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The glymphatic system has emerged as an important player in central nervous system

(CNS) diseases, by regulating the vasculature impairment, effectively controlling the

clearance of toxic peptides, modulating activity of astrocytes, and being involved in

the circulation of neurotransmitters in the brain. Recently, several studies have indicated

decreased activity of the glymphatic pathway under diabetes conditions such as in insulin

resistance and hyperglycemia. Furthermore, diabetes leads to the disruption of the blood-

brain barrier and decrease of apolipoprotein E (APOE) expression and the secretion

of norepinephrine in the brain, involving the impairment of the glymphatic pathway

and ultimately resulting in cognitive decline. Considering the increased prevalence of

diabetes-induced dementia worldwide, the relationship between the glymphatic pathway

and diabetes-induced dementia should be investigated and the mechanisms underlying

their relationship should be discussed to promote the development of an effective

therapeutic approach in the near future. Here, we have reviewed recent evidence for the

relationship between glymphatic pathway dysfunction and diabetes. We highlight that

the enhancement of the glymphatic system function during sleep may be beneficial to

the attenuation of neuropathology in diabetes-induced dementia. Moreover, we suggest

that improving glymphatic system activity may be a potential therapeutic strategy for the

prevention of diabetes-induced dementia.
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INTRODUCTION

The relationship between type 2 diabetes mellitus (T2DM) and dementia, also called “type 3
diabetes”, has emerged as a critical health issue across the world as it is fast increasing in incidence
(1). There are several studies supporting the relationship between diabetes and dementia. A recent
meta-analysis indicated that individuals with T2DM have a 65% increased risk for Alzheimer’s
disease (AD) (2). A population-based longitudinal study has reported a 16% increased risk for
dementia in T2DM patients compared with nondiabetic patients (3). Furthermore, many T2DM
patients have cognitive impairments (4) and even patients in the prediabetic stage of insulin
resistance exhibit a decrease in memory function and dysfunction of cognitive flexibility and
cognitive control (5). Moreover, patients with chronic hyperinsulinemia exhibit insulin resistance
and cognitive dysfunction (6). Taking into consideration the previous evidence for the relationship
between diabetes conditions, including insulin resistance and hyperglycemia, and cognitive decline
(5), the neurological changes in diabetes-induced dementia should be investigated to elucidate the
underlying mechanisms and thus support the design of appropriate therapy and prevention in
clinical practice.
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Current studies highlight the role of the glymphatic system
in neurodegenerative diseases such as AD, suggesting that it
influences the clearance of amyloid-beta (Aβ) peptide (7). In
addition, the roles of the glymphatic system in the central
nervous system (CNS) include the regulation of astrocyte
activity (8), neurohormones (9), and glucose metabolism (10);
modulation of apolipoprotein E (APOE) circulation (11); and
regulation of insulin resistance in the brain (12, 13). Diabetes
has been shown to contribute to the impairment of glymphatic
activity, leading to declined cognitive function (14). Sleep
has been known to promote the activity of the glymphatic
pathway, subsequently enhancing the efficiency of the brain-
clearance system (15), and ultimately improving memory
function and synaptic plasticity (16). Here, we have reviewed
recent evidence for the relationship between glymphatic pathway
dysfunction and diabetes-induced dementia. Furthermore, we
have suggested a therapeutic approach for alleviating the
neuropathological symptoms of diabetes-induced dementia
through the improvement of glymphatic system function.

WHAT IS THE GLYMPHATIC SYSTEM?

In the CNS, approximately 68% of the total water volume is
within the intracellular compartment, whereas the remaining
32% of the water exists in the extracellular compartment (8). The
extracellular fluid is distributed into the interstitial fluid (ISF),
cerebrospinal fluid (CSF), and blood compartments (8). In the
CNS, a variety of nutrients circulate through the brain, but it is
also essential to remove efficiently the metabolites (17). The CSF
produced by the choroid plexus contributes to the delivery of
nutrients to the brain parenchyma and the clearance of interstitial
toxic waste (18, 19). The CSF is absorbed inside the CNS via
filtration and reabsorption of water through the capillaries into
the ISF of the surrounding brain regions (20, 21). The CSF enters
the para-arterial spaces, mixes with the ISF, and is finally removed
from the brain through the paravenous spaces (18, 22). The ISF
with the toxic peptide wastes enters the lymphatic circulation
through the paravenous space (7, 23). The ISF drained into the
paravenous space can eliminate the solutes from the interstitial
space similar to the function of the lymphatic system outside the
brain (18).

