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Multiple sclerosis is a debilitating disorder resulting from scattered lesions in the central

nervous system. Because of the high variability of the lesion patterns between patients,

it is difficult to relate existing biomarkers to symptoms and their progression. The

scattered nature of lesions in multiple sclerosis offers itself to be studied through the

lens of network analyses. Recent research into multiple sclerosis has taken such a

network approach by making use of functional connectivity. In this review, we briefly

introduce measures of functional connectivity and how to compute them. We then

identify several common observations resulting from this approach: (a) high likelihood

of altered connectivity in deep-gray matter regions, (b) decrease of brain modularity,

(c) hemispheric asymmetries in connectivity alterations, and (d) correspondence of

behavioral symptoms with task-related and task-unrelated networks. We propose

incorporating such connectivity analyses into longitudinal studies in order to improve

our understanding of the underlying mechanisms affected by multiple sclerosis, which

can consequently offer a promising route to individualizing imaging-related biomarkers

for multiple sclerosis.
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INTRODUCTION

Multiple Sclerosis
Multiple sclerosis (MS) is the most common non-traumatic neurological disorder among young
adults (1). Traditionally, it is considered an autoimmune disease, which arises from an autoreactive
response of an adaptive immune system against antigens derived from the central nervous system
(CNS). Autoreactive lymphocytes transmigrate through the blood-brain barrier and subsequently
induce lesions. Such lesions are characterized by an inflammatory process and a varying degree of
demyelination and neuronal or axonal damage (2, 3), depending on the stage and severity of the
immune attack and the tissue susceptibility.

Using the contrast-agent gadolinium (GD), which can cross the blood-brain barrier, acute
inflammation can be visualized with magnetic resonance imaging (MRI), for an average of
three weeks (4). A subacute and an inactive chronic phase often follow, wherein the lesion
volume initially diminishes, possibly due to remyelination, and subsequently stabilizes. Using
T2-FLAIR weighted MRI without contrast-agent is typical for monitoring the post-active
phases, in which plaques appear as hyperintensities (5). During the course of the disease,
a widespread lesion pattern evolves which differs for each patient (6). For the diagnosis
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of MS, two lesion-based criteria, which can be assessed by
MRI, must be met: (a) lesions must be spread across different
CNS regions (i.e., dissemination in space), and (b) new lesions
must evolve over time, as compared to a baseline scan (i.e.,
dissemination in time). The appearance of only one GD-
enhancing lesion in an otherwise lesion-free MRI scan is
diagnostic of a condition often preceding clinically definite MS,
called clinically isolated syndrome (CIS) (7).

Depending on the location of lesions within the CNS, a wide
range of different neurological symptoms arises (8). However,
the majority of lesions develops without presence of clinical
symptoms (9). Acute bouts or relapses are defined as episodes
of neurological impairment lasting at least 24 h, followed by
varying degrees of remission (7). GD-enhanced MRI is used to
identify bout/relapse-associated lesions. Relapsing-remitting MS
(RRMS) is the most common disease course of MS, which often
develops into a condition of continuously increasing disability,
with or without superimposed relapses, after a range of about 10
to 15 years (secondary-progressive MS, SPMS). Less frequently,
such increasing disability is observed from the diagnosis onwards
(primary-progressive MS, PPMS). Currently the clinical course is
described as active or inactive and progressive or non-progressive
(10).

Often, a correct diagnosis of an individual’s MS phenotype
is only possible in retrospect. For example, the transition from
relapsing to progressive MS is defined as continuously increasing
disability with few or no superimposed (i.e., additional) relapses
(10). The main diagnostic tools to assess disability in MS are the
Expanded Disability Status Scale [EDSS (11)] and the Multiple
Sclerosis Functional Composite [MSFC, (12)]. The EDSS rates
performance in eight different functional systems, such as motor
or sensory-related, while the MSFC rates ambulatory, manual,
and cognitive performance. However, the assessment of such
scales is rarely performed more than once a year, which limits the
ability to pinpoint the onset of secondary progressive MS (10).
Additionally, the distinction between onset-relapsing and onset-
progressive subtypes requires longitudinal disease monitoring.

Another limitation in the prognosis of individual patients
is how one accurately rates individual disease development,
given that the pathological substrates and pace of disability
accumulation are vastly heterogeneous even within subtypes
[e.g., (13)]. Some of the currently used biomarkers in MS
diagnosis/prognosis are obtained from either body fluids, such
as neurofilament and oligoclonal bands (14), or MRI, such as
T2 white matter lesion load (number × volume), the number
and occurrence of GD-enhancing lesions, gray matter atrophy,
or the presence of low-signal intensities on T1-weighted images,
which is indicative of permanent tissue damage (15). However,
the prognostic value of many of these biomarkers is of limited
degree [see (16) on the clinico-radiological paradox], especially
on an individual level (14, 15, 17, 18).

Furthermore, MRI-related biomarkers of MS suffer from the
fact that different types of tissue damage occur at widespread
locations in the CNS, with the highest incidence for lesions in the
optic nerves, periventricular whitematter, brainstem, cerebellum,
and spinal cord white matter (19). Neurodegenerative and
inflammatory processes in the gray matter are similarly prevalent

in MS patients (3). However, lesions that affect specific white
matter tracts (in particular those traversed by fibers involved
in motor functions and near the corpus callosum) have been
associated with a higher risk of clinical conversion of CIS to MS
in the short term (20), while diffuse neurodegeneration, which
does not appear to correlate with lesion load (19), has been
linked to both physical and cognitive deficits in MS (20, 21).
Nevertheless, attempts to relate such markers to diagnoses and
prognoses of MS have been met with limited success, which is
possibly due to the fact that these biomarkers are generally based
on locationist/static information in a single MR image. As such,
this review discusses connectivity based measures—a technique
for furthering our understanding of the systems-level effects of
MS—which we synthesize into four commonly observed motifs.

