anti-hypertensive drugs, statins), modified
Rankin Score (mRS) before stroke onset, administration of
intravenous tPA (yes/no), stroke onset to groin time, transfer
from another hospital, and whether the patient was admitted
during weekend or off hours.

Radiological Baseline Parameters
All imaging in the MR CLEAN Registry was assessed by an
imaging core laboratory (11). On non-contrast CT, the size of
initial lesion in the anterior circulation was assessed by the
Alberta Stroke Program Early CT Score (ASPECTS). ASPECTS
is a 10 point quantitative topographic score representing
early ischemic change in the middle cerebral artery territory,
with a scan without ischemic changes receiving an ASPECTS
of 10 points (12). In addition, presence of leukoaraiosis
and old infarctions, hyperdense vessel sign, and hemorrhagic
transformation of the ischemic lesion were assessed on non-
contrast CT.

On CTA, the core lab determined clot burden score, clot
location, collaterals, and presence of intracranial atherosclerosis.
The clot burden score evaluates the extent of thrombus in
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the anterior circulation by location scored on a 0–10 scale.
A score of 10 is normal, implying clot absence; a score of 0
implies complete multi-segment vessel occlusion (12). Presence
of intracranial carotid artery stenosis, atherosclerotic occlusion,
floating thrombus, pseudo-occlusion, and carotid dissection were
scored on CTA of the carotid arteries. Collaterals were assessed
using a 4 point scale, with 0 for absent collaterals (0% filling
of the vascular territory downstream of the occlusion), 1 for
poor collaterals (>0% and ≤50% filling of the vascular territory
downstream of the occlusion), 2 for moderate collaterals (>50%
and <100% filling of the vascular territory downstream of the
occlusion), and 3 for excellent collaterals (100% filling of the
vascular territory downstream of the occlusion) (13).

Treatment Specific Variables
Variables collected during EVT were type of sedation during
the procedure (general or conscious), use of a balloon guiding
catheter, carotid stent placement, performed procedure (DSA
only or thrombectomy), and type of EVT-device (stent retriever,
aspiration device, or a combination of both). In addition,
data were collected on adverse events during the procedure
(perforation, dissection, distal thrombosis on DSA).

Interventional DSA parameters in our dataset were occluded
vessel segment (ICA: origin, cervical, petrous, cavernous,
supraclinoid, M1-M4, A1, A2), arterial occlusive lesion (AOL)
recanalization score before and after EVT (14), evidence of
vascular injury (i.e., perforation, or dissection, vasospasm, new
clot in different vascular territory or distal thrombus confirmed
with imaging), andmodified Thrombolysis in Cerebral Infarction
(mTICI)-score before and after EVT. ThemTICI-score grades the
following categories of cerebral reperfusion: no reperfusion of the
distal vascular territory (0), minimal flow past the occlusion but
no reperfusion (1), minor partial reperfusion (2a), major partial
reperfusion (2b), and complete reperfusion (3) (15). Further
variables analyzed were time from stroke onset to recanalization,
post-EVT stay on intensive care, high care or stroke care,
NIHSS after EVT (<48 h), delta NIHSS (pre-treatment NIHSS
subtracted from NIHSS <48 h after EVT) and hemicraniectomy
or symptomatic intracranial hemorrhage <48 h after EVT.

Outcome
The primary radiological outcome was good reperfusion defined
as modified TICI-score directly post-procedure (post-mTICI)
≥ 2b (15). The primary clinical outcome was functional
independence at 3 months after stroke (mRS ≤ 2). We excluded
patients in whom any of the main outcomes (3-months mRS and
post-mTICI) were missing.

To investigate the full potential ofMachine learning compared
with conventional methods in different settings after stroke we
defined two prediction settings:

First, we assessed the probability of good reperfusion and
good 3-months functional independence in our cohort of
patients that underwent EVT based only on variables that were
available on admission before entry into the angiography suite.
With this baseline prediction setting we are able to investigate
the added value of machine learning for models that could

potentially support future clinical decision making regarding the
performance of EVT yes or no.

Second, we tested the models for predicting 3-months
functional independence in patients after EVT was performed.
For this analysis we used all variables collected up to 48 h after
the end of the endovascular procedure (baseline and treatment
variables).