The perivascular space of cerebral blood vessels is the place
where the CSF/ISF exchange occurs (18, 24). In addition, the glial
cells that provide the outer boundary of the perivascular space
have an important function in the clearance and waste turnover
(25, 26). Iliff et al. demonstrated that fluorescent dextran injected
into the cisterna magna in mice was found in the basement
membrane of parenchymal capillaries and in the perivascular
spaces of caliber draining veins. This paravascular clearance
system was named as the glymphatic system by merging the
words “glial” and “lymphatic”, because of its dependence on glial
cells and also due to its functional resemblance to the peripheral
lymphatic system (18). In other words, the glymphatic system
is a paravascular pathway that lies in the space between the
vascular adventitia and the vascular end-feet of astrocytes (27).
The glymphatic system has greater vascular permeability and

contributes to the clearance of macromolecules from the brain
parenchyma (27). Moreover, the glymphatic pathway contributes
to CSF influx into the brain parenchyma through para-arterial
spaces to exchange solutes with the ISF (28). Previous studies
about the glymphatic pathway have fundamentally altered the
traditional model of CSF hydrodynamics (18, 29) and shown that
CSF can be recycled back into the brain and exchanged with
ISF (29–31). Current studies have reported that the glymphatic
pathway involves the dural lymphatic vessels that finally drain
toward the cervical lymph nodes (23, 32, 33).

The glymphatic pathway has important diverse roles. Some
studies have highlighted the role of the glymphatic pathway in
waste drainage. Indeed, it was demonstrated that the glymphatic
pathway could be the first step of the brain drainage system
(34). Another study reported that the CSF containing toxic
waste circulates in the arachnoid space and flows to the dural
venous sinuses (7, 35). Moreover, the role of the glymphatic
system in nutrient delivery was reported by demonstrating that
lipoproteins and small molecules could be delivered from the
CSF to the brain parenchyma via the glymphatic pathway (36).
Other researchers have shown that the glymphatic system is
crucial for the distribution of nutrients throughout the whole
brain (37, 38). Additionally, several studies identified the role
played by the glymphatic pathway in hormone circulation
and signal transduction. It was reported that the glymphatic
pathway is not only involved in the volume transmission and
the paracrine system, but also in the activation of astrocytic
Ca2+ signaling within the cortex (30) and in the opening of
N-methyl-D-aspartate (NMDA) receptors in cultured astrocytes
(39). Furthermore, the glymphatic pathway could be involved
in regulating the circulation of norepinephrine, the major
neuromodulator of arousal (40) that is related with cognitive
decline (9), and which plays a role in AD neuropathology
(41). Moreover, the glymphatic pathway influences not only
the CNS, but also other organs via the circulatory system
(42). In this view, current anatomical studies support the fact
that the glymphatic pathway is connected with the peripheral
system through glymphatic efflux sites, including arachnoid
granulations, perineural spaces of cranial and spinal nerves (43),
and meningeal lymphatics (23). Based on these observations, the
function of the glymphatic pathway is deemed indispensable,
and further studies are necessary for the identification of its
relationship with various neurological changes.

GLYMPHATIC SYSTEM DYSFUNCTION
AND ALZHEIMER’S DISEASE

As mentioned earlier, the glymphatic system acts as an effective
waste-clearance pathway for the brain (28). Previous studies
demonstrated that dysfunctions of the glymphatic system
aggravate neuropathological symptoms of various neurological
diseases such as stroke and AD (8, 44). One magnetic
resonance imaging (MRI) study indicated that alterations of the
glymphatic system could be used as disease risk indicators for
neurodegenerative disorders, including AD (45). Impairment
of the glymphatic pathway can be the result of abnormal
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changes in CSF influx dependent on arterial pulsatility (8,
29). The AD is characterized by several neuropathologies,
including Aβ accumulation and the tau tangle formation in
various brain regions (46). Blood-brain barrier (BBB) breakdown
increases the accumulation of Aβ in the blood plasma, ISF,
and CSF (47), causing synaptic dysfunction in the brain.
Furthermore, BBB disruption causes inflammation that also
contributes to glymphatic dysfunction, suppresses CSF-to-ISF
turnover, and impairs glymphatic clearance (48, 49). Amyloid-
beta peptide exists in the normal brain, circulating blood,
and CSF (50). While the normal brain is able to control Aβ