Connectivity at a Glance
The field of cognitive neuroscience has demonstrated that some
cognitive and motor functions are localized in such a way
that even a lesion in a single area can disrupt that function.
For example a lesion in area V5/hMT+ of the visual cortex,
which is associated with the perception of motion (22, 23) can
lead to akinetopsia or motion blindness (24). However, other
functions, such as mood, appear to be more distributed (i.e., they
rely on a network of several brain regions), such that a lesion
in a contributing area may lead to more subtle behavioral or
cognitive defects. This problem is exacerbated by the fact that
not only can a lesion have different effects on a function, but also
multiple lesions can affect multiple cognitive functions and their
network interactions. Additionally, a more generic, widespread
breakdown (e.g., as a result of gray matter atrophy) of such
a highly connected network resulting from atrophy processes
may result in unpredictable effects on the system’s underlying
cognitive functions (25). The common hypothesis of the papers
we review here is that MS changes how affected brain regions
communicate with other brain areas: i.e., how their functional
connectivity (FC) changes. Given this network-structure of the
brain, it follows that analyses based on measures of connectivity
(e.g., FC) would be promising for studying neural disorders.
Thus, this insight motivates our review to focus on changes of
brain connectivity in MS.

Connectivity is a generic term embracing all possible
ways connections can emerge in a neural system (26). The
neuroscientific study of connectivity distinguishes two types of
connectivity: structural and FC. Structural connectivity (SC)
of the brain is the connection strength between areas, e.g.,
measured with imagingmethods such as diffusion tensor imaging
(DTI). The scientific study of SC assumes that SC constrains
brain-function and mental operations in a meaningful way. FC
on the other hand, is the statistical association between time
series of physiological signals, here the blood-oxygenation-level
dependent (BOLD) response, from different parts of the brain.
The concept of FC is based on the assumption that brain
regions exhibiting a similar temporal evolution of activity share
information and are thereby connected in a functional manner
(27, 28).
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Calculating Functional Connectivity
FC is a statistical concept that describes the association
of timecourse data. The neuroimaging community has used
several approaches to compute FC, such as correlation-analyses
(Figure 1) between seed voxels and the rest of the brain
(seed-to-voxel), between timecourses of all individual voxels
(voxel-to-voxel) or between averaged timecourses of predefined
regions of interest (seed-to-seed) or linear decomposition
techniques of the entire set of voxel timecourses, such as in
independent component analysis (ICA, Figure 2). Below we
describe each of these methods in more detail and provide a
table (Supplementary Table 1) that lists which MS-related study
employed which of these methods.

Correlation Based Analyses
FC as first introduced by Biswal et al. (27) made use of linear
correlations [Pearson’s correlation, but see (29, 30)]. More recent
approaches employ partial correlations in order to remove the
influence of, for example, physiological noise [e.g., (31)] or other
confounding variables. Physiological and movement noise can
systematically affect measured connectivity in multiple ways,
despite having nothing to do with the process of interest (in
this case, the communication between brain areas). If such
confounding signals occurred uniformly all over the brain, then
measures of statistical association, such as correlations, would
increase, but uninformatively so. Regions at the edge of the brain,
(i.e., mostly cortical regions), are more susceptible to movement-
induced artifacts than regions in the middle of the brain, which
can lead to biased reports of more severely reduced cortico-
cortical connectivity than connectivity within the midbrain.

Furthermore, confounding signals that predominantly occur
at certain locations (e.g., the lesion site) would lead to an
attenuation of the statistical associations between the such
locations and other brain areas, but it would not necessarily mean
that the communication between these regions was affected. To
our knowledge, neither such effects nor the impact of scanning
parameters, such as voxel size on partial voluming effects (32)
around lesions, have been investigated in the context of MS.
However, they could pose particular problems in the case of
MS, as patients may develop new lesions between repeated
measurements.

Seed-to-voxel FC
Seed-to-voxel FC investigates FC between one so-called seed
region with the rest of the brain (27) (Figure 1B), which yields
one whole-brain map per seed region depicting how strongly
each voxel is functionally connected to the chosen seed region(s)
(Figure 1D). Such maps can demonstrate connectivity on the
individual level, or they can be used for inferential statistics, for
example when computing group differences in FC of a certain
brain area. When selecting functionally defined seed-regions,
one approach is to employ a localizer task. For example, for
studying MS-related changes of the motor system, Lowe and
colleagues used finger-tapping to identify motor-related regions-
of-interest (ROIs) (33). Other studies have defined seed regions
by using regions, identified via resting-state fMRI scans, that
represent a certain network [such as the posterior cingulate

cortex (PCC) (34) and ventromedial prefrontal cortex (vmPFC)
(35) representing the entire default mode network (DMN) or a
thalamic resting-state network (RSN) with right and left thalamus
as seeds (36)].

To study changes of connectivity of dedicated functional
systems, other researchers defined seed regions by using
previously identified anatomical structures, such as the basal
ganglia (37), the left caudate and the left thalamus (38), or the
hand-knob (39). A lesion-based strategy selected seeds as regions
that showed gray matter loss (40) or those cortical regions for
which tractography suggested that their structural connectivity
was affected by a white matter lesion (41).

Seed-to-seed FC vs. voxel-to-voxel FC
Both these approaches use pairwise (partial) correlations between
BOLD timecourses. In a seed-to-seed analysis, one selects several
brain areas, based on functional contrasts or existing atlases, and
computes the correlations between the timecourses that represent
the average signal per ROI (Figure 1E). Commonly used
atlases include the anatomically defined Automated Anatomical
Labeling Atlas (AAL) (42), a functionally-defined atlas recently
proposed by Glasser et al. (43), or an atlas of resting-state
networks created by Yeo et al. (44). This procedure yields a
FC-matrix which can be used to, for example, study differences
between groups (Figure 1G).

The disadvantages of averaging in the seed-to-seed approach
are the loss of spatial resolution, thereby potentially overlooking
meaningful results, either due to not taking all brain areas into
account or by having lumped together functionally distinct voxels
into one ROI. A spatially unconstrained alternative is to correlate
all pairs of gray matter voxels without averaging, as done by
Liu et al. (45). However, such a voxel-to-voxel approach results
in huge correlation matrices, since commonly many tens of
thousands of voxels are acquired, which, depending on the size
of the dataset, may be a computational impossibility.

In contrast, seed-to-seed approaches substantially reduce the
size of the data, as one only correlates timecourses from a
few dozen seed regions, which can ease interpretation [e.g.,
(46), or (47), who only analyzed ROIs in the cerebellum].
Additionally, one increases the signal-to-noise ratio by averaging
across voxels (since random noise contained in each voxel
timecourse is attenuated or even canceled out by averaging over
a large number of voxels). Although the majority of studies
that investigated FC in MS chose seed-to-seed based approaches
(see Supplementary Table 1), some groups used a version of the
voxel-to-voxel approach to test whether any voxels shows high
concordance with voxels in their neighborhoods. Wu et al. used
this approach to investigate which regions lose their so-called
regional homogeneity in MS (48).