Machine Learning Algorithms
Themachine learning algorithms used in our study were Random
Forests, Artificial Neural Network and Support Vector Machine,
because they are among the algorithms that are currently most
widely and successfully used for clinical data (2–7). Each one
of them represents a different algorithm “family,” each with
radically different internal algorithm structures (16). Since it was
not known beforehand which kind of algorithm would perform
best, we chose algorithms with different internal structures to
increase the probability of good discriminative performance. We
also used Super Learner, which is an ensemble method that finds
the optimal weighted combination of predictions of the Random
Forests, Artificial Neural Network and Support Vector Machine
algorithms used in this study. Ensemble methods, such as Super
Learner have been shown to increase predictive performance by
increasing model flexibility (17). For the implementation of all
machine learning algorithms we used off-the-shelf methods in
the Python module Scikit-Learn (18).

Super Learner

Super Learner is a stacking algorithm using cross-validated
predictions of other models (i.e., a machine learning algorithm
and logistic regression) and assigning weights to these
predictions to optimize the final prediction. Super Learner’s
predictive performance has been found to surpass individual
machine learning models in various clinical studies (17, 19, 20).

Random Forests

Random Forests consists of a collection of decision tree classifiers
that are fit on random subsamples of patients and variables in
the dataset. The variation of the subsampled variables creates
a robust classifier. In the decision trees, each node represents
a variable and splits the input data into branches based on an
objective function that determines the optimal threshold for
separating the outcome classes. The predictions from each tree
are used as “votes,” and the outcome with the most votes is
considered the predicted outcome for that specific patient (6, 21).
From the Random Forests algorithm variable importances can
be derived, which are the sum of weights of nodes of the trees
containing a certain variable, averaged over all trees in the forest
(22).

Support Vector Machine

Support Vector Machine (SVM) is a kernel-based supervised
machine learning classifier which can also be used to output
probabilities. The SVM works by first mapping the input data
into a high dimensional variable space. For binary classification,
a hyperplane is subsequently determined to separate two classes
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such that the distance between the hyperplane and the closest
data points is maximized (23).

Artificial Neural Network

In this study we use the multilayer perceptron, a popular class
of artificial neural network architecture composed of one or
more interconnected layers of neurons that process data from the
input layer into predictions for the output layer. The algorithm
computes a weight for each neuron based on input activation.
These weights are updated by backpropagation and stochastic
gradient descent (24, 25).

Logistic Regression
For logistic regression, generally a set of variables has to
be selected to be included in the model. Since model
performance can rely heavily on selecting the right variables,
we tested five different variable selection methods prior
to logistic regression. We first selected variables based on
prior knowledge, a still widely used method that could be
considered “classical” (26). We selected 13 variables available at
baseline that were included in a previous study for a similar
purpose (27) (Supplementary Table Ia). In addition, from
baseline and treatment variables we selected 15 variables based
on expert opinions of vascular neurologists and radiologists
(Supplementary Table Ib).

We further considered four automated variable selection
methods: (i) backward elimination, which is also considered to be
a more classical approach (26), and three state-of-the-art variable
selection methods: (ii) least absolute shrinkage and selection
operator (LASSO) (28), (iii) Elastic Net, which is a modification
of the LASSO found to outperform the former while still having
the advantage of a similar sparsity of representation (29), and (iv)
selection based on Random Forests variable importance.

Analysis Pipeline
We imputed missing values using multiple imputations
by chained equations (MICE) (30). Variables with 25%
missing values or more were discarded from further analysis.
All remaining variables used in this study are listed in
Supplementary Tables II, III. In total, 53 baseline variables
and 30 treatment variables were used as input for machine
learning algorithms and automated variable selection methods
for logistic regression.

The ordinal clinical (NIHSS) and radiological (clot burden
and ASPECTS) scores were presented as continuous scores in
all models to increase model efficiency, and we assumed linear
trends underlying the ordinal scores.

We used nested cross-validation (CV), consisting of an outer
and an inner CV loop. In the outer CV loop we used stratified
CV with 100 repeated random splits resulting in a training set
including 80% and a test set including 20% of all patients. Each
training set was used as input for the inner CV loop, consisting
of 10-fold CV (31, 32). In the inner CV loop we selected
variables for the logistic regression models using the different
variable selection methods, and optimized hyperparameters
of all machine learning models. Hyperparameters are tuning
parameters specific to each machine learning algorithm whose
values have to be preset and cannot be directly learned from
the data. We optimized hyperparameters with the random grid
search module from Scikit-Learn (18). We selected those with
highest area under the receiver operating characteristic (AUC)
across all internal CV folds to find the best set of selected variables
and hyperparameters. Figure 1 shows a schematic representation
of our nested CV methodology.