influx and efflux through glymphatic drainage, the AD brain
cannot control this process. Therefore, toxic Aβ accumulates
in the brain parenchyma and vascular structures (51), and
ultimately triggers BBB disruption and vasculature impairment
(16).

Amyloid-beta clearance via BBB transport depends on the
glymphatic pathway (52), as toxic Aβ can be transported across
the BBB through specific transporters such as the low-density
lipoprotein receptor-related protein-1 (53). However, when the
amount of Aβ exceeds the capacity of the efflux transporter,
Aβ is cleared via ISF flow in the glymphatic system (54, 55).
The glymphatic system drains over 60% of the brain Aβ to
the lymph nodes using the convective flow caused by arterial
pulsations (56). The increased permeability of the BBB triggers
glymphatic pathway impairment and ultimately leads to the
defective clearance of Aβ by BBB transport in dementia (42, 57).
Thus, the glymphatic system is considerably relevant to AD
progression by transporting Aβ and other metabolites out of the
brain (15).

The dysfunction of the glymphatic pathway increases the

accumulation of toxic waste products in the brain (58), and
is associated with impaired cognitive function recorded in

behavioral tests (59, 60). Moreover, it is associated with the
dysregulation of water transport into astrocytes (8). Aquaporin-
4 (AQP4), a water transport channel expressed in the astrocytic
end-feet near the capillaries, is considered to be critical for water
movement between the cellular and ventricular compartments
(61). Loss of AQP4 results in impairment of CSF influx
and CSF-to-ISF turnover (62), aggravating glymphatic pathway
dysfunction (28). The loss of AQP4 polarization has been related
to glymphatic dysfunction in the brains of mice and considered
to be a predictor of AD in humans (63). Additionally, the
decrease in AQP4 expression contributes to reducedAβ clearance
(63–65) and tau clearance (66) through the glymphatic system
(67), and has been shown to impair water permeability in
vitro (68). Moreover, AQP4 is associated with the modulation
of neurotrophic factor-dependent synaptic plasticity (69), and
its absence results in defects in memory consolidation (70,
71). Collectively, the glymphatic system is affected by AQP4
expression in astrocytes and associated with AD progression.

Furthermore, a recent study suggested that an increase in CNS
norepinephrine levels and ISF secretion are the results of reduced
glymphatic influx in AD mouse models (9). Noradrenergic
neurons located in the locus coeruleus supply norepinephrine
to various brain regions (72). Elevated norepinephrine levels
result in the contraction of the extracellular volume fraction,

reduction of CSF influx, and brain ISF (15). Locus coeruleus-
derived norepinephrine increases BBB permeability by elevating
Na+/K+-ATPase activity, leading to augmentation of ISF
secretion, and subsequently contributing to the glymphatic
function (73). The noradrenergic system in the brain has critical
roles in cognitive activities, including attention, perception, and
memory function (41, 74). Loss of locus coeruleus neurons and
abnormal levels of CSF norepinephrine were observed in the
AD brain (75, 76). In addition, several subtypes of adrenergic
receptors have been shown to control the production of Aβ

(77) or mediate Aβ toxicity (78), involved in AD pathogenesis.
Altogether, norepinephrine contributes to the function of the
glymphatic system and is implicated in the neuropathology of AD
including memory loss.

The APOE gene, the only strongly confirmed genetic risk
factor for AD, has been associated with cognitive impairment
(79), lipid metabolism, and various brain pathologies (80). The
CSF is a major source of APOE for ISF because it circulates
through the brain parenchyma via the glymphatic pathway
(15, 81). The CSF contributes to the delivery of APOE to the
brain via the glymphatic system, for molecules including Aβ (9),
lipophilic molecules (30), and tau (82). Apolipoprotein E has
been known to regulate transport and metabolism of cholesterol
in the periphery and CNS (83), and is further associated with
neurite growth, synaptic plasticity, and cognitive function (84).
The APOE polymorphisms influence the structure and function
of the glymphatic pathway (85) and there is a strong correlation
between the ε4 allele and neurodegeneration (86).