Decomposition-Based Analysis
Another common strategy to identify brain networks is the
decomposition of all voxel timecourses by means of Independent
Component Analysis (ICA) into sets of spatially independent
maps and their associated timecourses (49) (Figure 2). A single
ICA component thus depicts groups of voxels that have a similar
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FIGURE 1 | Methods for calculating correlation-based functional connectivity (FC). Starting with (A) a 4D-T2*-weighted dataset, when performing (B) a seed-to-voxel

analysis, (C) the extracted timecourse (TC) from the seed region (depicted by the red dot) is correlated with the TCs from each of the other voxels, resulting in (D) a

heat map, to which one can then apply a statistical threshold in order to reveal regions whose TCs are most similar to that of the seed region. Alternatively, (E) in a

seed-to-seed-analysis, one parcels the brain into predefined atlas regions, extracts (F) the averaged TCs of those regions, and then computes the pairwise

correlations between all regions’ TCs, which can be visualized as (G) a FC matrix. One can also apply a statistical threshold to such a connectivity matrix.

FIGURE 2 | Decomposing functional connectivity (FC) with independent component analysis (ICA). Starting at (A) the 4D-T2*-weighted dataset, (B) the ICA algorithm

identifies timecourses (TCs) that are spatially independent, referred to as components. These components can be represented as (C) heat maps projected on a brain.

Such component maps can then form the basis of between-group analyses.
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timecourse and are therefore considered to form a functional
network.

Voxel values of a component map represent the contribution
of the individual voxel to that component, which is typically
normalized to a z-score. Thus, a change in a region’s or
voxel’s z score indicates whether a voxel has increased
or decreased its coherence with the rest of the voxels
or regions that belong to the same functional network.
Bonavita et al. (50) used a group-ICA (51) to investigate
whether there is an overall difference in network strength
between healthy controls (HC) and MS patients. Zhou et al.
pushed such analyses even further by investigating whether
the coherence of networks identified by ICA was affected
by MS (52).

Applying Graph Theory to FC
Graph theory allows one to study networks formally. Brain-
graphs consist of brain areas (nodes) and the connections
between them (edges), which can be defined structurally or
functionally. Graph theory provides a host of statistics that
capture measures of functional segregation and integration.
The starting point for calculating graph measures is usually
a correlation matrix from a seed-to-seed FC analysis (26)
(Figure 1G). For example, one graph-theoretic measure, the
clustering coefficient, assesses the prevalence of clustered
connectivity around individual nodes (a measure of segregation),
which can be further used to describe at which level a network
can be subdivided into clearly delineated and non-overlapping
groups: so-called modules. On the other hand, path-length (the
number of edges between nodes of interest) is a measure of
functional integration and can be used to quantify the efficiency
of a network (with efficiency being the inverse of path-length).
A consistent finding of graph theory is that complex networks, be
they the brain or social groups, follow a small-world organization
(53), which is characterized by a few nodes that have many
connections (hubs), whereas the vast majority of nodes only has
a few short range connections. A small world organization keeps
wiring cost low and efficiency high.

One consistent finding is that the overall efficiency is
decreased in the MS-afflicted brain (54–56). Although the
property of small-worldness is generally maintained in MS
it appears to dissipate as the lesion load increases (57).
Additionally, decreases in efficiency have been associated
with more advanced clinical impairment (55, 57–61). For
a more comprehensive review on graph theoretic measures
in MS, see (62).

OVERVIEW OF SELECTED LITERATURE

Search Strategy and Selection Criteria
References for this review were identified by searches of PubMed
up until December 2017 and references from these articles that
matched the search criteria but did not show up in the search.
The search terms included “multiple sclerosis,” “fMRI,” “resting
state,” and either “functional connectivity” or “graph theory.”
There were no language restrictions. A complete description of
the 86 matching articles is provided in Supplementary Table 1.

Strategies for Computing FC
There are three major strategies for analyzing FC data in the
current MS literature. The first strategy involves comparing FC
values from a group of MS patients to those from a group
of HC. Commonly, the disease phenotype of the MS group is
taken into account: typically RRMS (48, 57), SPMS (63, 64), or
pediatric MS (65, 66). More specific disease characteristics, such
as the lesion location, are rarely controlled for [for an exception
see (41)].

The second strategy associates FC values of MS patients with
clinical data, such as cognitive (50) and motor performance (67),
fatigue (40, 68, 69), depression (70), or sleep disturbance (71).
Here, either the respective symptom severity is used as a regressor
of the FC data or the group of MS patients is subdivided into
subgroups of preserved vs. impaired function.

The third strategy involves comparing the effect of treatment
on changes of FC. Such studies typically involve placebo-
controlled, pre- and post-measurements, and HC (72, 73).

General Differences Between MS and HC
When comparing MS patients to HC, four general principles
emerge that characterize FC within the MS brain: regions with
high discriminative power, specific changes within functional
resting-state networks, the breakdown of segregated modules,
and a shift in hemispheric lateralization.

Regions With High Discriminative Power
Within the framework of FC, recent work has shown that
MS predominantly affects deep gray matter regions (45, 46)
resulting in both increased and decreased FC with other
regions. The thalamus seems to play a more central role
within the entire brain network in MS (74); specifically,
the thalamus shows increased FC with the motor cortex
(75, 76), the occipital and temporal cortices (45, 76, 77),
the hippocampus and widespread subcortical areas and
nuclei (45, 71), with the exception of the caudate (78),
whereas it shows decreased FC with frontal regions (79).
On the other hand, there is evidence that only some
thalamic subregions exhibit decreased FC with the rest of
the brain (80).

Although the hippocampus shows increased FC with the
thalamus (71), there is recent evidence of increased FC between
the hippocampus and Heschl’s gyrus, the nucleus accumbens
(71), and the amygdala (81). However, decreases of FC have been
reported between the hippocampus and the cerebellum (70), the
ACC, and the caudate nucleus (82, 83).

