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Background: Traditional studies on the neural mechanisms of tremor use coherence

analysis to investigate the relationship between cortical and muscle activity, measured by

electroencephalograms (EEG) and electromyograms (EMG). This methodology is limited

by the need of relatively long signal recordings, and it is sensitive to EEG artifacts.

Here, we analytically derive and experimentally validate a new method for automatic

extraction of the tremor-related EEG component in pathological tremor patients that aims

to overcome these limitations.

Methods: We exploit the coupling between the tremor-related cortical activity andmotor

unit population firings to build a linear minimummean square error estimator of the tremor

component in EEG. We estimated the motor unit population activity by decomposing

surface EMG signals into constituent motor unit spike trains, which we summed up into

a cumulative spike train (CST). We used this CST to initialize our tremor-related EEG

component estimate, which we optimized using a novel approach proposed here.

Results: Tests on simulated signals demonstrate that our new method is robust to

both noise and motor unit firing variability, and that it performs well across a wide range

of spectral characteristics of the tremor. Results on 9 essential (ET) and 9 Parkinson’s

disease (PD) patients show a∼2-fold increase in amplitude of the coherence between the

estimated EEG component and the CST, compared to the classical EEG-EMG coherence

analysis.

Conclusions: We have developed a novel method that allows for more precise and

robust estimation of the tremor-related EEG component. This method does not require

artifact removal, provides reliable results in relatively short datasets, and tracks changes

in the tremor-related cortical activity over time.

Keywords: pathological tremor, EEG decomposition, surface EMG decomposition, Parkinsonian tremor, essential

tremor
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INTRODUCTION

The role of cerebral cortex in the generation of pathological
tremor has been widely studied in essential as well as
in Parkinsonian tremor. Accumulated evidence suggests that
tremor-related cortical activity exists in both types of tremor (1–
5). Moreover, because of the significant coupling between the
cortical activity and the activity in the affected muscles, motor
cortex is thought to contribute to tremor generation (2, 3, 6–15).

To the best of our knowledge, all of the existing studies
assessed corticomuscular coupling by computing the
coherence between cortical activity, recorded with EEG or
magnetoencephalograms (MEG), and an estimate of muscle
activity derived from the surface EMG (2, 3, 6–13, 15, 16). Since
the coherence function reveals a linear relationship between
two signals at a given frequency (17), coherence at the tremor
frequency is assumed to indicate tremor-related EEG activity.
Although robust to noise at different frequencies, coherence
only provides an indirect measure of corticomuscular coupling,
and does not enable tracking changes in tremor properties over
a short time scale. Furthermore, it requires off-line processing
of relatively long EEG and EMG recordings, which need to
be cleaned of artifacts beforehand. This limits the comparison
of the tremor-related cortical activity across conditions and
diseases.

Besides the coherence function, the cortical tremor
component could also be potentially identified using blind
source separation (BSS) algorithms. For example, Delorme et al.
(18) identified, using independent component analysis (ICA)
techniques, a number of components in the EEG activity of
healthy subjects performing a working memory task. However,
no group has demonstrated the feasibility of separating the
tremor component from other brain activity. Notably, all
the ICA/BSS algorithms proposed so far build on general
assumptions about the EEG properties such as independence of
the identified components, and would not exploit the specific
characteristics of tremor, such as the relationship between
sensorimotor cortical activity and muscle activity. As a result,
they would suffer from large inter-trial and inter-subject
variability in convergence toward the specific (tremor-related)
EEG component.

With the exception of Gallego et al. (15), where we used
cumulative motor unit spike trains (CST) to characterize the
neural drive to the muscle, the authors of all of the studies
mentioned above used the rectified surface EMG as an estimator
of muscle activity. However, recent studies have shown that
the CST of several (e.g., ≥5) motoneurons that innervate a
muscle provide a more accurate representation of the synaptic
inputs to a motoneuron pool than the EMG envelope (19–
21). In addition, rectification of the surface EMG may or
may not enhance the detection of synaptic inputs to the pool
depending on the muscle contraction level (22). Indeed, as
shown in Farina et al. (22) rectification is preferable over the
raw EMG only at low contraction levels. Therefore, methods
based on the CST rather than on the traditional surface EMG
analysis are likely to identify tremor-related cortical activity more
reliably.

In this study, we present and validate a novel method to
identify tremor-related cortical activity. This method builds
on the assumption that the tremor-related EEG component
is stochastically phase-locked to the motor unit firings in a
tremulous muscle. This implies close to linear relationship
between the cortical activity and the firings of the pool of motor
units that form a muscle (15, 21, 23). This relationship has been
experimentally demonstrated before by the existence of EEG-
EMG coherence at the tremor frequency (2, 3, 6–13, 15, 16, 24).

In our method, motor unit spike trains are identified from
non-invasively recorded multichannel surface EMG recordings
using the Convolution Kernel Compensation (CKC) technique
(25–27). These firings are then used to construct the phase-
locked estimator of the tremor-related activity in EEG. By using
simulated data, we show that our method tracks reliably the
tremor activity for a wide range of physiologically realistic
conditions. We then apply this method to recordings from
nine essential tremor (ET) and nine Parkinson’s disease (PD)
patients, and show that the method outperforms the traditional
coherence approach when detecting tremor-related cortical
activity.

MULTICHANNEL EMG-DRIVEN
IDENTIFICATION OF TREMOR-RELATED
ACTIVITY

We first assume that EEG signals are linear mixtures of brain
oscillations (rhythms) and noise (Figure 1). Then, using this data
model, we build a linear minimum mean square error (LMMSE)
estimator of the cortical tremor activity that exploits the large
synchronization of motor unit firings in pathological tremor.