For all Random Forests models of both prediction settings
we ranked variables by decreasing variable importance. For each
variable we assessed the frequency of being among the 15 most

FIGURE 1 | Schematic representation of nested cross-validation methodology.
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TABLE 1 | Baseline characteristics of participants.

Characteristics All patients (n = 1,383)

Mean age ± SD (years) 69.8 ± 14.4

Men, n (%) 738 (53.5)

NIHSS score, median (IQR)* 16 (11–20)

Mean systolic blood pressure ± SD (mm Hg) 150 ± 25

MEDICAL HISTORY, N (%)

Atrial fibrillation 411 (30.7)

Hypertension 697 (51.1)

Diabetes mellitus 235 (17.1)

Myocardial infarction 216 (15.9)

Peripheral artery disease 127 (9.4)

Ischaemic stroke 227 (16.5)

Hypercholesterolemia 411 (29.7)

Pre-stroke mRS > 2, n (%) 158 (11.6)

Smoking, n (%) 314 (22.9)

MEDICATION USE, N (%)

DOAC** 35 (2.6)

Coumarine 179 (13.0)

Antiplatelet 461 (33.7)

Heparin 52 (3.8)

Blood pressure medication 707 (52.1)

Statin 490 (36.2)

Intravenous alteplase treatment, n (%) 1,054 (76.2)

ASPECTS, median (IQR) 9 (7–10)

Time from stroke onset to groin in minutes, median (IQR) 210 (160–270)

Collateral score ≥ 2 764 (55)

*National Institutes of Health Stroke Scale score.

**Direct oral anticoagulant drugs.

important variables in a Random Forests model for each of the
100 external CV folds (Table 3).

Model Performance
We assessed model discrimination (the ability to differentiate
between patients with good and poor outcome) with receiver
operating characteristic (ROC) analyses. Because of our outer
CV loop with 100 repeated random splits, we obtained 100
different AUCs from every model. We computed the average
ROC-curve and mean AUC with 95% confidence intervals (CI)
for all models. We evaluated differences between mean AUCs of
the best performingmachine learningmodel and best performing
logistic regression model by computing the difference of means
including the associated 95% CI.

RESULTS

Of the 1,627 patients registered between March 2014 and June
2016, we excluded 244 patients for this analysis because of age
<18 (n = 2), posterior circulation stroke (n = 79), missing
MR CLEAN trial center (n = 20), and missing mRS or post-
mTICI (n = 143). Mean age was 69.8 years (SD ± 14.4) and
738 (54%) of the 1,383 included patients were men. In total, 531
(38%) patients had good reperfusion after EVT and 525 (38%)

were functionally independent (mRS ≤ 2) 3 months after stroke.
Baseline characteristics are shown in Table 1.

Prediction of Good Reperfusion After EVT
in Patients at Time of Admission
Discrimination between good and poor reperfusion of the
best machine learning algorithm (Support Vector Machine,
mean AUC: 0.55) and the best logistic regression model (using
backward elimination, mean AUC: 0.57) was similar (difference
of mean AUCs: 0.02; 95% CI: 0.01–0.03). Discrimination was
poor for all models, with a mean AUCs ranging from 0.53 to
0.57 (Table 2). Variable selection using LASSO or Elastic Net
was not possible likely because the signal-to-noise ratio was
insufficient (18).

Prediction of 3-Months Functional
Independence in Patients at Time of
Admission
Discrimination of good functional outcome of the best machine
learning algorithm (Super Learner, mean AUC: 0.79) and the best
logistic regression model (using LASSO, mean AUC: 0.78) was
similar (difference of mean AUCs: 0.01; 95% CI: 0.01–0.01).

Discrimination was moderate for all models, with a mean
AUCs ranging from 0.77 to 0.79.

