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The hypocretin (Hcrt) system has been implicated in a wide range of physiological

functions from sleep-wake regulation to cardiovascular, behavioral, metabolic, and

thermoregulagtory control. These wide-ranging physiological effects have challenged

the identification of a parsimonious function for Hcrt. A compelling hypothesis suggests

that Hcrt plays a role in the integration of sleep-wake neurophysiology with energy

metabolism. For example, Hcrt neurons promote waking and feeding, but are also

sensors of energy balance. Loss of Hcrt function leads to an increase in REM sleep

propensity, but a potential role for Hcrt linking energy balance with REM sleep expression

has not been addressed. Here we examine a potential role for Hcrt and the lateral

hypothalamus (LH) in state-dependent resource allocation as a means of optimizing

resource utilization and, as a result, energy conservation. We review the energy

allocation hypothesis of sleep and how state-dependent metabolic partitioning may

contribute toward energy conservation, but with additional examination of how the

loss of thermoregulatory function during REM sleep may impact resource optimization.

Optimization of energy expenditures at the whole organism level necessitates a top-down

network responsible for coordinating metabolic operations in a state-dependent manner

across organ systems. In this context, we then specifically examine the potential role of

the LH in regulating this output control, including the contribution from both Hcrt and

melanin concentrating hormone (MCH) neurons among a diverse LH cell population.

We propose that this hypothalamic integration system is responsible for global shifts in

state-dependent resource allocations, ultimately promoting resource optimization and an

energy conservation function of sleep-wake cycling.
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INTRODUCTION

In the 20 years since the discovery of the hypocretin/orexin
(Hcrt) system, a growing diversity of physiological and
neurobehavioral responses under Hcrt control has challenged

identification of a unifying function. A compelling hypothesis
suggests that Hcrt plays a role in the integration of sleep-
wake neurophysiology with energy metabolism (1–3). Hcrt
neurons, for example, are sensors of energy balance through

their receptivity to leptin, ghrelin, and glucose (1, 4–6). It
has been proposed that the Hcrt system may coordinate the
waking response during periods of negative energy balance

to promote foraging behavior. However, many questions still
remain. Although the loss of Hcrt leads to an increase in

REM sleep propensity associated with narcolepsy (7–9), a
parsimonious role for Hcrt in both REM sleep regulation and
energy metabolism has remained unknown.

Hypocretins 1 and 2 (Hcrt1 and Hcrt2), also called orexins
A and B, are excitatory hypothalamic neuropeptides that
are derived from a single precursor molecule by proteolytic
processing and are largely co-localized in the same neurons (10).
They were independently described by two different groups in
1998 (11, 12). While early studies emphasized the role of the
Hcrt system in feeding and energy balance, subsequent research
focused on sleep-wake regulation based on the discovery that
Hcrt dysfunction underlies the sleep disorder narcolepsy.

Hcrt neurons are found exclusively in the posterior lateral
hypothalamus (LH) (11–13), numbering between 4,000–5,000 in
the rat (13–15) and 50,000–80,000 in humans (16). The anatomy
and the projections of the Hcrt system (see below) strongly
suggest involvement in diverse physiological functions including
sleep-wake control, feeding, thermoregulation, blood pressure,
motivation/reward, and neuroendocrine regulation. Long before
its discovery, the region of the LH containing Hcrt cells had
been implicated in arousal state control (17, 18). It is now
well-understood that Hcrt signaling within the LH promotes
wakefulness. Indeed, Hcrt neurons are wake-active as measured
by Fos expression (19), electrophysiology (20–22), or brain/CSF
peptide content (23–25). Hcrt increases arousal when infused
into the brain (26–32), and optogenetic stimulation or inhibition
of Hcrt signaling increases or decreases wakefulness, respectively
(33–36).

Here, on the 20th anniversary of its discovery, we examine
a potential role for Hcrt in optimizing efficiencies in energy
utilization and, thus, energy conservation. Our recent energy
allocation hypothesis of sleep proposes that state-dependent
metabolic partitioning at the whole organism level provides
greater daily energy conservation through resource optimization
than the measured metabolic rate reduction observed during
sleep (37, 38). A basic tenet of this hypothesis from an
evolutionary perspective is that “optimization of rates of return
on energy investments is the singular design principle for
the organization of sleep and wakefulness” (p. 126) (37). We
propose that optimization of energy expenditures at the whole
organism level necessitates a top-down network responsible
for coordinating biological operations in a state-dependent
manner across organ systems. We will also examine the

hypothalamic control of REM sleep vs. wakefulness in the
setting of their competing thermoregulatory demands and
how loss of thermoregulatory control during REM sleep may
enhance resource utilization when REM sleep expression can
be modulated as a function of ambient temperature. Finally, we
propose that the Hcrt system is part of a dynamic hypothalamic
integration system responsible for optimizing global shifts
in state-dependent resource allocations central to an energy
conservation function of sleep-wake cycling.

SLEEP-WAKE CYCLING, RESOURCE
OPTIMIZATION, AND ENERGY
CONSERVATION

Sleep has long been considered an energy conservation strategy,
potentially explaining its universal presence across the animal
kingdom (39–41). However, the mechanism by which sleep
conserves energy historically has been studied only in terms
of the degree to which metabolic rate is reduced during sleep
compared to quiet wakefulness, similar in concept to torpor or
hibernation. For example, mammals typically decrease metabolic
rate by 15–30% during sleep (42–44). For an organism with
an 8 h sleep quota per day, this 8 h metabolic rate reduction
equates to a calculated energy savings of 5–9% per 24 h. Although
significant, this only modest daily energy savings has been
considered insufficient to explain the universal presence of sleep,
particularly when considering the costs of a sleep strategy,
including increased predation risks and lost mating, parental
care, and foraging opportunities secondary to the decreased
behavioral responsiveness associated with sleep (43, 45, 46).