Data Model
Assume themixingmodel depicted in Figure 1, and denote theM

EEG channels by y (n) =
[

y1 (n) , y2 (n) . . . yM(n)
]T
, where the

n-th sample of the i-th channel appears in the i-th row of y (n).
The model inputs, sj(n), represent the brain rhythms in the EEG.
For example, in a normal condition, these inputs would reflect the
alpha, beta or gamma rhythms. As in other BSS/ICA EEG studies,
artifacts, such as blinking artifacts, would also be considered a
model input. In the case of pathological tremor, one or more of
these inputs reflects tremor activity.

The mixing model in Figure 1 can be expressed in a matrix
form as.

y (n) = As (n) + ω(n) (1)

Where

s (n) = [s1 (n) , s1 (n− 1) . . . s1 (n− L+ 1), s2 (n) . . .

s2 (n− L+ 1) . . . sJ(n− L+ 1)
]T

(2)

contains blocks of L samples from J sources and the noise vector

ω (n) =
[

ω1 (n) ,ω2 (n) . . . ωM(n)
]T

is modeled as a zero-mean
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FIGURE 1 | Proposed mixing model of the EEG. CST is coupled to the tremor EEG component s1(n) via an unknown function f (n). The other sources [s2(n) to sN (n)]
represent the non-tremoric brain rhythms in the EEG. The impulse responses amj project the j-th source sj(n) to the m-th EEG channel ym(n), whereas ωm(n) denotes
the additive noise in the m-th EEG channel.

ergodic Gaussian process, spatially and temporarily independent
of the activity in s(n). The mixing matrix

A =







a11 · · · a1J
...

. . .
...

aM1 · · · aMJ






(3)

contains stationary impulse responses amj =
[

amj(0) · · · amj(L− 1)
]

that convolve the j-th input
source and add the result to them-th EEG channel.

The model described in Equation (1) is typically
underdetermined, with more inputs than measurements.
However, low energy inputs can always be modeled as
physiological noise and, thus, included in ω (n). We can
also extend y (n) by adding F-1 delayed repetitions of each EEG
channel:

y (n) =
[

y1 (n), y1 (n− 1) . . . y1 (n− F + 1), y2 (n) . . .

y2 (n− F + 1) . . . yM(n− F + 1)
]T

(4)

This increases the number of outputs in model (1) and,
more importantly, compensates potentially different time delays
of same source in different EEG channels (see EMG-Driven
Decomposition of EEG section for details). This is important
because the same rhythm may be present at different EEG
electrodes at close but different time lags (this assumption is
further confirmed by the results in Results section). The extended
input vector s and mixing matrix A now change to:

s (n) = [s1 (n) . . . s1 (n− L− F + 2), s2 (n) . . .

s2 (n− L− F + 2) . . . sJ(n− L− F + 2)
]T

(5)

A =







A11 · · · A1J
...

. . .
...

AM1 · · · AMJ






(6)

with

Amj =







amj · · · 0
...

. . .
...

0 · · · amj







For the purpose of mathematical derivations in Appendix, we
will further represent the EEG recordings y(n) as analytic signals.
Note that this does not alter the assumed mixing model, and
can be readily fulfilled by applying Hilbert transform to the EEG
signals.

EMG-Driven Decomposition of EEG
By temporarily neglecting the impact of noise ω (n), the LMMSE
estimator of the input sj(n) is given by (25)

ŝj (n) = cHs j y C
−1
y y (n) = c Hs j s A

H
(

AC s A
H
)−1

As (n)

= c Hs j s C s
−1 s (n) , (7)

where superscript H denotes conjugate transpose,
csjy=E

(

sj(n)y(n)
)

is the cross-correlation vector between

sj(n) and y(n), and csjs=E
(

sj(n)s(n)
)

is the cross-correlation

vector between sj(n) and s(n). Matrices Cs and Cy denote
the correlation matrices of s(n) and y(n), respectively. This
LMMSE estimator is Bayesian optimal in the minimum square
error sense, also in the presence of noise, but requires a priori
knowledge of the cross-correlation vector csjy. In experimental

conditions csjy is not known and needs to be estimated from the
measurements.

To obtain an estimate of csjy, we developed a method

that is based on the assumption that, in an affected muscle,
the motor unit firings are phase-locked to the tremor-related
cortical activity. This assumption follows from the observations
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of significant coherence (linear relationship) between the EEG
and the rectified EMG (1–10, 13, 14, 16) or, more directly,
between the EEG and the motor unit CST (15). Remarkably, the
number of motor units needed to represent population behavior
during tremor is not very large, which in practice will favor the
implementation of the proposed method. For example, in Negro
and Farina (21) and Gallego et al. (15), the coherence between the
CST and the EEG was nearly maximal with only five motor units
and did not increase significantly when more motor units were
added to the CST.

To obtain an estimate of csjy, we first define the firing pattern

of the r-th tremor-affected motor unit:

tr (n) =
∑Kr

k= 0
δ

(

n− k
fs

fr
− dr − 1drk

)

, r = 1, ...,R,

(8)
where δ(τ ) denotes the unit-sample impulse, dr is the common
time lag (in samples) of the pulses in tr(n) due to the transmission
from motor cortex, 1drk is the intrinsic motor unit firing time
variability (in samples), and is frequently defined as the k-th
realization of Gaussian random variable 1drk ∼ N(0, σ1dr ), fr
is the motor unit firing frequency, f s is the sampling frequency
and Kr is the number of firings in the observed time interval.
Note that, in order to simplify analytical derivations, we ignored
the doublets in the motor unit firing pattern (8). This has small
impact on the results presented herein, as doublets can always be
modeled as two different instances of the k-th motor unit firing
with different 1drk values. Furthermore, as shown in Results
section, when respecting its physiologically induced range, 1drk
has almost negligible impact on the proposed tremor estimation.