With respect to the basal ganglia, some nuclei, such as the
caudate, show increased FC with frontal regions (48, 84), while
other nuclei show decreased FC with fronto-parietal regions
(85). In line with this, Cui et al. recently reported widespread
differences of striatal FC between MS and HC (86). Lastly, the
amygdala appears to increase its FC with the hippocampus and
decrease its FC with certain nuceli of the basal ganglia, namely
the putamen (81), and other widespread occipital and parietal
regions (87).

Additionally, although MS predominantly seems to affect
such deep gray matter regions, there is recent evidence that
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the FC of some cortical regions, such as the medial temporal
lobes, is highly discriminative between MS patients and HC
(45, 46).

Specific Changes Within Resting-State Networks
With respect to resting-state networks, there is a set of commonly
reported networks that show altered FC properties in MS as
compared to HC (46), chiefly the visual network, the sensorimotor
network (SMN), and the default mode network (DMN) (88, 89)
(Figure 3).

Within-network coherence changes
When assessing the within-network FC coherence with ICA
in MS compared to HC, many studies consistently report a
breakdown in the visual network (45, 85, 90–92); although an
investigation into early RRMS patients found no differences
between groups (93) (to note, the vast majority of patients
in these studies did not have optic neuritis). Similarly, ICA
coherence decreases in the SMN (85, 90, 91). As for the DMN,
although there is evidence for decreased ICA-network coherence
therein (91), a number of other studies has failed to find such
differences (85, 90), which is consistent with a comparable DMN
network constitution between MS patients and HC, as assessed
with measures of graph theory (59).

Within-Network Inter-Areal Connectivity Changes
When parceled into anatomical subunits, the DMN shows both
increases and decreases in pairwise FC of these subunits when
comparing MS patients to controls (52). In line with this
observation, the PCC as a major hub of the DMN exhibited
increased FC with other DMN subregions (33, 34, 50, 63, 94),
while its FC with another DMN hub, the ACC, decreased (35, 50,
94). The ACC, in turn, exhibited increased FC with other DMN
subregions (66, 95). Moreover, the temporal pole as part of the
DMN showed increased FC to various other DMN subregions,
which yields high discriminative power between MS patients
and HC (45, 46). Finally, Rocca et al. (70) reported that the
hippocampus decreases FC with many other DMN subregions,
both cortical and subcortical. Additionally, regional homogeneity

within DMN subregions appears to decrease, such as the insula
and the caudate (48). Moreover, a recent study that analyzed
five networks relevant to cognitive performance, including the
DMN, found that the pairwise FC between the brain regions
that make up the network is decreased in all networks in
MS (96).

In the SMN, within-network connectivity changes as well
in MS (36). The main drivers of the breakdown of coherence
seem to be the premotor cortex (40, 64), the postcentral gyrus
(63, 65, 97), and the thalamus (74–76). Regional homogeneity in
the cerebellum, another part of the SMN, was found to decrease
(98).

Finally, in the visual network, Gallo et al. (99) reported that the
peristriate cortex exhibited decreased FCwith other components.
Also, the left and right primary visual cortex showed reduced
coherence, while the anticorrelations of visual areas with the rest
of the brain were lost in MS (100). In line with this, the efficiency
within regions of the occipital cortex appeared to decrease
(54, 101).

Breakdown of Segregated Modules
Another trend often observed in MS is the breakdown of
segregated modules (Figure 4). Modularity is a graph-theoretic
measure which describes the division of a network into functional
units. The number of modules is reduced in MS compared
to HC (59): posterior, central, and visual regions merge, while
the cerebellum shows higher FC with hippocampal regions.
The breakdown of modules increases with disease duration
(102), which is also characterized by more hubs (55, 103) and
can eventually lead to the formation of larger networks. Such
larger networks can also be characterized by increased FC,
which is found in MS between the thalamus and other deep
subcortical nuclei within the SMN (75), the visual network
and non-visual areas (100), the executive control and the
salience network, and the working memory network and the
attention network (91, 92) (see also section Formation of
Larger Networks or Breakdown of Modularity? for further
discussion).

FIGURE 3 | Intra-network functional connectivity (FC) changes in MS. Conceptual figure showing a simulated parcellation of the DMN, into (A) anatomical subregions.

As discussed in the section “Regions with high discriminative power”, one often observes that (B) pairwise FC between those subregions is altered in MS with respect

to healthy controls.
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FIGURE 4 | Changes in modular organization in MS. Top and bottom panels show matrices of pairwise interregional correlations and their underlying structure revealed

by hierarchical clustering. Colored boxes correspond to the sub-clusters in the dendrograms on the right that are considered functional modules. A breakdown of

functional modules automatically leads to an apparent formation of larger modules, which is often observed in patients when compared to healthy controls. Matrices

are derived from simulated data and exaggerated for the purpose of illustrating the results discussed in the section “Breakdown of segregated modules”.

Shift in Hemispheric Lateralization
A final recurrent observation is that FC decreases within the left
cerebral hemisphere. This change has been reported between the
left amygdala and occipitoparietal regions (87), the left insula
and left precentral gyrus (48), and a more general isolation of
the left hippocampus (82) and left amygdala (81, 83) from the
rest of the brain. Conversely, FC within the right hemisphere
reportedly increases, for example between the right caudate and
the right dorsolateral prefrontal cortex (48) and between the right
hippocampus and the right amygdala (46). Interestingly, this
alteration in the hippocampus and amygdala opposes the pattern
observed in their homolog areas in the opposite hemisphere.
Similarly, the left frontoparietal network—but not the right—
shows diminished coherence (104). Additionally, increased FC
was found between the right working-memory network with the
primary visual network in MS patients compared to controls,
whereas the left working-memory network showed decreased

FC with the SMN (91). Furthermore, an acute episode of optic
neuritis was found to enhance FC emerging from the right
cerebral hemisphere and the left cerebellar hemisphere (99),
which would be expected given the opposite lateralization of
the cerebellum. This general observation is further supported
by a recent analysis that uncovered higher discriminative power
of right-hemispheric regions when classifying between MS
patients and HC: specifically increased FC between the right
amygdala, the right hippocampus, and the right temporal pole
(46).