Prediction of 3-Months Functional
Independence in Patients After
Performance of EVT
Discrimination of good functional outcome of the best machine
learning algorithm (Random Forests, mean AUC: 0.91) and the
best logistic regression model (using prior knowledge, mean
AUC: 0.90) was similar (difference of mean AUCs: 0.01; 95% CI:
0.00–0.01).

Discrimination was good for all models, with mean AUCs
ranging from 0.88 to 0.91.

We performed a post-hoc analysis in patients with good
reperfusion as defined by post-mTICI ≥ 2b, predicting 3-
months functional outcome both at time of admission and after
performance of EVT. We did not find significant differences in
performance between machine learning algorithms and logistic
regression models in this patient subset (data not shown).

InTable 3we show the top 15 variables based on the frequency
of being among the 15 most important variables in a Random
Forests model for each of the 100 external CV folds.

DISCUSSION

We found no difference in performance between best performing
machine learning algorithms and best performing logistic
regression models in predicting radiological or clinical outcome
in stroke patients treated with EVT. For prediction of good
reperfusion using variables available at baseline, all models
showed a poor discriminative performance. This could indicate
that reperfusion after EVT depends on characteristics not
present in our variables available at time of admission, such as
vascular anatomy or interventionalist related factors. Prediction

Frontiers in Neurology | www.frontiersin.org 5 September 2018 | Volume 9 | Article 784

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


van Os et al. Endovascular Stroke Treatment: Outcome Prediction

TABLE 2 | Discrimination of machine learning algorithms and logistic regression models across the various prediction settings.

Models, AUC (95% CI)* Prediction setting (used variables: predicted outcome)

Baseline: post-mTICI Baseline: mRS All variables: mRS

Super learner 0.55 (0.54–0.56) 0.79 (0.79–0.80) 0.90 (0.90–0.91)

Random forests 0.55 (0.55–0.56) 0.79 (0.79–0.79) 0.91 (0.90–0.91)

Support vector machine 0.53 (0.53–0.54) 0.78 (0.77–0.78) 0.88 (0.88–0.89)

Neural network 0.53 (0.53–0.54) 0.77 (0.76–0.77) 0.88 (0.88–0.89)

LR: AUTOMATED SELECTION**

Random forests 0.55 (0.55–0.56) 0.78 (0.78–0.78) 0.90 (0.90–0.90)

LASSO NAU 0.78 (0.78–0.79) 0.90 (0.89–0.90)

Elastic net NAU 0.77 (0.77–0.78) 0.89 (0.88–0.89)

Backward elimination 0.57 (0.57–0.58) 0.78 (0.77–0.78) 0.90 (0.89–0.90)

LR: prior knowledge‡ 0.55 (0.55–0.58) 0.78 (0.78–0.79) 0.90 (0.90–0.90)

*Model discrimination is assessed by calculating mean Area Under the Curve (AUC) of the receiver operating characteristic across all outer cross-validation folds.

**Logistic regression using automated variable selection methods.
UVariable selection not possible, likely due to insufficient signal-to-noise ratio.
‡Logistic regression using variables based on prior knowledge.

TABLE 3 | Variable importance of Random Forests for various prediction settings (used variables: predicted outcome).

Baseline: post-mTICI Freq* Baseline: mRS Freq All variables: mRS Freq

RR systolic at admission 100 Age 100 NIHSS after 24–48 h 100

Duration stroke onset to groin 100 NIHSS at baseline 100 Delta NIHSS: follow-up minus baseline 100

RR diastolic at admission 100 Duration stroke onset to groin 100 Age 100

Thrombocyte count 100 Glasgow Coma Scale 100 NIHSS at baseline 100

Age 100 RR systolic at admission 100 Duration from onset to recanalization 100

Creatinine 100 CRP 100 Duration of procedure 100

CRP 100 Creatinine 100 Delta NIHSS ≥ 4 points higher after EVT 100

NIHSS at baseline 100 Thrombocyte count 100 Duration stroke onset to groin 100

Clot burden score 100 RR diastolic at admission 100 Glasgow Coma Scale 100

Glasgow ComaScale 100 mRS prior to stroke 100 Creatinine 100

ASPECTS score at baseline 100 ASPECTS score at baseline 100 CRP 100

Glucose 100 Glucose 100 Thrombocyte count 100

Location: proximal M1** 74 Clot burden score 99 RR systolic at admission 100

Hyperdense artery sign on NCCT 50 Presence of leukoaraiosis 96 mRS prior to stroke 91

History of atrial fibrillation 32 Collateral score 77 RR diastolic at admission 93

NCCT, non-contrast CT; CRP, C-Reactive Protein; RR, blood pressure; NIHSS, National Institutes of Health Stroke Scale score.