In conclusion, dysfunctions of the glymphatic pathway and
subsequent impairment of metabolite circulation aggravate
the onset and development of AD. Further studies on the
implication of the glymphatic system in AD are necessary
for the development of effective therapeutic strategies
for AD.

THE GLYMPHATIC SYSTEM AND
DIABETES-INDUCED DEMENTIA

Diabetes has been known to be a risk factor for various
complications including hypertension, cardiovascular diseases,
and neurological diseases, such as stroke and AD (87, 88).
Recently, diabetes-induced dementia has been highlighted in
CNS studies, showing that diabetes features, including insulin
resistance and hyperglycemia, can trigger impairment of memory
function, neuronal cell damage, and neuroinflammation (18,
89–91). A recent study demonstrated synaptic dysfunction
through the loss of synaptic proteins in hyperglycemia-induced
dementia (92). Moreover, in line with the diagnosis of diabetes
in patients with cortical embolism due to atherothrombosis
and stroke, diabetes conditions may alter the arteriolar
structure and influence the perivascular space in the brain
(93). A previous study demonstrated that Aβ plaques were
accumulated in the brains of diabetes patients affecting cognitive
function (94). Other experimental studies showed that diabetes
induced by high-fat and/or high-sugar diets triggered Aβ

accumulation in the brain (95–98). Therefore, more study on
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the mechanisms linking diabetes and dementia is necessary for
understanding of the onset and progression of diabetes-induced
dementia.

Type 2 diabetes mellitus is characterized by enhanced
glymphatic CSF influx and a slowing of the interstitial
solute clearance, leading to cognitive decline (13). Several
studies have reported diabetes-associated cerebrovascular
dysfunctions, neurodegenerative processes, and cognitive
impairments following abnormal glycemia and insulinemia
(5, 10, 12, 99). Another study has reported that
hyperglycemia could result in cerebral neurovascular
dysfunction, neurotoxicity, and impairment of neural insulin
metabolism, leading to cognitive impairment (100). Chronic
microvascular dysfunction caused by hyperglycemia can
also cause severe cognitive dysfunction in diabetes patients
(5, 10, 99).

Moreover, diabetes is associated with vascular pathology.
It contributes to the development of small blood vessel
disease and triggers the impairment of glymphatic activity,
leading to cognitive dysfunction (14, 101, 102). Several
studies have shown that BBB integrity was compromised
and permeability was dramatically increased in the brain
of diabetes patients (103). The BBB protects the brain
against toxic components that may cause synaptic dysfunction
or generate neurotoxins and maintains homeostasis (104,
105).

Hyperglycemia caused by diabetes is also related to neuronal
pathogenesis by inducing the generation of excessive reactive
oxygen species (ROS) and microvascular complications
(106) and by suppressing the supply of vitamin C as an
antioxidant and scavenger of free radicals into the brain,
subsequently promoting oxidative stress in the brains of
diabetes patients (107, 108). In addition, diabetes results
in abnormal cerebral neovascularization and neurovascular
remodeling (109). Brain endothelial cells are vulnerable to
hyperglycemic stress in diabetes (110) and diabetes-induced
hyperglycemia is associated with neurodegenerative diseases
such as AD (111). Hyperglycemia promotes the generation
of excessive superoxide species and boosts the activation
of the protein kinase C (PKC) and advanced glycation end
products (AGE) pathway, leading to increased BBB permeability
mediated by the disruption of tight junction proteins and
increased vascular endothelial growth factor (VEGF) expression
(112, 113).

Moreover, one study demonstrated that the correlation
between diabetes and AD depends on the APOEε4 allele, which
was involved in lipid homeostasis in diabetes (114). In diabetes
patients, the increase of APOEε4 increases the risk for AD
compared with nondiabetic patients (115).