The cross-correlation between the EEG component sj(n) and
y (n) can be estimated as (see derivation in the Appendix)

ĉsjy ≈
α

N

R
∑

r= 1

N
∑

η= 1

tr (η) y(η) (9)

where N is the number of signal samples and factor α is defined
in the Appendix). Due to the amplitude ambiguity of source
components extracted by BSS (28), the scalar factor α can be
neglected and the EEG-component that is phased-locked to the
firings of the J motor units expressed as

ŝj (n) = ĉHsjyC
−1
y y (n) (10)

By knowing ŝj (n) cross-correlation vector ĉsjy in (9) may be
recalculated as

ĉsjy ≈ F
−1
(

g
(

Ŝj
(

f
)

))

y(η) (11)

where Ŝj
(

f
)

= F
(

ŝj (n)
)

is Fourier transform of ŝj (n) and
g (x) = x∗ |x| denotes the element-wise product of element x
with its absolute value. Equations (10, 11) are then iteratively
recalculated until the convergence is reached. In our study,
iterations were stopped when the second norm of ŝj (n) changed
for <0.1%. These iterations emphasize the spectral peaks in the
extracted EEG component and suppress the wideband frequency
components with low energies.

Note that (9) is only true when none of the other oscillatory
inputs in s(n) is a higher harmonic of the input sj(n). In the
opposite case, (10) would identify both the tremor-related EEG
component and its higher harmonics as one joint input (see
explanations in the Appendix).

The presented method still needs a good approximation of the
motor unit firing times, t̂r (n), in order to accurately estimate ĉsjy.
This can be obtained from high-density surface EMG recordings
using the CKC decomposition technique (25, 27, 29–31), which
has already been demonstrated to be highly robust to high levels
of motor unit synchronization (27).

SIMULATIONS AND EXPERIMENTAL
RECORDINGS

The presented method was validated on a set of synthetic
signals and on experimental recordings from 18 tremor-affected
patients.

Simulations
First, we tested the proposed method in a simple model that
generated EEG-like oscillations as mixtures of sinusoidal sources
with time-varying amplitudes. Our goal was to test the method’s
ability to accurately reconstruct such EEG-like sources from their
convolutive mixtures, and to study its sensitivity to its three main
parameters: extension factor F in (4), motor unit firing variability
1drk and signal-to-noise ratio (SNR).

The simulated signals comprised 10 (J = 10) mutually
orthogonal sinusoids sj (n) and their first higher harmonics as
input signals:

sj (n) = a(n) ·
(

B · sin
(

2π fjn− φj

)

+H1 · sin
(

4π fjn− φj

))

,

(12)

where a(n) is an amplitude modulator generated by filtering
white noise with a second order low-pass Butterworth filter with
cut-off frequency of 1Hz. The amplitude B was set equal to
1, whereas the amplitude of the first harmonic, H1, was varied
across simulations and was set to 0, 0.2, 0.4, 0.6, 0.8, and 1. This
way we simulated the experimentally observed ratios between
the basic tremor frequency and its first harmonic (9, 13, 32).
The frequency fj of the oscillatory inputs was set to 5+j/2Hz
with j = 1, 2 . . . 10, and the phase φj was randomly selected
from the interval [0, 2π]. The sampling frequency was set
to 1024Hz and each simulation lasted 30 s. We assumed that
the first oscillatory input, s1(n), represented the tremor-related
component we wanted to detect.

Next, we simulated the spike trains of ten motor units, tr(n)
with r = 1, 2 . . . 10, by finding the local maxima of the first
generated oscillatory source, s1(n). We imposed a corticospinal
delay dr = 10 ms in Equation (8) to simulate the physiological
delays (due the transmission from motor cortex to the output
of the motoneuron pool) between the tremor-related EEG
component s1(n) and the simulated motor unit firing patterns
tr (n). Finally, the firing variability 1drk of each individual motor
unit tr (n) was modeled as Gaussian random variable 1drk ∼

N(0, σ1dr ) (33, 34) (see Appendix). The standard deviation σ1dr
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was set to 0, 10, and 20% of the average inter-spike interval in
tr (n), respectively (35–38). Ten Monte Carlo simulation runs
were performed for each value ofH1 and σ1dr , resulting in a total
of 180 (10× 6× 3) simulation runs.

We computed 15 synthetic channels y(n) in Equation (1),
with the mixing matrix A having dimensions 15 × 50. The
length of the impulse responses amj(l) in (3) was set to L = 5
samples. To simulate different delays in the representation of the
oscillatory inputs sj (n) across the 15 channels, each element amj

had one randomly selected element set to a non-zero random
value from a normal distribution N(0, 1), whereas the remaining
four elements were set to zero. In each simulation run, five
different realizations of zero-mean random Gaussian noise were
added to the measurements, with the SNR ranging from 0 to 20
dB in steps of 5 dB. This resulted in 900 (180 × 5) simulated
sets of signals. Note that our simple generative model does
not realistically represent actual EEG signals; our goal was to
use the simulation results to identify the range of parameter
values that was adequate for the experimental data analysis. All
the simulations were performed in Matlab version 8.6.0.267246
(R2015b).

Experimental Recordings
We recorded data from nine ET patients (four females and five
males; age, mean ± SD: 70 ± 6 years, range 61–79 years) and
nine PD patients (three females and six males; age, mean ± SD:
64 ± 14 years, range 44–88 years) at Hospital 12 de Octubre,
Madrid, Spain. In the ET patients, tremor severity ranged from
mild (two patients) to severe (three patients), with a mean score
of 36 ± 12 (mean ± SD; range 20–51) according to the Fahn-
Tolosa-Marin scale (39). In the PD patients, tremor severity also
ranged from mild (five patients) to severe (two patients), with a
mean score of 12 ± 6 (mean ± SD; range 5–23) according to the
UPDRSIII scale (40). All the participants included in the study
gave their written informed consent after full explanation of the
procedure. The study, which was conducted in accordance with
the principles of the Helsinki declaration of 1975, was approved
by the ethical standards committee on human experimentation at
the University Hospital “12 de Octubre” (Madrid).