Moreover, metabolic rate reduction during sleep, analogous
to torpor as the principal mechanism of energy conservation,
assumes that all biological processes are equally reduced
during sleep compared to wake. However, sleep is a highly
active metabolic state during which many specific biological
operations are upregulated, contradicting the notion that sleep,
like hibernation, involves the global downregulation of metabolic
processes. These functions specifically upregulated during sleep
compared to wake include protein biosynthesis, intracellular
transport and membrane repair (47, 48), immune function (49),
elimination of biological waste or restorative processes (50–
52), and neural network reorganization for memory processing
(53–57), to name a few.

Our recent energy allocation hypothesis views sleep-wake
cycling as a behavioral strategy promoting energy conservation
through dynamic state-dependent metabolic partitioning and
resource optimization (37, 38). A basic premise of this theory is
that the partitioning of metabolic functions by behavioral state
occurs at the whole organism level and is not restricted to a
single organ or structure. Thus, sleep-wake cycling increases total
energy savings through resource optimization beyond what a
single organ system could otherwise achieve. Indeed, a great
diversity of gene expression is specifically coupled with either
sleep or wakefulness in both central and peripheral tissues (47,
48, 58), consistent with state-dependent metabolic partitioning
at the whole organism level. As shown in Figure 1A, specific
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FIGURE 1 | Energy conservation through state-dependent (sleep-wake) metabolic partitioning. (A) Control of resource allocations involves both brain and periphery.

Within the brain, sleep or wakefulness is expressed based on the interplay between sleep (S) and wake (W) promoting centers, the timing of which is modulated by the

suprachiasmatic nucleus (SCN). Wake predominant (red) or sleep predominant (blue) processes in the periphery are synchronized with behavioral state (brain) through:

(a), hormonal control, (b) local autonomous circadian clocks in peripheral tissues, and (c) direct descending autonomic nervous system (ANS) innervation from brain to

periphery [reprinted with permission from Schmidt (37)]. (B,C) Energy savings calculations based on mathematical modeling showing the potential impact of metabolic

partitioning (B) or sleep quota (C) on energy savings derived from sleep-wake cycling. In (B), metabolic partitioning, represented by the metabolic allocation index

(MAI), can be varied in the model from 0 to 1 (0 indicating all biological processes are equally performed in both states, whereas MAI = 1 signifies that all functions

performed during wake are different from sleep). Target MAI is varied in the figure while holding metabolic rate reduction during sleep (ρ) and total sleep time (TST)

constant. Note in the figure that an 8 h sleep quota and a metabolic rate reduction during sleep of 30% (ρ = 0.3) constrain maximum MAI to ∼0.7. In (C), TST is varied

while holding target MAI = 0.4 and ρ = 0.3. Blue line is energy savings from metabolic rate reduction (ESρ), red line is saving from MAI (ESMAI ), and purple line is

overall energy savings (ESMAI+ρ ). Reprinted from Schmidt et al. (38).

mechanisms are known to synchronize or coordinate brain
with periphery according to behavioral state, including state-
specific hormonal release (anabolic in sleep, catabolic in wake),
synchronization of central and peripheral circadian clocks, and
direct autonomic innervation of peripheral tissues (37).

The energy allocation hypothesis of sleep proposes that
state-dependent metabolic partitioning provides greater daily
energy conservation than the measured metabolic rate reduction
observed during sleep (37, 38). Based on relative rates of energy
deployment for biological processes upregulated during either
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wake or sleep, the potential energy savings as derived from
state-dependent metabolic partitioning has been calculated using
mathematical modeling (38). This modeling suggests that whole
organism energy savings is amplified to over 35% per 24 h for an
8 h sleep quota when unique biological processes are partitioned
by behavioral state (see Figures 1B,C).

Several important principles emerge from this mathematical
modeling, including why sleepmay be a better behavioral strategy
than quiet wakefulness with respect to resource optimization
and energy savings. This modeling suggests that metabolic
partitioning by state is constrained if energy deployment
toward waking-related processes is maintained during the rest
phase, whereas energy savings are amplified if waking-related
allocations during the rest phase are eliminated (38). This
mechanism of energy conservation requires a system capable of
not only monitoring the energy status of the organism, but also
integrating many key physiological variables including core and
ambient temperature to provide a coordinated output to a wide
range of central and peripheral tissues.

HYPOCRETIN AND ITS ROLE IN DIVERSE
FUNCTIONS

We will now review the role of Hcrt on modulating a wide
range of physiological responses. Understanding these diverse
physiological effects will allow us to explore a potential role
for Hcrt in a broader perspective as a network control system
promoting resource optimization.