In conclusion, diabetes triggers the disruption of the BBB
and increase of APOE and ultimately aggravates cognitive
decline throughmetabolite imbalance due to glymphatic pathway
dysfunction. Thus, the investigation and the understanding of
the role of the glymphatic system in diabetes-induced dementia
are necessary for the development of an efficient treatment for
diabetes-induced dementia.

THE IMPORTANCE OF SLEEP IN
DIABETES-INDUCED DEMENTIA

Sleep is necessary for the bulk flow of brain ISF and clearance
of solutes, and is also involved in memory function and
synaptic plasticity through several mechanisms, including
Ca2+/calmodulin-dependent protein kinase II (CaMKII)
signaling (16, 116–118). It was reported that astrocytes undergo
contraction during sleep, and subsequently, the extracellular
space is enlarged and the flow of ISF is enhanced. These processes
promoted the clearance of macromolecular metabolites from the
brain, during sleep (15). The disturbance of glymphatic transport
due to inadequate sleep may mediate neuropathologies in AD,
given that sleep disruption aggravates the assembly of Aβ plaques
and tangles (119, 120). Recent studies have focused on the effect
of sleep deprivation on synaptic plasticity and on structural
changes of brain regions related to learning and memory
(121, 122), and the progression of AD (123–125). Moreover,
impaired glymphatic transport results in a 40% decrease in the
clearance of Aβ in the brain of mice (54). Sleep disturbance
is also associated with the deterioration of diabetes conditions
such as insulin resistance (126), the dysregulation of energy
and glucose homeostasis in healthy adults (127, 128), and the
dysregulation of body weight (129). Thus, the influence of sleep
on glymphatic transport is an important aspect of manipulation
to control glymphatic system dysfunction in diabetes-induced
dementia.

During sleep deprivation, norepinephrine secretion is
increased (130), while glymphatic fluid transport is reduced
(131). Diabetes conditions, such as hyperglycemia, also cause
changes in the CSF concentrations of norepinephrine (132–134).
Norepinephrine results in vasoconstriction of the pial arteries
(135) and leads to the reduction of CSF inflow during sleep
deprivation (9). In addition, several studies have demonstrated
that the impairment of glymphatic pathway activity caused by
sleep deprivation triggered APOE-related neuronal dysfunction
in AD, leading to cognitive decline (11, 16). Hence, the
modulation of norepinephrine secretion and other related
pathways may enhance the function of the glymphatic system
and ameliorate memory in diabetes-induced dementia.

Sleep is influenced by the hormone melatonin, which is
mainly produced in the pineal gland, which receives input from
the suprachiasmatic nucleus in the hypothalamus (136, 137).
Melatonin is the major hormone regulating the circadian rhythm
(138) and is also known to regulate memory function by acting
on hippocampal neurons involved in memory formation (139,
140). Several studies have reported that melatonin could control
hippocampal synaptic plasticity by binding to the melatonin
specific receptor (141) and alter synaptic transmission and
long-term potentiation in the hippocampus (142). In addition,
melatonin could regulate calcium influx by controlling the
conductance of voltage-gated Ca2+ ion channels and NMDA
receptors (143, 144) in gamma-aminobutyric acid (GABAergic)
neurons (145). Based on these studies, supplementation with
melatonin has been considered as an effective method to alleviate
sleep onset latency and to improve sleep quality in children
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FIGURE 1 | Schematic image illustrating the relationship between the glymphatic system and sleep. Diabetes conditions trigger the impairment of the glymphatic

pathway. The decrease of glymphatic activity results in reduced efficiency for clearing toxic peptides, dysregulation of glucose metabolism, insulin resistance, and

dysregulation of apolipoprotein E (APOE) circulation in the brain, leading to cognitive decline. Sleep improves the clearance of toxic amyloid-beta (Aβ), the secretion of

norepinephrine, and the circulation of APOE and melatonin in the brain. Collectively, sleep is associated with the alleviation of the impaired glymphatic function, leading

to the enhancement of memory in diabetes-induced dementia. The white arrows indicate the glymphatic flow.

(146) and adults (147, 148). Furthermore, the increase of
melatonin secretion during sleep improves the sleep quality
by enhancing the amplitude of circadian oscillations through
melatonin receptors MT1 and MT2 (149).