Interestingly, homolog areas seem to show increased FC
with each other in MS patients, reportedly found between
the two mediotemporal lobes (52), the thalami (79), as well
as the frontoparietal networks (85). However, there are also
counterexamples, such as reduced FC between the left and right
primary visual cortices in optic neuritis (100) and decreased FC
between the hippocampi (70) (see Figure 5).
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FIGURE 5 | Hemispheric changes in MS. When compared to healthy controls, studying MS patients often reveals that functional connectivity (FC) decreases between

regions of the left hemisphere and increases between regions of the right hemisphere. Additionally, homolog areas (depicted by minor diagonals) also show increased

connectivity, which may be a byproduct of the loss of within-hemisphere communication. Matrices are derived from simulated data for the purpose of illustrating the

results discussed in the section “Shift in hemispheric lateralization”.

What Can FC Tell us About MS Symptom
Severity?
Apart from general differences in FC between MS and HC,
prior investigations have revealed that cognitive and motor
performance, as well as other neurological dysfunctions (e.g.,
fatigue, visual problems, depression, and sleep disturbance), are
often associated with alterations in FC or change in network
coherence. For example, stronger symptom severity has been
linked to decreased FC in regions related to cognitive processing
and increased FC in regions not typically associated with
cognitive processing (Figure 6).

Task Impairment in MS Relates to Decreased

Connectivity Between and Within Task-Specific

Regions
Generally, MS patients with impaired function often present with
reduced FC in widespread brain regions as compared to patients
with preserved function, who are often similar to the HC group
[e.g., cognitive functions (90, 105), motor functions (67), sleep
problems (71), and depression (70, 106, 107)]. Interestingly, such
reductions in FC are often observed between brain regions that
are classically linked to the function that is impaired in the
MS group. For example, cognitive functions such as working
memory or visual processing speed are typically associated with
regions of the DMN; deficits attributed thereto in MS patients
have been associated with reduced ICA-coherence of a major
DMN-hub, the PCC (50, 108), which was even described as
the most discriminant feature between cognitively impaired (CI)
and cognitively preserved (CP) MS patients (109). Moreover,
reduced FC between the cerebellum and other DMN-regions
distinguished CI from CP pediatric MS (78). Additionally,

decreased FC in the DMN was related to more severe memory
impairment (110). Apart from the DMN, the working-memory
network (92), attentional networks (60, 105, 109), and the
executive-control network (60) have been associated with a
decline in cognitive functions. To note, CP patients sometimes
show even greater FC compared to HC in those networks (109).

Other brain regions that show positive correlations between
cognitive performance and connectivity in MS are the medial
prefrontal cortex and the frontal pole (35), the left insula (48),
as well as the hippocampus (82, 111). However, increased FC
of the right posterior hippocampus to the rest of the brain was
elsewhere described as a main correlate of mnestic impairment
(112).

Likewise in the motor system, decreased connectivity between
domain-specific areas leads to impairment of domain-specific
behavior. Motor dysfunction in MS has been associated with
reduced FC in important SMN-hubs, for example from the
sensorimotor/somatosensory cortices (39) and the cerebellum
(84, 113) to the rest of the brain. Additionally, reduced motor
performance co-occurred with reduced regional homogeneity
in the cerebellum (98). Moreover, lower-limb spasticity could
be improved with transcranial magnetic stimulation using
intermittent theta burst stimulation, which increased the
integrity (assessed with graph theory) of the contralateral primary
motor cortex (114). Furthermore, motor-impaired MS patients
have also been distinguished from motor-preserved MS patients
based on reductions of FC in the thalamus (115) and in occipital
regions (39, 67).

Lastly, visual problems in optic neuritis patients have been
associated with reduced FC between visual regions (100) as well
as reduced ICA-coherence in area V2 (99).
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FIGURE 6 | The relationship between MS symptoms and brain networks. Conceptual depiction of the often-reported match between the affected network and the

specific symptom class from which patients suffer, as discussed in the section “What can functional connectivity (FC) tell us about symptom severity?” For example,

the default-mode network (DMN, red) is associated with cognitive performance, and the sensorimotor network (SMN, blue) is associated with motor performance. MS

patients with deficits in cognitive performance often have reduced FC within the DMN and increased FC within the SMN (as compared to patients without such

deficits). The analog pattern of intra-domain decrease and extra-domain increase is observed for patients with deficits in motor performance, with respect to the SMN

and DMN, respectively (as compared to patients without such deficits).

Task Impairment in MS Relates to an Increase in

Connectivity Between Domain-External Brain

Regions
In contrast to the findings discussed in the previous section,
connectivity sometimes increases when comparing MS patients
with an impaired function to those with preserved function (or
even to the HC). For example, increased coherence in the right
hippocampus/fusiform gyrus (45), increased coherence in several
frontal networks (116), and increased coherence in the left motor
network (64) have all been reported to correlate with more severe
overall clinical disability. However, suchmeasures are often given
in EDSS or MSFC scores (i.e., multifunctional composite scores),
which prevents accurate attribution of brain regions to distinct
functions.

Interestingly, those investigations that analyzed a specific
task and found increased connectivity in the impaired group
revealed a pattern in which the brain regions with increased
connectivity did not correspond to the brain regions classically
associated with the task in question. For example, increased
SMN-related connectivity (the network associated with motor
function) was associated with cognitive deficits via increased FC
between the thalamus and sensorimotor/occipital regions (117),
between the thalamus and the cerebellum (36), or increased
ICA-coherence in the thalamic RSN (105) and the medial

visual network (85). Conversely, increased FC between cognition-
related brain regions, such as between the left pallidum and
the left anterior cingulate was instead associated with motor
deficits (67).

Training Programs Increase FC of
Domain-Specific Brain Regions and
Networks
Recently, FC has been used as a part of the evaluation battery
of therapeutic interventions in MS, and successful training
programs have mostly been associated with increased FC in
domain-specific brain regions and networks. For example, a
cognitive computer training program reportedly increased FC
between the PCC and bilateral inferior parietal cortices (106),
important hubs of the DMN, which is relevant to cognitive
performance. Moreover, a training program increased FC in the
PCC, which was associated with better performance in the Stroop
task (118). A successful cognitive training program conducted
by Leavitt et al. (72) was related to higher FC between the
left hippocampus and other cortical regions as well as between
critical hubs of the DMN. In an earlier single-case study, the
same group reported increased FC of the hippocampus to be
associated with aerobic exercise as opposed to anaerobic exercise.
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This association also predicted enhanced cognitive performance
(119).