Hcrt in Arousal and Sleep-Wake Transitions
The Hcrt system was first linked to sleep function through
the discovery that a significant loss of Hcrt neurons
leads to narcolepsy, a condition characterized by excessive
daytime sleepiness, cataplexy, sleep paralysis and hypnagogic
hallucinations (16, 59). These latter symptoms of narcolepsy,
including loss of muscle tone and hallucinations, are thought to
be components of REM sleep that inappropriately intrude into
wakefulness, consistent with a dysregulation of boundary state
control in narcolepsy. In canine narcolepsy, a mutation of the
Hcrt 2 receptor leads to these manifestations (60). In rats, Hcrt 1
administration (i.c.v.) increases wakefulness in a dose-dependent
manner (30), whereas pharmacological antagonism of the Hcrt
receptors results in increased NREM and REM sleep and reduces
wakefulness in both animals and humans (61). In squirrel
monkeys who show a similar diurnal wake pattern to that of
humans, Hcrt levels in the cerebro-spinal fluid peak toward the
end of the light (waking) period (25).

Optogenetic activation of Hcrt neurons increases the
probability of sleep to wake transitions from either NREM or
REM sleep (34) throughout both the light and dark phases but
with decreased effectiveness following sleep-deprivation and
marked increases in sleep pressure (35). On the other hand,
optogenetic inhibition of Hcrt neurons during waking in the
rest (light) phase increases NREM sleep, while its inhibition
during the active (dark) phase has produced mixed effects
(33). In support of its role as a waking system, Hcrt has been

shown to interact with several neuronal groups that are known
to be wake-promoting, such as histaminergic neurons of the
tuberomammilary nucleus and noradrenergic neurons of the
locus coeruleus (26, 27, 62). In summary, stimulating Hcrt
neurons increases the likelihood of transitions into wakefulness,
whereas its inhibition increases the likelihood of transitions into
sleep.

The narcoleptic phenotype not only leads to excessive
daytime sleepiness, but also to fragmented sleep with many
brief arousals (63–65). Such transitions between states have also
been demonstrated in Hcrt-knockout (KO) mice, a phenotype
showing poor maintenance of wakefulness and fragmented
NREM sleep even after 8 h of sleep deprivation (66). These
transitions result from behavioral state instability, as a loss of Hcrt
may to lead to a breakdown of neural control processes that lower
the thresholds to transition between behavioral states, producing
the fragmented wakefulness and sleep typical of the narcolepsy
condition (66). Saper et al. (67) hypothesize that Hcrt acts as a
stabilizer on a “flip-flop switch,” avoiding transitional states by
not only “flipping” the organism between wake and sleep but
also providing stability between two opposing behavioral states
(67). In support of this perspective, narcoleptics easily fall asleep
during the day but wake up more often at night while leaving the
net time asleep unchanged (68, 69).

Hcrt and Thermoregulation
Thermoregulation is tightly integrated with the sleep-wake cycle
in mammals and is an important function of Hcrt. In healthy
subjects during sleep, decreased heat production from reduced
muscle activity and lower basal metabolism contribute to a
body temperature that is regulated at a lower level (70, 71).
Additionally, peripheral vasodilatation helps decrease the core
body temperature during sleep initiation (72). Sleep-promoting
neurons in the preoptic area also activate heat loss mechanisms
(71, 73, 74), and a modest fall in body temperature is common to
mammalian sleep.

Compared to healthy controls, narcoleptics show lower core
body temperatures while awake (75) and higher than normal
body temperature during sleep (76, 77). Hcrt deficient mice
also show similar body temperature abnormalities (78). Hcrt-KO
mice show significantly smaller deviations from peak to trough
core body temperatures than wild typemice, demonstratingmore
frequent small fluctuations and fewer large alterations of core
body temperature and energy expenditure (78, 79). It appears
that narcolepsy is a condition that does not allow the body
temperature and basal metabolic rate to decrease properly during
sleep or to rise appropriately during active periods. However, it
remains to be determined if these frequent, yet small changes
in body temperature amplitude directly result from metabolic
alterations secondary to Hcrt cell loss or simply indirectly reflect
the instability of sleep/wake states in narcoleptics.

An altered pattern of skin-temperature regulation is also
reported in patients suffering from narcolepsy (80). In healthy
controls, distal skin temperature shows a rhythm that is the
inverse to the core body temperature rhythm (81). During
daytime in humans, core body temperature is high and distal skin
temperature is relatively low, a combination that correlates with
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optimal vigilance (82–87). In contrast, core body temperature
decreases at night, while distal skin temperature is relatively
high, signifying optimal sleep (82–87). Indeed, sleep onset is
characterized by a rise in temperature of the distal skin compared
to the temperature of the proximal skin (known as the distal-to-
proximal gradient) (72).

Narcoleptic subjects during the waking period show higher
distal skin temperatures with lower proximal skin temperatures,
which may either reflect or contribute to the sleepiness of
narcolepsy (80) as this combination is associated with sleep
onset in healthy subjects (72). It has also been demonstrated
that narcoleptic patients are better able to maintain vigilance
when their core temperature is artificially raised or when
distal skin temperature is experimentally lowered, thereby
simulating the conditions known to be correlated with optimal
vigilance (75). Taken together, these data demonstrate an
inability to appropriately modulate thermoregulatory control
according to behavioral state in narcolepsy. The extent to which
this breakdown in thermoregulatory responses may also lead
to inefficiencies in resource allocations contributing to the
narcolepsy phenotype has yet to be explored.