The experimental protocol comprised three repetitions of
a 30 s long postural task, during which patients kept their
arms outstretched, parallel to the ground for 30 s. During these
tasks, we measured EEG, multichannel surface EMG, and wrist
kinematics. EEG was recorded with 32 passive Au or active
Ag/AgCl electrodes (depending on the session) placed on a cap
that fulfilled the extended 10/20 system (g.Tec GmbH, Graz,
Austria). Electrodes were placed in the following positions: AFz,
F3, F1, Fz, F2, F4, FC5, FC3, FC1, FCz, FC2, FC4, FC6, C5, C3,
C1, Cz, C2, C4, C6, CP5, CP3, CP1, CPz, CP2, CP4, CP6, P3,
P1, Pz, P2, and P4. The ground was placed on the AFz position,
with linked earlobes used as a reference. Before positioning
the electrodes the skin was slightly abraded with abrasive paste
(Meditec–Every, Parma, Italy) and conductive gel (Meditec–
Every, Parma, Italy) was put under the electrodes. The recorded
signals were amplified (gUSBAmp, g.TechGmbH,Graz, Austria),
band–pass (0.5–60Hz) and notch filtered (50Hz), to remove

power line interference, and sampled at 256Hz with 24 bit
resolution.

Right wrist kinematics were recorded with inertial
measurement units (IMUs) comprising three-axis
accelerometers, magnetometers and gyroscopes (Tech MCS,
Technaid S.L., Madrid, Spain). These sensors were fixed with
surgical tape over the hand dorsum and the distal third of the
forearm (on the dorsal side, close to the wrist), respectively,
with one of their axes aligned to that of the wrist. Data were
sampled at 100Hz by a 12-bit A/D converter and low pass
filtered (<20Hz). Wrist kinematics was assessed as the difference
between the measured accelerations in the axis parallel to the
wrist (41).

Surface EMG signals were recorded from the right wrist
flexors and extensors with 13 × 5 electrode grids (LISiN–
OT Bioelettronica, Torino, Italy, 8mm interelectrode distance).
The electrode grids were centered over flexor carpi radialis
and extensor digitorum communis, respectively. Before the
placement of the electrode grid, the skin was lightly abraded
using abrasive paste (Meditec–Every, Parma, Italy) and cleansed
afterward. Electrical conductivity was ensured by filling each
of the electrodes in the grids with conductive gel (Meditec–
Every, Parma, Italy). A soaked bracelet placed around one of
the wrists was used as reference. The surface EMG signals were
amplified as bipolar recordings along the direction of the fibers,
band-pass filtered (3 dB bandwidth, 10–750Hz), and sampled
at 2,048Hz by 12–bit A/D converter (LISiN–OT Bioelettronica,
Torino, Italy). We synchronized the EEG, EMG, and IMU
recordings using a common clock signal, which was fed into each
acquisition systems. The rising edge of the first and last clock
signal pulses were identified using a purposely-developed Matlab
script. Data were then resampled to 2,048Hz using a routine that
incorporated an anti-aliasing filter.

Data Analysis
In the experimental recordings, individual motor unit firing
patterns were identified from the multichannel surface EMG
using the CKC algorithm (25, 27, 29). The pulse-to-noise ratio
metric (PNR) (42) was used to assess the accuracy of firing
estimation for each identified motor unit. Only reliably identified
motor units (PNR > 30 dB; accuracy of motor unit firing
estimation >90%) were used for further analysis (42), whereas
all the remaining motor units were discarded.

We estimated the tremor EEG component with Equation (7),
using the firings of all the identified (experimental recordings)
or simulated (simulations) motor units to estimate the cross-
correlation ĉsjy between the oscillatory components and the EEG
signals, as defined in Equation (10). We tested different extension
factors, from F = 1 to F = 15. Due to the amplitude ambiguity
(see Appendix), the estimate ŝ1 (n) was further normalized to
yield a unit norm. Finally, Equations (10, 11) were iteratively
applied until the convergence criterion was reached (the second
norm of ŝj (n) changed for <0.1%).

The delay between the motor unit CST and the estimated
tremor EEG component ŝ1 (n) was estimated as the argument of
the cross spectrum at the basic tremor frequency fb (17, 43).
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In the simulations, we further assessed the accuracy of our
method by computing the normalizedmean square error (NMSE;
Equation 13) and the cross-correlation coefficient (CC) between
the simulated and estimated tremor inputs, ŝ1 (n) and s1 (n), after
both signals were aligned in time:

NMSE =

∑N
n= 1

(

s1 (n)−ŝ1 (n)
)2

∑N
n= 1 (s1 (n))2

· 100 (13)

In the experimental data, we compared the coherence between
the extracted tremor component and the CST in each muscle to
the coherence between the CST and the Laplacian-filtered EEG
(15) (without any artifact rejection applied). In all these cases the
CST was smoothed by convolving it with a 25ms long Gaussian
window. The 99% confidence limit of the coherence function was

obtained as (17):

1− (0.01)1/(L−1) (14)

where L is the number of disjoint 1-s segments used in the
spectral estimation.

Finally, we computed the relative power H1/(H1+B) of the
first tremor harmonic with respect to the basic tremor frequency
in the estimated tremor EEG component, ŝ1 (n).

Due to their non-Gaussian distribution (Lilliefors test,
p > 0.05), the non-parametric Kruskal–Wallis test was used to
compare the differences between the ET and PD patient groups,
whereas the Wilcoxon signed rank test was used for paired
comparisons. The significance level was set to p < 0.05 and
p < 0.01, respectively (see Results section for details).