Cognitively impaired MS patients who participated in
cognitive rehabilitation programs reportedly showed: (a)
increased ICA-coherence in cognition-related networks, which
corresponded to improved neuropsychological performance, less
severe depression, and better quality of life (120), (b) increased
FC of the ACC and regions involving the non-dominant
hemisphere, which corresponded to improved performance in
the paced auditory serial addition test [PASAT, see (121)] (73), (c)
increased FC between DMN-subnetworks, which corresponded
to better performance in a working-memory task (122), and (d)
altered thalamic FC: increased with the cingulum, precuneus,
and bilateral parietal cortices, but decreased with the vermis
and dorsolateral prefrontal cortex, which also corresponded to
improved PASAT-performance (123).

DISCUSSION

Recapitulation
MS is a progressive disease in which lesions may occur in any
part of the CNS leading to a complex clinical manifestation of
symptoms. These lesions directly affect either a region’s function
or the communication between brain areas and networks.
Such changes in network communication and organization are
the scope of FC studies, which may turn FC measures into
biomarkers for studying MS.

In this review, we have reported a host of recent fMRI studies,
which found that FC of MS patients is distinct from FC of HC.
Specifically, FC between deep gray matter regions and the rest of
the brain differs between MS and HC, most significantly for the
thalami, hippocampi, basal ganglia, and amygdalae. Additionally,
FC of a few cortical regions, such as the medial temporal lobes,
tends to exhibit high discriminative power between MS and
HC (see section Regions With High Discriminative Power).
However, by taking a network perspective, several studies have
demonstrated that resting-state networks in MS patients show
reduced coherence (as measured with ICA and the inter-areal
connectivity) (see section Specific Changes Within Resting-state
Networks). Several other studies have shown that, throughout the
disease course, the modular organization of networks gradually
breaks down and larger networks form (see section Breakdown
of Segregated Modules). Finally, a shift in lateralization seems to
take place in MS patients, in that FC within the left hemisphere
often decreases while tending to increase in the right hemisphere,
with the exception that homolog areas often increase theirmutual
FC (see section Shift in Hemispheric Lateralization).

FC has been additionally associated with symptom-severity
in MS yielding an interesting pattern: patients with impaired
function often show reduced FC in domain-specific brain
regions and networks (i.e., regions that are associated with
the affected behavior) compared to patients with preserved
function. However, there is also evidence that increased FC
in domain-external brain regions and networks might be
hampering performance (see section What can FC Tell us About
MS Symptom Severity?). Lastly, successful training programs
have almost always been associated with increases of FC in

domain-specific brain regions and networks (see section Training
Programs Increase FC of Domain-specific Brain Regions and
Networks).

Methodological Observations and
Interpretational Issues
When interpreting changes of FC in theMS brain, some statistical
issues arise yielding caveats when interpreting general differences
between MS and HC. As such, it is not yet clear whether the
FC changes observed in MS are passive (i.e., merely natural
consequences of the lesion occurrence) or active (i.e., the brain’s
attempt to minimize damage, referred to as neural plasticity).
Moreover, whether such neural plasticity is adaptive (preventing
impairment) or maladaptive (worsening impairment) is a topic
of much discussion. When such issues are taken into account,
however, we believe that FC can be investigated at an individual
level and significantly improve the accuracy of MS differential
diagnoses and prognoses.

Methodological Observations

Highly discriminative regions: real effect or statistical

artifact?
Firstly, we have seen that in MS FC of several brain regions,
particularly deep gray matter regions, seems to be affected
more often than other regions. When studying healthy brains,
these regions are considered hubs, i.e., highly-connected regions
through which large parts of the brain’s overall communication is
mediated (124).

The straightforward interpretation of this observation is that it
is in the nature of MS to affect such hub regions. An observation
which backs this hypothesis is that there are locations in the
brain’s white matter with an above-chance probability of having
a lesion [e.g., the periventricular regions or the optic radiations,
but see (8, 125)]. To the best of our knowledge, however, no study
has investigated whether such lesion sites in MS preferentially
connect to hub regions in gray matter. This observation could be
clinically relevant given the purported link between a decrease in
centrality of hub regions and increased severity of disability [see
(126) for sensorimotor regions and (55) for the thalamus].

However, lesions in MS do also occur elsewhere in white
matter, gray matter, and the spinal cord (127). Generally, in
group-analyses of large data sets where the lesion locations
are not controlled for, randomness alone would account for
connectivity changes occurring more often in hub regions, given
that these regions, by definition, have the most connections
to other regions. Most investigations to date have studied
MS groups without controlling for the lesion locations, thus
providing little evidence for hub-specific effects resulting
from MS. Such heterogeneity could also lead to seemingly
contradictory results, in the sense that specific regions could
show increased connectivity in one study but decreased
connectivity in another. Additionally, graymatter atrophy, which
is observed throughout MS disease progression (128), has been
linked to FC changes in MS (83, 109) [but see (99) for opposing
evidence], suggesting that further investigation into gray matter
atrophy may be necessary for better understanding FC changes
in MS.
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One solution to this issue, and a step toward personalized
medicine, would be to study single patients repeatedly.
The advantage of repeated-measures studies in clinical
neuroimaging of MS is that each patient serves as his/her
own control (with respect to the number and location of the
lesions), and repeated-measures designs allow one to study
the timecourse of the disease. Recently, Droby et al. (41)
employed such a personalized design in one patient by tracking
the longitudinal effects of FC changes of an acute lesion, as
it turned chronic, throughout a year. Having more highly-
controlled and longitudinal records available will improve
our understanding of how the individual disease progression
corresponds to changes in FC and what role lesions play
therein (129). However, FC is subject to substantial variability
even within a single subject (130), which may reflect the
normal variability of mental or physiological states (131).
Whether such normal within-subject variability is low enough,
compared to pathological changes of FC in MS, to allow for
individualized FC-based diagnosis or prognosis is still an open
question.

There are two main drawbacks to studying progressive
diseases, such as MS, with repeated-measures designs: (a)
lesions that were acute (active) during one measurement may
be inactive in a following measurement but can reactivate
throughout the disease course, even in the absence of clinical
symptoms (132), and (b) the number of inactive lesions
increases with time, rendering it difficult to attribute any
changes in FC exclusively to the original lesion of interest.
Nevertheless, we argue that, when studying such a heterogeneous
disease, repeated measurements provide the greatest statistical
power and highest achievable control over lesion location and
load, thus offering the best possibility to improve differential
diagnostic and prognostic information for the individual,
which additionally counteracts the problem of small sample
sizes.