The Hcrt system also plays an important role in increasing
core body temperature by activating brown adipose tissue (BAT)
(88, 89), suggesting an important role of Hcrt in responding
to a cooling of the ambient temperature by activating both
waking and heat production (90). BAT plays an important role
in regulating body temperature in mammals. It expresses the
protein UCP1which uncouples ATP production from respiration
to liberate energy in the form of heat (90). This UCP1-driven
heat dissipation is termed “non-shivering thermogenesis” and
allows mammals to generate heat without needing to resort to
the higher energy demands of shivering to keep warm in cold
conditions (91). Non-shivering thermogenesis occurring in BAT
is largely under sympathetic control and can be activated by
catecholamines (92, 93). Hcrt modulates sympathetic activity
and, through its projections to the raphe pallidus, can increase
BAT thermogenesis during arousal (88, 90). By increasing body
temperature during periods of wakefulness, the Hcrt system may
act to optimize metabolism during periods requiring enhanced
performance such as food seeking or reproduction (90). In
contrast to waking, evidence suggests that BAT thermogenesis
may be state-specifically inhibited or reduced during REM-
sleep (94, 95). Although narcoleptic patients appear capable
of activating BAT during cold ambient temperature exposure
(96), more work is needed to determine if narcoleptics show
deficiencies with respect to dynamic BAT modulation and
coordination with peripheral vasomotor responses.

Role of Hcrt in Food Seeking and Reward
Hypocretin is also called orexin because of its role in feeding,
as orexin means “appetite” in Greek. In mammals, arousal is
reduced after feeding and increased during fasting (1, 97–99),
and Hcrt neurons are inhibited following food-intake and are
activated during periods of fasting (100). In mice with a genetic
ablation of Hcrt neurons, normal responses to fasting, such as
increased wakefulness and foraging behaviors, are not observed
(1, 4, 101). Finally, Hcrt may play a role in mediating shifts in

circadian rhythms in response to changes in the timing of food
availability or nutritional status. For example, genetic elimination
of Hcrt results in reduced food anticipatory activity and the
expected temporal expression of numerous clock genes (101,
102).

Food seeking behavior caries an essential survival function
and is a potent reward stimulus. Multiple studies show that
Hcrt plays an active role in reward processing for both food
and drug-seeking behaviors. Human narcoleptics rarely show
stimulant abuse or drug seeking behavior even though they are
treated for years with stimulants (103). The first observation of
a possible role for hypocretins in addiction showed that these
neurons play a role in opiate withdrawal (104). Harris et al. (105)
demonstrated a potential implication of Hcrt neurons in reward
related phenomena showing the activation of Hcrt neurons after
acquiring reward and that C-Fos activation in Hcrt neurons
is strongly associated with the expression of conditioned place
preference (CPP) for drug or natural food rewards. Additionally,
Hcrt-KO mice completely lack CPP for morphine (106). Finally,
although its etiology is likely multifactorial in origin, narcoleptic
patients have a higher risk of depression (107–109). Taken
together, these findings indicate that Hcrt neurons play a role in
motivation-driven behavior and are part of a circuitry involved in
reward processing (110, 111).

Hcrt and Cardiovascular Control
Finally, Hcrt also mediates autonomic and cardiovascular effects
associated with sleep and waking. For example, there are several
well-known sleep-associated cardiovascular changes. One such
change is the decrease in blood pressure that occurs during
sleep in a variety of species, a phenomenon generally referred
to as “dipping” (112–115). Dipping is thought to be influenced
by a change in the activity of the autonomic nervous system,
since non-dippers have an increase in sympathetic tone at
sleep onset as opposed to the normal reduction in sympathetic
tone and concomitant increase in parasympathetic tone that
typically occurs during sleep (116, 117). Hcrt plays an important
role in regulating blood pressure across behavioral states. For
example, the lack of Hcrt in transgenic animals is associated
with lower systemic blood pressure and a blunting of the
decrease in blood pressure during sleep compared to wake
(118, 119). Finally, Hcrt increases sympathetic outflow and
has effects on the hypothalamic-pituitary-adrenal (HPA) axis,
resulting in an increase in catecholamine release (118, 120, 121).
Indeed, optogenetic approaches demonstrate that Hcrt neuronal
activity regulates corticosterone release through the HPA axis
and resulting in behavioral correlates of stress responses (121).
These findings highlight the ability of Hcrt to potentially affect
wide ranging peripheral tissues through both autonomic and
neuroendocrine effects.

In summary, these data demonstrate that Hcrt plays a role in
feeding and sleep-wake modulation, as well as numerous other
physiological processes such as thermoregulation, motivation
and reward, autonomic and neuroendocrinemodulation.Wewill
next review how the Hcrt system, together with other LH cell
populations, may integrate these physiological responses with
respect to the energy status of the organism. Finally, we will
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propose a unifying role for Hcrt that includes NREM and REM
sleep regulation, particularly NREM-REM cycling, with respect
to resource optimization and energy conservation.

THE LH IN ENERGY BALANCE,
BEHAVIORAL STATE TRANSITIONS AND
RESOURCE OPTIMIZATION

In this section, we will describe how, during fasting when energy
resources are low, Hcrt promotes wakefulness and food seeking
behavior. In contrast, in the presence of a positive energy balance
after feeding, other cell types within the LH, such as melanin
concentrating hormone (MCH) neurons, promote sleep. We
will also examine how the LH, through reciprocal interactions
between heterogeneous neuronal populations, may coordinate
global shifts in resource utilization through sleep-wake state
transitions. Importantly, these reciprocal interactions within
hypothalamic circuits suggest that Hcrt not only mobilizes or
promotes a waking response, but actively inhibits sleep-related
processes and thus contributes to a state-dependent partitioning
of biological operations, a mechanism that we propose is central
to an energy conservation function of sleep-wake cycling.