FIGURE 2 | Estimation of the simulated tremor component. (A) Representative example showing that the estimated tremor component (blue line) was similar to the

simulated source (red line). In this example, simulation parameters were SNR = 10 dB and σ1dr = 10%. (B,C) impact of different values of the extension factor F on

the estimated cross-correlation coefficient (CC), the NMSE between estimated and reference tremor component, and the H1/(H1+B) ratio. Results are averaged over

10 simulation runs. Mean values are depicted as thick blue lines, standard deviations as black dashed lines. In the H1/(H1+B) ratio plots, the simulated reference

values are depicted with red dashed lines.
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FIGURE 3 | Summary results of estimation of the tremor component across simulated conditions. (A,B) show the NMSE and the cross-correlation (CC) between the

estimated and simulated tremor source, and the estimated H1/(H1+B) ratio as a function of parameters SNR and σ1dr for simulated H1/(H1+B) ratios of 0.0 and

0.286, respectively. Results are averaged over ten simulation runs and depicted as a mean (colored surfaces) and mean + SD (black lines). Note that SD was

negligibly small.

RESULTS

Simulated Data Analysis
Figure 2A shows a representative example of detection of the
tremor component in the simulated signals, demonstrating that
the proposed method accurately extracts the tremor-related
component from the synthetic signals. Figures 2B,C show the
correlation between the estimated and simulated sources, the
NMSE and the estimated H1/(H1+B) ratio as a function of
extension factor F, for two different SNR and σ1dr values. Note
the high correlation and small NMSE between the simulated
and the estimated tremor-related component, and the accuracy
with which the ratio H1/(H1+B) was detected when extension
factor was set to F = 3 or higher. For a SNR of 20 dB,
extension factors from F = 2 to F = 5 were optimal, whereas
for lower SNRs, extension factors from F = 4 to F = 9 were
optimal (Figure 2C). In both cases the estimated H1/(H1+B)
ratio was largely independent from the extension factor in
the interval F = 3 to F = 10. All metrics degraded slightly
when the model looked too many samples back in the past
(F > 10). Based on these results and on the coherence analysis
of experimental data (Figure 6), we selected an extension factor
F = 8 for further analyses. Note that Figure 6 indicates that our
results would hold across a broad range of values of F, from
F = 5 to F = 10.

Figures 3A,B summarize the NMSE, CC and H1/(H1+B)
ratio as functions of the SNR and motor unit firing time

variability σ1dr at two different simulated H1/(H1+B) ratios. In
both cases, the NMSE decreased and the CC increased as the SNR
increased, whereas they did not change significantly with σ1dj ,
which suggests that the simulated intrinsic variability in motor
unit firing did not affect the source estimation. The estimated
H1/(H1+B) ratio did not change significantly with the SNR or
σ1dr and was always very close to the simulated H1/(H1+B)
ratio. Namely, when averaged over all simulated SNRs, σ1dr and
H1/(H1+B) ratios, the difference between the simulated and
estimated H1/(H1+B) ratio was 0.01± 0.05.

The delay between the estimated and simulated sources, ŝj (n)
and sj (n) was largely independent of the SNR, σ1dr , and the
simulated H1/(H1+B) ratios, averaging 0.4 ± 1.4ms across all
combinations of parameters. When a 10ms corticospinal delay
was imposed between the motor unit firings and their cortical
drive sj (n), the estimated delay averaged 11.0 ± 1.6ms. This
implies a 1.0 ± 1.6ms difference with the simulated 10ms delay.
Despite this estimate being quite accurate, we want to note that
the current simulations do not generate signals as complex as the
recorded EEGs. Nor did the simulations incorporate the delays
due to propagation of the motor unit action potentials along the
muscle fibers or due to EMG decomposition with CKC (25–27).
All these factors contribute to the unknown global delay between
0 and ∼15ms and cannot be easily estimated in experimental
conditions. Thus, we do not expect the experimental estimates
of corticospinal delay to be as accurate as those obtained based
on the model.
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FIGURE 4 | Example of tremor data from an essential tremor patient performing the postural task. (A) Wrist acceleration; (B) identified motor unit firings for the wrist

extensors (red squares) and flexors (blue squares) along with the corresponding smoothed CST (red and blue solid lines; the blue trace is inverted for representation

purposes). Each square denotes a single motor unit firing. Firings of different motor units are depicted with different vertical offset; (C) power spectrum of the

smoothed CST (red solid line for wrist extensors and blue solid line for wrist flexors) compared to that of the wrist acceleration data (black solid line).

TABLE 1 | Summary of the properties of the motor units, identified by

multichannel EMG decomposition.

EXT R FLE R

ETs No. MUs 9.0 ± 5.2

(2–23)

5.4 ± 2.8

(2–13)

No. firings 200 ± 108

(37–531)

107 ± 72

(36–341)

PNR (dB) 35.0 ± 4.3

(30.1–51.2)

33.0 ± 4.2

(30.1–51.2)

PDs No. MUs 9.8 ± 6.1

(1–23)

6.0 ± 5.0

(1–33)

No. firings 255 ± 126

(36–502)

147 ± 108

(36–414)

PNR (dB) 34.2 ± 4.0

(30.1–50.5)

34.7 ±4.2

(30.1–49.8)

The table shows the number of identified motor units with PNR > 30 dB, their number of
firings, and the PNR, for right wrist extensors (EXT R) and flexors (FLE R) of 9 the ET and
9 PD patients. Results are reported as mean ± SD (range).

Experimental Recordings
Figure 4 shows an example of EMG decomposition in a
representative ET patient, along with the smoothed CST. Table 1

summarizes the number of motor units that were detected from
the surface EMG with PNR > 30 dB and then used for the
identification of the tremor EEG component. On average, 7.7 ±

5.2 and 8.6 ± 6.3 motor units per contraction were identified
for the ET and PD patients, respectively. The average number
of firings per motor unit was 160 ± 100 for the ET and 218
± 130 for the PD patients (Table 1). In each contraction, all
the accurately identified motor units per muscle were used to
estimate the tremor EEG component (see Appendix). Since we
recorded EMGs from the wrist extensors and flexors of the right
arm, two estimates of tremor EEG components were extracted
per each task repetition.