Formation of larger networks or breakdown of modularity?
Another common observation is that FC networks appear to
reorganize in MS. On one hand, these networks show reduced
coherence (as measured with ICA and inter-areal connectivity),
but on the other hand, their modular organization gradually
breaks down, resulting in, what appears to be, larger networks.
In our opinion this can be interpreted in at least two different
ways: reduced coherence and formation of larger networks (a) are
two different processes, or (b) they are one common statistical
consequence of networks breaking down. As within-network
coherence decreases, it is more likely that a statistical clustering
procedure treats different regions as one group. Furthermore,
less variability between different regions therefore can appear as
increased FC. Rather than representing the formation of larger
networks, this increase in FC between such networks can instead
be explained by a decrease in variability and modularity.

Interpretational Issues

What does increased or decreased FC mean?
It is important to note that there may not be a straightforward
interpretation of increased or decreased connectivity between

two brain regions. In our view, it is overly simplistic to interpret
the change of FC between a pair of brain regions in isolation.
For example, in the case of the breakdown of modularity we
observe both a decrease in FC of nodes that belong to the same
module and an increase in FC of nodes that belong to different
modules (133, 134). Therefore, we strongly advocate a network-
based approach when trying to interpret FC or when testing
hypotheses related to changes of connectivity.

Another interpretational problem arises from the fact that
the literature predominantly reports difference maps of changes
in FC (regardless of whether the underlying FC exhibited a
positive or a negative correlation), meaning that an increase
in FC could be the result of reduced opponency (a previous
inhibitory connection becoming weaker) or increased synchrony
(a previous excitatory connection becoming stronger). While it
thus seems advisable to report changes in negatively coupled
regions separately from changes in positively coupled regions,
this issue is complicated by the ongoing debate regarding
how one should even properly compute FC. For example, one
common approach involves removing physiological noise by
subtracting out the global mean of all voxels. On the one
hand, this method yields more stable estimates of FC, since
information shared by all voxels is considered non-informative
for differentiating the responses of different brain areas; on the
other hand, this method has been criticized for inducing spurious
negative correlations between brain areas, as the distribution of
correlations is consequently “artificially” centered around zero
[see (135) for a detailed treatise]. As such, depending on the
strategy used for data preprocessing, the reader is faced with
different interpretations of what, e.g., an increase in FC between
two negatively correlated areas may indicate.

Are FC changes active (Compensatory Mechanism) or

passive (Epiphenomenal) in MS?
Beyond such methodological issues, an additional question that
remains open is that of the underlying mechanisms which
actually drive FC changes in MS. Specifically, one could classify
such mechanisms as either passive (a by-product of the lesion) or
active (an attempt of the brain to maintain/restore function).

Functional changes may simply result from structural changes
(136), which in turn can be passive or active. One approach to
test the passive hypothesis would be to investigate the effects
of virtual lesions in computationally modeled brain networks,
where no in-built survival mechanisms should exist. Cabral et al.
tested this idea and showed that structural damage changes
the FC organization of a virtual brain network, which also
manifested itself as decreased small-worldness of the network
(137). This finding from a computational model corroborates
the observation of decreasing small-worldness as a function of
increasing lesion load in MS (57). More recently, Patel et al.
used simulations to demonstrate that damage to structural
connectivity can give rise to increased FC which they then
compared to empirical FC within MS patients (133).

Despite the evidence for the passive hypothesis, there is
strong evidence that a brain lesion triggers at least some degree
of active recovery mechanisms. The potential of the brain to
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reorganize after injury, in order to minimize damage, is the well-
known phenomenon of neural plasticity (a.k.a. neuroplasticity or
brain plasticity) (138). This neuroplastic potential differs across
people (139) (e.g., higher likelihood of younger people recovering
function following brain damage than older people) and across
brain regions (140) (e.g., higher likelihood of functions related
to the frontal lobe recovering following damage than functions
related to the post-central gyrus). Particularly, investigations into
stroke patients have suggested that, if the left hemisphere is
damaged, the right hemisphere may take over its functions (141).
Interestingly, homolog areas appear to take over the functions
of their injured counterpart, which was shown for both the
sensorimotor cortices in stroke patients (142) and the inferior
frontal gyri after experimentally induced aphasia using theta
burst stimulation (143). Both these findings are consistent with
results fromMS studies: FC within the left hemisphere decreases,
while it increases in the right hemisphere, and FC of homolog
areas in the two hemispheres was shown to increase. These
findings from MS studies corroborate those from stroke and
aphasia studies, suggesting a general underlying mechanism for
some form of active function recovery following neurological
disorders.

Can FC/neuroplasticity be maladaptive in MS?
Apart from the active/passive distinction of characterizing
FC changes, another characterization scheme addresses the
perspective of whether neuroplastic changes aid a patient’s
recovery (i.e., they are adaptive) or rather contribute to the
clinical impairment (i.e., they are maladaptive) (144). However,
as we reviewed, increases in FC have been associated with both
decreases and increases in performance on some tasks. This
leads to two possibilities: either (a) increases in FC have no
association to task performance or (b) the “adaptiveness” of
FC increases might depend on where in the brain they occur
and which functional domains are classically associated with
that region. While FC increases within domain-specific brain
regions might improve the patient’s ability to perform the task at
hand [e.g., cognitively preserved patients had higher FC between
the DMN-hubs, MPFC, and PCC compared to cognitively
impaired patients, see (109); and patients with preserved manual
function had higher FC from sensorimotor regions to the rest
of the brain, see (39)], it might simultaneously hamper the
performance in domain-unrelated tasks [e.g., patients with upper
limb motor disability had increased FC between the DMN-
regions, left pallidum, and ACC compared to patients without
such disability, see (67); and patients with cognitive deficits had
increased FC between sensorimotor regions and the thalamus,
see (117)].

This observation suggests that FC is neither purely adaptive
nor purely maladaptive, but rather of combination of the two.
It is adaptive in that domain-related task performance increases
(following lesions in the pertinent gray/white matter), while
the performance of domain-unrelated tasks can be seen as a
maladaptive by-product, possibly owing to either a cost-benefit
prioritization of the damaged function (for the sake of survival)
or a more general decrease in flexible network communication.