Anterior vs. Posterior Hypothalamus and
Behavioral State Modulation
As was originally hypothesized in the 1930’s, behavioral
state control is, in part, anatomically segregated within the
hypothalamus (18, 122). Historically, the anterior hypothalamus
has been viewed as a “sleep center” since lesions in this area
are known to cause long-lasting insomnia, whereas the posterior
hypothalamus has been viewed as a “waking center” since its
lesioning causes excessive sleepiness [see Saper et al. (67)].
Although this anterior-posterior classification of “sleep” vs.
“waking” centers may be an oversimplification given the role
other brain circuits (123–125), many of these historical insights
still hold true today.

Anteriorly, several structures are particularly noteworthy. The
ventrolateral preoptic nucleus (VLPO) within the preoptic area
plays an important role in initiating sleep and driving NREM
sleep (67, 126, 127). An extensive literature demonstrates that
many sleep active neurons within the preoptic area, regions
encompassing both the VLPO and the median preoptic nucleus
(MnPO), are also warm sensitive and thought to promote sleep
when the animal is in a warm, thermoneutral environment
(128–132). Although unclear if arising from the same neuronal
population, the MnPO also contains temperature sensitive
neurons that receive either warm or cold ambient temperature
input from the periphery (skin) via relay connections through
the brainstem parabrachial nucleus (128, 133) (see Figure 2).
Thermoregulatory information from the MnPO and Medial
Preoptic nucleus (MPO) are then relayed to the raphe pallidus
(RPa), either directly or via the dorsomedial hypothalamus
(DMH), for output effector modulation of vasomotor responses
and BAT (133–138) (Figure 2). Numerous structures involved
in REM sleep regulation, such as the LH and periaqueductal
gray (PAG), also control thermoregulatory responses (Figure 2),

FIGURE 2 | The interplay between critical networks controlling REM sleep

(green), thermoregulation (red) or both (checkered). Ambient temperature

information from thermosensors in the skin is carried through the dorsal

columns of the spinal cord to the parabrachial nucleus (PBN) where it is then

relayed to the median preoptic nucleus (MnPO) in the preoptic area (POA).

Both warm and cold sensitive neurons in the MnPO relay information to the

medial preoptic nucleus (MPO) and to the dorsomedial hypothalamic nucleus

(DMH). From there, a major thermoregulatory pathway involves the connection

to the raphe pallidus (RPa) which is a major output pathway for the control of

brown adipose tissue (BAT). Not shown in the figure is a direct pathway from

the MnPO and MPO to the RPa for the output control of vasomotor

thermoregulatory responses (137). The LH receives either direct or indirect

input from the POA related to sleep and thermoregulatory centers and plays

an important role in REM sleep control through its descending connections to

the ventrolateral periaqueductal gray (PAG) which projects to the

sublaterodorsal tegmental nucleus (SLD) in the pons. Hcrt neurons in the LH

send projections to the RPa and play an important role in modulating

thermoregulatory control. Reprinted with permission from Cerri et al. (134).

demonstrating a close anatomical relationship between sleep and
thermoregulatory systems.

Initially considered as only a waking center, the posterior
LH has been shown to regulate behavioral state transitions
from NREM sleep to either REM sleep or wakefulness (1, 139).
Although we will focus on the Hcrt and MCH systems, it is
important to note that the LH also contains many other cell
types involved in sleep, wakefulness and metabolism (3). These
include several subtypes of non-MCH GABAergic neurons,
including those that trigger wakefulness through inhibition of
the thalamic reticular nucleus (140), and others that may drive
REM sleep (141, 142) or feeding behavior (143, 144). Finally,
the LH receives widespread inputs, and appears to integrate this
diverse information for output behavioral state modulation. For
example, a prevailing view suggests that information flow from
the VLPO and MnPO related to sleep pressure and temperature
may either directly or indirectly modulate the LH (134, 136) (see
Figure 2).
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Hcrt and MCH in State Control and Energy
Balance
In contrast to Hcrt and its predominant role in wakefulness,
it is now well-established that the MCH neuronal system
modulates REM sleep expression (145–147), at least in part
through a GABAergic inhibitory system (148–150). C-Fos
studies have shown that MCH neurons are most active
after REM sleep hypersomnia (151, 152), consistent with
the observation that MCH neurons fire maximally during
REM sleep (153). Measurement of MCH levels within the
amygdala across the sleep-wake cycle in humans also show
that the onset of sleep is associated with an increase in
MCH, consistent with a hypothesis that MCH may also play
a role in generating NREM sleep (154, 155). Concordantly,
administration of an MCH antagonist decreases the amount
of REM and NREM sleep and can lengthen the NREM-
REM cycle (156). Optogenetic activation of MCH neurons
during NREM sleep increases the number of NREM to REM
sleep transitions, whereas state-specific activation of MCH
neurons during REM sleep prolongs REM sleep bout durations
(148).