Figure 5 shows a representative example of the estimated
tremor EEG component. Figure 5A depicts the estimated tremor
EEG component and how it relates to the smoothed CST,
both in the time (left plots) and the frequency domain (right
plot). The estimated EEG component exhibits clear tremor-
related activity with peaks both at the basic frequency and
the first harmonic of that observed in the pooled motor unit
firings and the wrist kinematics. Figure 5B shows time-frequency
domain contour plots of the extracted EEG component, the
smoothed CST and the wrist kinematics, as reference. In the
presented case, the tremor-related EEG activity preceded the
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FIGURE 5 | Examples of estimation of the tremor-related cortical activity in experimental recordings of a representative PD (A) and ET patient (B). (A) Estimated

tremor EEG component (red traces) compared to smoothed CST (blue traces) of the right wrist flexor (FLE R) and extensor muscles (EXT R), and wrist acceleration

(IMU; displayed in black). Data are plotted in time (left plots) and frequency domain (right plots). (B) Contour plots of the spectrograms of the extracted tremor-related

EEG component, smoothed CST of right wrist flexor (CST FLE R) and right wrist acceleration. Warmer colors represent higher power.

pooled motor unit activity and the observed wrist movements,
which manifested simultaneously, but this was not always the
case.

We investigated how the number of EEG samples in the
time domain (extension factor F) influenced the accuracy of
the estimation of the tremor-related cortical activity. To this
end, we computed the coherence between the tremor EEG
component and the smoothed CST for increasing values of
F (from F = 1 to F = 15). As shown in Figure 6A, the
coherence first increased, but it saturated around extension factor
F = 8, in agreement with the simulations with lower SNR
ratios. Note, however, that the increase in coherence as more
EEG samples were included was not significant after F = 5.
Figure 6B demonstrates that the proposed method significantly
outperforms the classical coherence between Laplacian-filtered
EEG and spatially averaged rectified EMG, low pass filtered at
15Hz.

Figure 7 shows an example of how the proposed method
performs compared to the traditional approach of computing
the coherence between an estimate of muscle activity (in this
case the smoothed CST) and the spatially filtered EEG signals.

We calculated the coherence function for the entire recordings
(1 s windows with 50% overlapping), and found no significant
coherence values in any EEG channel. In contrast, the coherence
between the CST and the EEG component extracted using the
proposed method (extension factor: F = 8) was significant. These
findings generalized to the all the tested ET and PD patients
(Figure 6B). Our proposed method thus outperforms classic
coherence approaches.

In 52% of cases studied (28 of 54), the tremor-related EEG
component preceded the CST by 11.0 ± 6.4ms, whereas in the
remaining 48% of cases, the CST preceded the extracted EEG
component by 11.0 ± 5.9ms. All the delays were clustered on
the interval between −30ms and + 30ms, and we observed no
significant difference between the delays in PD and ET patients
(P > 0.05, Kruskal–Wallis test). These latency values are in
agreement with previous studies (7–10, 13), notwithstanding the
limitation listed in the Discussion section.

Finally, a significant difference was observed in the
H1/(B+H1) ratio of the extracted tremor EEG between PD
and ET patients (Figure 8), also in agreement with previous
studies (9, 13).
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FIGURE 6 | Comparison of our method for detecting tremor-related cortical activity to the traditional coherence approach in experimental recordings. (A) Coherence

between the CST of the right wrist extensor and the estimated tremor EEG component as a function of the extension factor F. For reference, the average coherence

with the EEG signals over C1 is also depicted. The results are averaged over all the trials from the PD and ET patients and reported as mean (bars) and SD (whiskers).

(B) Coherence between the Laplacian-filtered EEG and the CST in comparison with the coherence between the extracted tremor EEG component and the CST (our

proposed method, F = 8): Two results for CST-EEG coherence are depicted in each graph, one for coherence between CST and spatially averaged EEG (“average

EEG”) and one for coherence between CST and EEG channel at C1 position (“C1”). Similarly, two results for coherence between CST and extracted tremor

component are depicted, one for tremor component, extracted from EEG by using the CST-based estimation described in the Appendix (“tremor CST”) and one for

tremor component, extracted from EEG by replacing the CST in Appendix by the spatially averaged rectified EMG, low pass filtered at 15Hz (“tremor rect. EMG”).

Results are plotted separately for each investigated muscle. Superscripts *p < 0.05 and **p < 0.01 denote statistically significant difference as assessed by Wilcoxon

signed rank test.

DISCUSSION

In this study, we derived and validated a new method for the
extraction of the tremor-related EEG activity in the case of
pathological tremor. The method builds on the physiological
coupling between the tremor-related cortical activity and the
neural drive to the muscle (the output of the motoneurons
that innervate a muscle). In particular, our method combines
the motor unit spike trains identified in the decomposition
of high-density surface EMG recordings to build an estimator
of the tremor-related EEG component. We applied it to
EEG recordings to demonstrate its feasibility, but it could
also be used for analyzing magnetoencephalographic (MEG)
data.

The proposed method was tested on simulated data and on
recordings from 9 PD and 9 ET patients. In the simulations,
our method detected the simulated tremor component with
great accuracy, as indicated by the low NMSE and high cross-
correlation values. The small difference between the simulated
and estimated H1/(B+H1) ratio (Figures 2, 3, global average
error of 0.006 ± 0.053 for simulated H1/B, ranging from 0
to 1) further demonstrates the fidelity of the estimated tremor

component. Our method also yielded very accurate estimates of
the delay between the motor unit population activity and the
simulated EEG (the average error was 1.0± 1.6ms for a simulated
delay of 10ms).