Improving the Current Standard in MS
Diagnostics With FC
Although the full scope of FC in MS is not yet understood,
we believe that it can improve the differential diagnoses and
prognoses of individual patients. Currently, the gold-standard of
MS diagnoses are the McDonald criteria, revised in 2017, which
provide five different manners of combining three criteria (i.e.,
the number of clinical attacks, the occurrence and locations of
lesions, and CSF-specific oligoclonal bands) in order to make
a definitive MS diagnosis (127). Often, a FLAIR T2 and a
GD-enhanced T1-weighted MRI are sufficient to make such
a diagnosis; however, these biomarkers do not seem to allow
more fine-grained differential diagnoses (relating to symptom
severity) and prognoses (18). In this regard, FC seems to be
a promising biomarker in its ability to contribute additional,
and more individualized, information. Different measures of FC
already successfully predicted development of clinically definitive
MS in a CIS patient group (45), discriminated between different
subtypes of the MS disease spectrum (88), and distinguished
patients with motor impairments from those without motor
impairments (67).

The link between FC and symptom severity is especially
striking. Often, decreased FC corresponds to increased disability,
and the affected brain region tends to link to the type of symptom
from which the patient suffers. Resting-state networks are task-
associated, and thus it is important for future research to specify
both the affected network and the type of clinical symptom
that corresponded to FC changes. Currently, most research
has provided correlations between FC and clinical data with
composite scores such as the EDSS and MSFC, which comprise
functions from many different domains (e.g., sensorimotor,
cognitive, and visual), but in order to relate FC to symptoms in
a biological manner, such functional domains that are affected by
MS need to be more clearly distinguished.

Besides improving differential diagnoses, FC is also promising
in its ability to predict the outcome of therapeutic intervention.
One report from 2009 used task-based FC to monitor MS
patients taking rivastigmine and domperidone (145). The authors
demonstrated that patients who took a combination of both
medications showed improved performance in a Stroop task
when compared to those who took only rivastigmine; this
improvement was associated with increased FC during task
execution between homolog and other prefrontal and parietal
regions. Additionally, that patient group reportedly showed
reduced prefrontal-parietal FC within the dominant hemisphere
during task execution. While this study made use of task-based
FC, in the context of MS, no study so far has examined the effect
of different pharmacological agents on FC in the resting state.

One drawback to investigating FC changes in a task-based
framework (146, 147) is that particular tasks are known to recruit
particular networks (148), thereby limiting what can be observed
to the respective task-specific networks. A solution to this issue
is to employ resting state-fMRI, which does not create such
task-specific limitations and therefore allows one to investigate
changes of network-level activity in the brain. This may be
preferred to extracting resting-state FC from task-based FC (149),
since one cannot guarantee a perfect model for task-effects that
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applies to all voxels. Instead, for example, Drysdale et al. (150)
have recently demonstrated that, in a sample of more than
1,000 patients and controls, resting-state FC identified depression
biotypes. Furthermore, only one of those subtypes benefited from
transcranial magnetic stimulation therapy. Employing such an
approach in MS could also reveal distinct biotypes that benefit
more or less from different kinds of therapies or medications.

Lastly, with respect to longitudinal studies, Dogonowski and
colleagues investigated how FC changes in MS during the
weeks following a relapse (151). The authors reported that MS
patients whose SMN coherence returned to a level similar to
that of HCs after the relapse showed the best remission, as
measured by reduced EDSS scores. This suggests that FC in
MS is not static, and the longitudinal development of FC, as
opposed to a “snapshot” FC measure, may better relate to the
course of the MS disability. This notion is in line with a study
by Faivre et al. (57) who showed that in MS patients with
low disability rates at a baseline scan exhibited an increase
of network efficiency at a two-year follow-up scan, whereas
efficiency decreased in those patients who had high disability
scores at baseline.

However, understanding the exact relationship between
connectivity, the MS disease course, and disability severity will
require further longitudinal investigations of FC in MS. Such
an approach can help to identify specific patterns of FC that
link to specific kinds of disease progression, thereby improving
individual treatment. Similar approaches have already been
successfully applied to other neurological disorders, such as
Alzheimer’s (152) and Parkinson’s disease (153). Additionally,
recent work has shown that FC may not be stationary (154),
and therefore investigating FC fluctuations (130, 155) might
provide additional information on the development of MS
disease progression (87).

CONCLUSION

This review aimed to synthesize recent research that employed
the analysis of FC for the purpose of studying MS. We identified
several common observations in MS, namely: (a) deep-gray
matter regions show a higher likelihood of having altered FC
(possibly due to these already being the most interconnected
regions, also known as “network hubs”); (b) within-network
coherence decreases, resulting in, what seems to be, the formation
of larger networks, but can also be explained by a statistical
consequence resulting from a decrease of modularity; (c)
connectivity tends to decrease in the left hemisphere but increase
in the right hemisphere; (d) patients with specific behavioral
deficits show decreased connectivity within task-related networks
but increased connectivity within task-unrelated networks. Such
observations have surfaced because of the recent upsurge

in applying connectivity-based analyses to multiple sclerosis.
Crucially, combining connectivity analyses with longitudinal
studies will likely provide the greatest potential for understanding
adaptive and maladaptive changes in the MS brain on an
individual level.

To reiterate, the concept of FC is based on the assumption
that brain regions exhibiting a similar temporal evolution of
activity share information and are thereby connected in a
functional manner (27, 28). The literature of FC in MS that
we have reviewed here has focused on statistical identification
of disease-related changes in FC. Future work needs to address
generative models of FC in MS, which reveal how certain
connectivity changes can result from altered interactions in a
coupled system (156, 157). However, MS presents a particularly
difficult case for such an endeavor. One problem is that lesions
and gray matter atrophy are not restricted to certain locations
[despite some higher probability of lesions in periventricular
regions (158)], which makes it difficult to pinpoint critical
regions that generate typical patterns of altered connectivity.
A second problem is that, by definition, MS-lesions occur at
multiple sites, making it computationally difficult to estimate
certain classes of generative models [such as dynamic causal
modeling; (156)]. Therefore, at least for the near future, systemic
measures such as breakdown of coherence or reorganization
of network-hierarchies (159) may provide the most accessible
means of investigating connectivity changes in MS. Furthermore,
the combined use of FC and clinical scales as features in
machine learning may yield different biotypes of MS that
may respond differentially to different treatments, as recently
demonstrated in FC-based biotyping in major depressive
disorder (150).
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