The Hcrt and MCH neuronal systems are intermingled
within the LH and generally fire reciprocally (153, 157). For
example, in a head-restrained rat preparation, MCH neuronal
activity is maximal during REM sleep when Hcrt neurons are
virtually silent. During waking, in contrast, Hcrt neurons are
maximally active, while MCH neuronal activity is absent. It
should be noted, however, that calcium imaging ofMCH neurons
shows an increase in activity during some waking behaviors
specifically related to novel object presentation (158). Although
the relationship between MCH and Hcrt appears complex,
evidence suggests either a direct or indirect reciprocal inhibition
(159). Optogenetic stimulation of Hcrt neurons, for example,
promotes inhibition of some MCH neurons by increasing
presumably GABAergic interneuronal input onto MCH cells,
whereas other MCH neurons are directly excited by Hcrt (159).
The colocalization of endogenous opioids in Hcrt neurons,
in contrast, appear to hyperpolarize MCH cells (160–162).
Whatever the mechanism, the interconnection between Hcrt and
MCH generally favors a reciprocal firing pattern of these two
neuronal systems.

Hcrt and MCH neurons also generally respond with opposite
activity patterns to the nutritional state of the organism, and
thus energy balance, through their receptivity to numerous
biomarkers related to energy status. To illustrate, Hcrt neurons
are inhibited by biomarkers which are released in response to
food intake, such as leptin (satiety hormone produced by adipose
tissues), glucose, and neuropeptide Y (1, 4, 5, 163–165), whereas
ghrelin, which is an appetite-stimulating hormone produced
in the gut, increases Hcrt activity (6). The inhibitory response
of Hcrt neurons mediated by leptin appears secondary to
GABAergic interneurons within the LH colocalizing neurotensin
and expressing the leptin (LepRb) receptor (166–169). Finally,
Hcrt neurons express the adenosine A1 receptor and are
inhibited by extracellular adenosine (170–172), suggesting that
adenosine can potentially promote sleep by decreasing Hcrt
activity.

MCH neurons are responsive to insulin and glucose, but
they demonstrate an opposite response pattern compared to
Hcrt neurons (173, 174). For example, approximately 70% of
MCH neurons are excited by physiological elevations in glucose
(5mM) and dose-dependently hyperpolarize as glucose levels
are lowered, whereas Hcrt neuronal activity shows opposite
effects to these same glucose concentrations (174, 175). This
coordinated response from glucose involving inhibition of Hcrt
with activation of MCH appears to promote sleep, thus activating
sleep-dependent processes when body energy resources are
high after feeding (1, 174). Finally, MCH neurons also release
Nesfatin-1, a satiety hormone, and disruption of Nesfatin-1
signaling decreases REM sleep expression (176).

Taken together, these data demonstrate multiple
complimentary and redundant mechanisms by which the LH
may tightly monitor energy status of the organism. Moreover,
these data are consistent with the hypothesis that the posterior
LH integrates energy status and sleep-wake modulation, at least
in part through the reciprocal activation of the MCH and Hcrt
systems.

MCH and Feeding Behavior
Although MCH promotes sleep and is responsive to energy
status, a considerable body of literature indicates that MCH,
like Hcrt, also regulates feeding behavior. Interestingly, the
MCH system may promote feeding behavior while also
decreasing both locomotor activity and BAT thermogenesis,
thereby contributing to a positive energy balance and potentially
conserving energy for homeostatic purposes (177–187). Diniz
and Bittencourt (188) suggest that MCH can drive periodic
feeding, even when energy balance is positive, given the
potential danger in waiting for energy levels to deplete.
Indeed, when energy balance is positive and food is available,
MCH may promote feeding, thereby maintaining a positive
energy-balance. If food is not available, but energy balance
is still favorable, MCH may promote a change of state,
favoring sleep with a concomitant decrease in both locomotor
activity and thermoregulatory defenses (188). Diminishment of
energy reserves eventually leads to decreased glucose levels,
causing decreased excitability of MCH cells and, together with
increased Ghrelin, an excitation of Hcrt activity (174). Hcrt
activity, therefore, may predominate when the animal reaches
a negative energy balance, leading to increased wakefulness
and thermogenesis, both necessary conditions for active food
seeking.

Hcrt and MCH as Network Control Systems
Consistent with their roles in behavioral state modulation and
global shifts in peripheral responses, both Hcrt and MCH
neuronal populations show wide-spread projections throughout
the brain to similar brain areas as shown in Figure 3 (13, 189–
191). Peyron et al. (13) observed that Hcrt neurons project
throughout the hypothalamus and to extrahypothalamic areas,
the densest of which involving the locus coeruleus. Fibers are also
observed in the septal nuclei, bed nucleus of the stria terminalis,
paraventricular and reuniens nuclei of the thalamus, zona incerta,
subthalamic nucleus, central gray, substantia nigra, raphe nuclei,
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FIGURE 3 | Efferent projections of the hypocretin/orexin (Hcrt) (A) and melanin concentrating hormone (MCH) (B) systems. The extensive efferent projections from

both the Hcrt and MCH neuronal populations originating from within the LH generally overlap and include similar target structures. The diversity of their projections,

together with their reciprocal activity patterns and known opposing effects on target systems, is consistent with their hypothesized role in modulating global shifts in

network activity and coordinating behavioral state transitions. Figures reprinted with permission (A) Peyron et al. (13), and (B) Diniz and Bittencourt (188). For

abbreviations in (B), see Diniz and Bittencourt (188).