In the experimental data, the extracted tremor EEG
component exhibited clear similarities with the recorded
kinematics and motor unit population activity, both in the time
and frequency domains. The ground truth about the estimated
EEG tremor component is not available in experimental
conditions. However, we believe our method performed well
because the estimated EEG component exhibited significantly
larger coherence with the identified population of motor
units than the spatially filtered EEG signals, which is the
standard approach (1–10, 13, 16). This observation indicates
that the proposed method is likely to help studying the
neural mechanisms of tremor. Indeed, our method always
identified tremor-related activity in the EEG, while in many of
the investigated cases (34 of 54) we did not find significant
coherence between the spatially filtered EEG signals and the
identified population of motor units. Note that this observation
is in agreement with reports that several tens of second long
recordings are needed to obtain robust results in standard

Frontiers in Neurology | www.frontiersin.org 10 October 2018 | Volume 9 | Article 879

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Holobar et al. Identification of Pathological Tremor in EEG

FIGURE 7 | Comparison of the proposed method for the detection of tremor-related cortical activity (F = 8) with the traditional coherence approach in experimental

recordings. The top right plot shows the spectrum of the smoothed CST form right wrist extensor of an ET patient performing the postural task (EXT). The top left plot

shows the coherence between the CST and the tremor EEG component as estimated by the proposed method, while the remaining 12 plots show the coherence

between the Laplacian filtered EEG signals and the CST. The label on top of each plot indicates the central EEG electrode. Red dashed lines represent the 99%

confidence limit. Note the increase in coherence yielded by our method compared to the traditional coherence approach. Coherence calculated by traditional

approach was not significant in any of the electrodes.

coherence analysis (2, 6–10, 13), whereas our datasets were only
30 s long.

Movement artifacts are an important potential confound
when studying corticospinal coupling using coherence
techniques. We performed two complementary analyses to
discard the presence of movement artifacts. First, we tested
whether the tremor components were present across many
spatially filtered EEG channels, as it would be the case if they
resulted from movement artifacts. We calculated the coherence
between the CST and each spatially filtered EEG channel. As
reported above, in 34 out of 54 cases we did not find significant
coherence between the spatially filtered EEG signals and the
identified population of motor units. In the remaining 20
cases, significant coherence at the tremor frequency or at its
higher harmonics was observed on one or two EEG channels
only. As a second control, we examined whether the EEG-CST

delays depended on the basic tremor frequency. Finding a
significant association between these two parameters would
indicate a potential mechanical coupling. Our results ruled out
this possibility: the EEG-CST delays lied within the−30 to 30ms
interval. These values did not overlap with the range of delays
potentially indicating an artifact (from ∼45 to 100ms; interval
defined by the maximum and minimum tremor frequencies,
11 and 5Hz, respectively). Therefore, our control analyses
indicate that the identified tremor component is unlikely to
originate from movement artifacts. Note that these extensive
tests are necessary every time the presented methodology is used
as, similar to the classical coherence analysis, the movement
artifacts could completely mask any tremor-related activity in
cortex.

The only parameter that needs to be chosen in our method is
the extension factor F in Equation (4). In simulated conditions,
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FIGURE 8 | H1/(B+H1) ratio of the estimated tremor EEG component (F = 8) for all PD and ET patients during the postural task. Results are plotted separately for

each investigated muscle; Superscripts *p < 0.05 and **p < 0.01 denote statistically significant difference as assessed by Kruskal–Wallis test.

the optimal extension factor was dependent on the SNR (of the
input sources in the simulated EEG signals) with the optimal
values between F= 2 and F= 5 for SNR of 20 dB, whereas larger
values, between F = 4 and F = 9, proved to be optimal in the case
of lower SNRs (Figure 2). We decided to choose extension factor
F = 8 for subsequent analyses. This choice was confirmed during
the analysis of the experimental signals, because the coherence
between the estimated tremor-related EEG component and the
smoothed CST reached the plateau region at F = 8, whereas
the overall increase in coherence was not significant after F = 5
(Figure 6A). The observation that in all the cases studied F = 1
yielded significantly worse results (lower coherence), indicates
that the extension of the convolutive model (1) helps in coping
with either the existence of different delays in the representation
of brain rhythms across different EEG channels, or with the
convolutive nature of EEG mixtures. Since the computational
complexity of the proposed method increases with the square of
the extension factor F, it is to our advantage that the preferred
value of F is relatively small.

Regarding the neurophysiological results of this study, we
found that the relative power of the first tremor harmonic
compared to the basic tremor frequency is greater in PD than
ET patients, regardless of the investigatedmuscle (Figure 8). This
is in agreement with other studies using EEG-EMG coherence
(9, 13). The observed delay between the estimated tremor
EEG component and the pooled motor unit firings also agrees
with previously reported values. Several studies in ET and PD
patients reported a bidirectional interaction between the primary
sensorimotor area of cortex and the affected muscles, with an
efferent and afferent delay between 10 and 30ms (7–10, 13). In
our dataset, the EEG activity preceded the motor unit firings
in half of the cases, and in the other half followed it. This is
likely due to the fact that the primary motor and sensory cortices
are next to each other and the limited spatial resolution of the
EEG makes their activities hard to disentangle. We want to
emphasize that these results were obtained using significantly

shorter datasets (30 s vs. the typically≥60 s long signals employed
in other studies), and avoiding the need of manually discarding
epochs with artifacts.

Results in Figure 6B suggest that the strength of our method
derives from the direct use of the CST in the identification of
the tremor-related cortical activity. One of the reasons for this
is that the CST provide a more accurate representation of the
common synaptic input to the muscles than rectified EMG as it
eliminates the influence of frequency components introduced by
the motor unit action potentials (22, 44). In the case of tremor,
the CST has most of its power at the frequency of the tremor and
its harmonics (15, 45). Thus, our approach averages out artifacts
and other non-physiological factors (42).