Dysregulation of melatonin results in cognitive impairment
by synaptic dysfunction. Recently, two studies have suggested
that impairments of the sleep/wake cycle owing to sleep
disturbances increase T2DM risk (128, 150). A genome-
wide study revealed the relationship between single nucleotide
polymorphisms in the MTNR1B gene (encoding MT2) and
T2DM (151). In addition, decreased serummelatonin levels have
been found in both diabetes mouse models and diabetes patients
with hyperinsulinemia (152). Oral administration of melatonin
alleviated hyperglycemia, hyperinsulinemia, and hyperlipidemia
in T2DM rats (153, 154). Melatonin suppressed the levels
of cytosolic cyclic adenosine monophosphate and/or cytosolic
guanosine monophosphate and regulated insulin secretion
via these receptors (155). Moreover, a study demonstrated
that sleep disturbance in AD is related to the physiological
changes in melatonin function (156). Furthermore, given
that melatonin administration could attenuate the rate of
AD progression, inhibit the accumulation of Aβ (157, 158),
decrease neuronal cell death (159, 160), and reduce insulin
resistance (152), the decrease in melatonin levels due to
sleep disturbance might be associated with the impairment of
the glymphatic system in diabetes-induced dementia. Diabetes

triggers memory dysfunction in rats, which can be alleviated
by melatonin treatment (161). Considering previous evidence,
we suggest that melatonin administration should be considered
as an approach to reduce neuropathology in diabetes-induced
dementia.

A recent study demonstrated that impaired sleep duration
was recorded in hyperglycemia patients (162). Epidemiological
studies also showed that short duration and poor quality of sleep
increase the risk of diabetes in adults (163, 164). Consequently,
sleep impairment is strongly related to diabetes pathologies such
as hyperglycemia (165).

The study reported that the lateral decubitus body position
during sleep leads to an enhanced influx of a fluorescent CSF
tracer into the cerebrum with a reduction of interstitial solute
retention and an increase of clearance efficiency (43). Smooth
glymphatic flow during sleep contributes to the improvement
of paracrine signaling, whereas the decline in glymphatic flow
suppresses the perivascular lipid transport, the astrocytic Ca2+

signaling within the cortex (30), and the opening of NMDA
receptors (166). Moreover, a recent study suggested that AQP4-
mediated glymphatic pathway improvement could be used as a
therapeutic treatment for AD patients (167). The AQP4 gene
could regulate the progression of cognitive dysfunction in AD,
and this was related to poor sleep and Aβ burden (168). The
genetic variation in AQP4 was also identified to be a factor
correlating sleep and Aβ accumulation in the brain (169).
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Based on the previous evidence stated, the sleep-induced
metabolite clearance through the glymphatic system has a
critical role in neuropathological features, including excessive
accumulation of Aβ in brains with diabetes-induced dementia.
Thus, we highlight that the improvement of glymphatic system
function by the regulation of sleep may be a promising and
effective strategy to reduce the neuropathological symptoms
observed in diabetes-induced dementia.

CONCLUSIONS

In diabetes-induced dementia, the glymphatic system
dysfunction characterized by the failure of interstitial solute
clearance leads to extracellular solute accumulation and
cognitive decline. Even though there is no experimental
approach providing a direct relationship between sleep and
the glymphatic system, many studies have implicated their
relationship. Thus, we highlight the necessity for further
exploration of the improvement of glymphatic system through
sleep modulation toward attenuation of the neuropathology
in diabetes-induced dementia. Here, we have reviewed the
dysregulation of the glymphatic pathway in diabetes-induced
dementia, the effects of sleep on glymphatic system function,
including the improvement of toxic peptide clearance, the

enhancement of melatonin secretion, the regulation of APOE
expression, the improvement of synaptic plasticity, the regulation
of norepinephrine levels, and the alleviation of insulin resistance
(11, 120, 128, 130, 170, 171) (Figure 1).

Hence, we suggest that the improvement of glymphatic
function by sleep regulation may be a novel target
for attenuating neuropathological symptoms such as
memory loss in diabetes-induced dementia, through the
enhancement of the circulation of melatonin, APOE and
norepinephrine, and reduction of Aβ aggregation in the
brain.
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