parabrachial area, medullary reticular formation, and the nucleus
of the solitary tract (13). For melanin-concentrating hormone,
similar projections are observed (190, 192), suggesting that MCH
acts on the same brain structures, but with potentially opposing
effects. These widespread projections to diverse brain structures,
together with the known impact of the Hcrt and MCH systems
on many physiological functions such as food intake, regulation
of blood pressure, the neuroendocrine system, body temperature
and the sleep-wake cycle, places both Hcrt and MCH in key

positions. They can be considered top-down network control
systems in behavioral state modification while also controlling
physiological responses appropriate for the behavioral state.
Moreover, they are in a position within the hypothalamus to
receive diverse information related to temperature, energy status
and homeostatic sleep pressure, suggesting that these opposing
neuronal systems are part of a complex integration system to
regulate output control for behavioral state and its physiological
correlates.
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TO REM OR TO WAKE? OPTIMIZING
RESOURCE ALLOCATIONS WITHIN SLEEP

After entering NREM sleep, an organism must make a decision
as to when it should transition back to wake or, instead,
enter REM sleep. One of the most consistent findings in
mammalian sleep is the highly structured cycling between NREM
and REM sleep. Although the purpose of this cycling is not
understood, the duration from one REM period to the next is
markedly consistent within any given species of mammal even
when considering inter-individual variation. Indeed, one of the
strongest phylogenetic correlations across species with respect
to sleep parameters thus far examined is between REM-REM
cycle length and body mass (193–196). That is, species with a
smaller body mass, such as a mouse, cycle much faster from one
REM period to another and exhibit much shorter REM sleep
bout durations compared to species with a larger body mass such
as in man or the elephant. However, the slope of this positive
correlation between body mass and cycle length is considerably
lower than what one would expect if this correlation were simply
based on metabolic rate [see (37, 195)].

We recently proposed that REM sleep cycles with NREM sleep
based on thermoregulatory constraints as a means of optimizing
REM sleep expression and resource allocations (37). During
REM sleep, thermoregulatory control is suspended (197, 198).
Althoughmammals will pant, shiver or sweat duringNREM sleep
if thermally challenged, these thermoregulatory defenses cease
during REM sleep, even when sleeping in ambient temperatures
well outside of the thermoneutral zone (TNZ). Thermoregulation
and the ability to maintain a constant body temperature is the
most energetically expensive biological function encountered by
endotherms, increasing energy requirements approximately 10-
fold over a similar sized ectotherm (199–201). A constraint of
REM sleep is that the longer any single bout of this sleep state,
the more likely core body temperature may deviate toward the
ambient temperature (202, 203). As a result, REM sleep bout
durations are constrained in large part by the animal’s surface
area to volume ratio (its ability to retain heat) if the animal is
to avoid spending excess energy to defend the core temperature
because of REM sleep (37).

The energy allocation hypothesis postulates that REM sleep is
a behavioral strategy that reallocates resources away from costly
thermoregulatory defenses into REM sleep-specific biological
functions to improve reproductive success or evolutionary fitness
(37). Indeed, although REM sleep is a time of generalized
skeletal muscle atonia associated with decreases in BAT, core and
liver temperatures (95), brain temperature and brain metabolic
rate markedly increase during REM sleep (95, 204, 205). Even
though brain metabolic rate significantly increases during REM
sleep, whole organism metabolic rate remains unchanged when
comparing NREM to REM sleep (42, 79, 206–209). This finding
suggests a major internal reallocation of resources during
transitions from NREM to REM sleep while maintaining sleep as
a net energy neutral state with respect to whole organism energy
consumption. The central nervous system and the reproductive
system (as seen by penile erections during REM sleep) appear

to be major beneficiaries of this energy allocation strategy of
REM sleep (37). The cost of this strategy is that the animal
is more susceptible to thermal challenges. However, if the
organism can cycle NREM and REM sleep in a manner that
optimizes total REM sleep quantity while minimizing the need
for thermoregulatory defense, such a strategy would by highly
advantageous if it achieves greater CNS benefit at a lower, whole
organism, energy cost (37).

It is well-established that ambient temperature warming
toward the high end of the TNZ increases REM sleep
expression across mammalian species, whereas any deviation
away from thermoneutrality preferentially decreases REM sleep
over NREM sleep (202, 210–215). Moreover, increases in ambient
temperature, even within the narrow TNZ, increase NREM to
REM sleep transitions, increase REM sleep bout durations, and
shorten REM-to-REM sleep cycle lengths (210, 212, 216).

The LH may play an important role in integrating inputs
related to ambient temperature, energy balance and sleep
pressure for the output control of transitions from NREM sleep
to either wakefulness or REM sleep (see Figure 4). As shown
in Figures 2 and 4, the LH receives either direct or indirect
inputs regarding ambient temperature and sleep drive from
the preoptic area (134). Moreover, the Hcrt and MCH systems
are both receptive to the energy status of the organism as
described above. The reciprocal firing patterns of the Hcrt and
MCH systems, together with their opposing effects on diverse
peripheral tissues and behavioral state (REM vs. wake), implicate
these two neuronal groups within the LH as critical for its
output control. In this view, the MCH system will be favored
during warm thermoneutral ambient temperatures, particularly
when energy balance is positive or during high sleep pressure,
thus increasing the probability of transitions from NREM to
REM sleep, decreasing the REM-to-REM sleep cycle length, or
increasing REM sleep bout durations. We predict that disruption
to either the Hcrt or MCH systems will adversely affect normal
output control of NREM sleep transitions with respect to the
appropriate integration of such sensory inputs.