*Frequency of being among the 15 most important variables in a Random Forests model for each of the 100 external CV folds.

**Location of intracranial occlusion on CTA.

of 3-months functional independence using variables known
at baseline was moderate, predicting 3-months functional
independence using baseline and treatment variables resulted in
good performance.

We hypothesized that machine learning would outperform
logistic regression models due to simultaneous assessment of a
large number of variables, and more efficient processing of non-
linear relations and interactions between them. Although a large
number of variables (83 in total, see Supplementary Tables II,
III) were available for analysis in the MR CLEAN Registry
database, performance of best machine learning algorithms and
best logistic regression models were similar. This could indicate
that interactions and non-linear relationships in our dataset were
of limited importance.

To interpret our results, several methodological limitations
have to be considered. First, due to their great flexibility machine
learning algorithms are prone to overfitting, which results in
optimistic prediction performance. To account for overfitting we

used nested CV, which is considered to be an effective method for
this aim (33). Second, our outer CV loop resulted in 100 AUCs
permodel leading to relatively small confidence intervals of mean
AUCs. Although this increases the probability of statistically
significant differences between mean AUCs of various models,
the clinical relevance of these mean AUC differences is difficult
to interpret. Because in our study mean AUC differences between
models are minimal, clinical relevance of these differences is
also negligible. Third, we used data from a registry. Registries
might be prone to selection bias. However, we expect that
selection bias in our study was minimal because the MR CLEAN
Registry in principle covers all patients treated with EVT in the
Netherlands. In addition, in all centers patients were treated
according to national guidelines, and registration of treatment
was a prerequisite for reimbursement (11).

Strong points of this study include the large sample size and
standardized collection of patient data. Moreover, because of
extensive hyperparameter tuning and state-of-the art variable
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selection methods, machine learning and logistic regression
models were compared at their best performance. In several
other studies that compared machine learning algorithms with
only logistic regression methods using variables based on prior
knowledge, machine learning outperformed logistic regression
(6, 7, 34). Variable selection based on prior knowledge has the
major drawback that predictive patterns in the data may be
missed, as variable selection is strictly based on the literature
and expert opinion (26). In our study however, logistic regression
using variables based on prior knowledge performed similarly to
logistic regression using automated variable selection methods.

The distinction between machine learning and “classical”
regression methods is largely artificial. However, a clear
distinction between various machine learning algorithms and
logistic regression exists in terms of model transparency,
which could be seen as the understanding of the mechanism
by which the model works (35). Logistic regression has the
advantage of transparency at the level of individual variable
coefficients, since from these coefficients odds ratios can
be derived. However, variable importances derived from the
Random Forests algorithm also offer insight in the importance
of individual variables for prediction performance (22). These
variable importances take interaction between variables into
account and have a similar interpretation for continuous and
discrete variables, unlike odds ratios which constitute an effect
per unit change of a predictor. Hence, Random Forests could be
used as an efficient screening tool to pick up predictive patterns in
the data that could potentially lead to further hypothesis-driven
research. In Table 3 we show the top 15 variables from either
the baseline or baseline and treatment variable set, based on
Random Forests variable importance. The majority of variables
in Table 3 do not overlap with the selection of variables based on
prior knowledge, potentially providing researcher with additional
information.

In this dataset we found no clinically relevant differences in
prediction of reperfusion and 3-months functional independence
across all models. However, since it is generally not known on
beforehand which type of model will result in the best predictive
performance in a new dataset, our methodology could be of
importance in future studies. We present an analysis pipeline
with both machine learning algorithms and logistic regression
models including state-of-the-art variable selection methods.
Assessing predictive performance of all models simultaneously
enables the researcher to make the proper trade-off between
predictive performance and model transparency. As our analysis
pipeline is fully automated and input variables and outcome label
can be altered at will, it is relatively easy to reuse in future studies.
The Python code of our pipeline has beenmade publicly available

in an online repository (https://github.com/L-Ramos/MrClean_
Machine_Learning).
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