Consistent with the energy allocation hypothesis, we propose
that the cycling of NREM and REM sleep optimizes resource
allocations within sleep by integrating the competing benefits
from either thermoregulation vs. activation of REM sleep-
coupled functions, including memory consolidation (217, 218),
sensory-motor integration (219), visual system development
and maintenance (220–222), and reproductive function (37,
223). Organisms that optimize such competing investments at
lower, whole organism, energy costs would carry a selective
advantage, particularly if able to opportunistically increase
REM sleep in warm, thermoneutral, ambient temperatures,
or selectively reduce REM sleep if ambient temperatures
deviate from thermoneutrality. The LH and the Hcrt system
appear to play a major role in optimizing behavioral state
transitions. Indeed, loss of Hcrt, as seen in narcolepsy,
leads to the abnormally frequent brief awakenings during
sleep with behavioral state instability and the inappropriate
intrusion of REM sleep or its associated components into
wakefulness.
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FIGURE 4 | The proposed role of the LH as an integrator of key inputs related

to ambient temperature, energy balance, and sleep pressure for the cycling of

NREM sleep to either wakefulness or REM sleep. The Hcrt and MCH neuronal

systems within the LH show reciprocal firing patterns, suggesting either direct

or indirect reciprocal inhibition. If Hcrt activity predominates, the behavioral

state of wakefulness is favored, including the promotion of brown adipose

tissue (BAT) activation, locomotor activity, food intake, and sympathetic drive.

With MCH activity predominating, however, REM sleep is favored. The LH may

optimize resource allocations within sleep by modulating the cycling of NREM

sleep to either REM sleep or wakefulness (see text). Additional relevant inputs

to the LH not depicted in the figure include information pertaining to positive or

negative emotional content. (a) The MnPO and POA contain warm sensitive

sleep active neurons that may directly innervate the LH. Additionally, the MnPO

contains thermosensitive neurons receiving input from the periphery that may

also indirectly convey thermoregulatory information to the LH. (b) Although the

MCH system appears to have opposing output effects with respect to Hcrt,

MCH may either increase or decrease food intake depending on food

availability and energy status (see text). Straight arrowheads or bars represent

activation or inhibition, respectively. Not shown in the figure are additional cell

types within the LH that are involved in behavioral state transitions, such as

GABAergic neurons that project to the thalamic reticular nucleus for activation

of wakefulness (140). MnPO, median preoptic nucleus; POA, preoptic area.

SUMMARY

In the 20 years since the discovery of Hcrt, our field has come
to appreciate the great diversity of physiological processes under
its control, including sleep-wake modulation, feeding behavior,
thermoregulation, reward processing, sympathetic output, and
cardiovascular control. A compelling hypothesis has been that

the Hcrt system integrates the sleep-wake cycle with energy status
of the organism given its receptivity to signals of energy balance.
Although Hcrt may promote wakefulness and feeding behavior
during periods of hunger, a parsimonious role for Hcrt in REM
sleep regulation with respect to energy or energy balance has yet
to be addressed.

We propose that Hcrt and MCH, through their complex
interactions with heterogeneous neuronal populations within
the LH, dynamically optimize energy utilization through global
shifts in resource allocations. These global shifts are achieved
through sleep-wake transitions and the coupling of specific
biological processes with behavioral state (37, 38). Mathematical
modeling suggests that energy savings from sleep-wake cycling
are amplified as either waking-related allocations are eliminated
during sleep or sleep-dependent functions are decreased during
wakefulness (38). Moreover, this modeling shows that metabolic
partitioning, or resource optimization, involving both central
and peripheral tissues has a greater theoretical impact on
total daily energy conservation than what a single organ or
structure could otherwise achieve. Optimization of resource
allocations at the whole organism level requires a top-down
network control system capable of integrating key input
variables such as energy status, thermoregulatory demands,
and homeostatic sleep need. The Hcrt and MCH systems
through their diverse hypothalamic inputs and their extensive
efferent projections are ideal candidate structures for this
role.

We further postulate that optimization of resource allocations
not only occurs between wake and sleep, but also within sleep
through NREM-REM sleep cycling. Through an integration
of thermoregulatory input, Hcrt and other hypothalamic
circuits such as the MCH system appear to modulate the
probability of behavioral state transitions from NREM sleep
to either REM sleep or wakefulness. If the circumstances are
not ideal for REM sleep, such as when ambient temperatures
deviate from thermoneutrality and the organism must resort
to thermoregulatory defenses such as shivering or BAT
thermogenesis, Hcrt will inhibit REM sleep by promoting
arousal and heat production. However, if the ambient
temperature is within thermoneutrality, the organism may
forego thermoregulatory defense and, instead, opportunistically
invest into REM sleep coupled biological processes.

Future research is also needed to better understand
mechanisms, including costs and benefits, of dynamic resource
optimization. For example, although total (24-h) energy
expenditure is decreased in Hcrt-KO mice compared to WT
controls (79), the loss of Hcrt carries significant costs with
respect to decreased locomotor activity, feeding behavior, or
reward processing, as well as disruption of thermoregulatory
control, and an inability to sustain prolonged waking periods.
Organisms must expend energy not only to obtain energy, but
also to maximize reproductive success and evolutionary fitness.
We advance the hypothesis that the LH promotes optimization
of such expenditures. This optimization brings efficiencies that
ultimately allow organisms to essentially achieve more with less.
This theoretical construct is consistent with the energy allocation
hypothesis of sleep function (37, 38), providing a parsimonious
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perspective on the role of the LH in the cycling of NREM
sleep, REM sleep and wakefulness as a means of dynamically
optimizing resource allocations and the promotion of energy
conservation.
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