Our corticospinal latency results are consistent with previous
studies (7–10, 13). However, they must be interpreted with
caution. The convolutive mixing models used to represent the
EMG and EEG recordings, which are critical for accurate source
separation (25, 27, 42), may introduce a temporal uncertainty
to the reconstructed spike trains and tremor-related EEG
components. We estimate this uncertainty to be about ±5ms
for each reconstructed source. Moreover, the propagation of
the motor unit action potentials along the muscle fibers from
the innervation zone to the uptake electrodes may introduce
additional few ms delay. This could potentially further decrease
the accuracy of EEG-CST delay estimation. In the current study,
we used arrays of several tens of surface electrodes, whereas
many previous studies were based on bipolar EMG recordings.
The propagation of the motor unit action potentials may differ
substantially across these two setups, and may also be muscle
specific. Thus, the delays estimated in our study cannot easily be
compared to the ones in other studies.

The availability of our method to automatically assess the
accuracy with which each motor unit spike train is identified is
also of critical importance because this accuracy is then reflected
in the extracted tremor-related EEG component (see Appendix).
Our group demonstrated in Holobar et al. (42) that motor units
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with PNR > 30 dB exhibit accuracy > 90% in identification
of their firing patterns and in this study, we carefully utilized
this knowledge to increase the accuracy of EEG component
identification. In the future, we will investigate the minimal
number of EEG channels required for accurate detection of
tremor-related EEG activity, since it is likely that not all the EEG
channels included in this study contribute significantly to tremor
identification.

The proposed method is also computationally efficient. The
most time consuming step is its first stage (surface EMG
decomposition), which typically requires a few minutes of
processing time on regular PC for 30 s long measurements. EEG
decomposition in Equations (10, 11) is performed quickly.

The method does require multichannel EMG recordings
from a muscle, increasing the experimental costs. However,
multichannel EMG acquisition demonstrated significant
progress in the recent years and became an important source
of information in neurophysiology, neurology, sport sciences,
prosthetics and ergonomics, to name just a few major scientific
fields. Thus, it is likely that the price of multichannel acquisition
systems will decrease in the near future.

We limited our study to the EEG decomposition of
pathological tremor. The latter is a specific neurological disorder
that is characterized by clear spectral peaks in acquired EEG,
EMG, and inertial data. It is currently unclear to what extent
the presented methodology is applicable to investigations of
other types of pathological tremor (e.g., dystonic or cerebellar
tremor) or to other disorders, such as multiple sclerosis, stroke
and traumatic brain injuries and overactive thyroid, especially
as tremor frequently accompanies these disorders. All these
questions need to be systematically addressed in separate studies.

In conclusion, we have presented a novel method for
estimating tremor-related cortical activity. This method uses
pooled motor unit firings to directly extract the tremor

component from cortical recordings. Based on the presented
results, we believe that our method constitutes a significant
step forward in the current state-of-the-art as: (a) it is the first
method that directly extracts the tremor component from EEG
recordings; (b) it successfully tracks time changes in the tremor-
related cortical activity and has a potential for online tremor
detection.
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APPENDIX

Estimation of csj(n),s in the Case of
Phase-locked Motor Unit Firings
Assume that tremor-related EEG component in its analytic form
can be expressed as a complex exponential function:

sj (n) = e

i



2π
fj

fs
n+ϕj





(A1)

Where i is imaginary unit, fj and φj are the frequency and
the phase of sj, respectively, and f s is the sampling frequency.
Then the cross-correlation csj ,sλ (d) can be approximated by the
following sample mean:
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As well-known from Fourier analysis, the sum over N in (A2)
converges to zero when N → ∞ and fj 6= f λ. When fj= f λ (A2)
yields

csj ,sj (d) = e
−i2π

fj

fs
d

(A3)

Define now the r-th motor unit spike train as

tr (n) =

Kr−1
∑

k= 0

δ

(

n− k
fs

fr
− dr − 1drk

)

(A4)

where dr is the common time lag (phase) of the pulses in tr(n),
1drk is the k-th realization of Gaussian random variable 1drk ∼
N(0, σ1dr ), fr is frequency of motor unit firings, and Kr is the
number of firings in the observed time interval. Then
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(A5)

When EEG tremor is coupled to motor unit firings, we have

fj = afr for a ǫ Z. Thus, e
−i2πk

fj

fr = 1, ∀k, and (A4) simplifies to
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(A6)

Since 1drk ∼ N(0, σ1dr ) and σ1dr is relatively small with respect
to fs, the imaginary component of the sum in (A6) converges to

zero, so that
∑Kr−1

k=0 e
−i2π

fj

fs
1drk

= β≤ Kr when Kr → ∞, where
β is a real number. When EEG tremor is not coupled to motor
unit firings, i.e., fj 6= afr for a ǫ Z, (A5) converges to zero when
Kr → ∞. Therefore, for sufficiently large Kr (A5) and (A6) yield:

ctr ,s
(

d
)

≈ αcsj ,s
(

d
)

(A7)

with α =
β

N
e

−i



2π
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fs
dr+ϕj





. In practice, The higher the number

of motor unit firings Kr , the better the estimate (A6). We can
increase Kr by increasing the length of the signal’s time support,
but this comes at the cost of long signal acquisitions. In the
case of pathological tremor, motor unit firing patterns are highly
synchronized and active motor units share approximately the
same tremor-related firing rate fr = fT , ∀r and initial delays
dr = dT , ∀r (see Figure 4). In such case, the CST of R motor
units can be modeled by

CST(n) =
R
∑

r=1

tr (n) =
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δ
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)

(A8)

This increases the number of motor unit firings in (A5) to

cCST,sj (d) =
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(A9)

and, thus, improves the estimate (A6).
In noise-free conditions (A6), (A8) and (7) fully justify

the approximation (9). In the presence of noise, however,
further analytical derivations of the noise residual are required
to verify whether the proposed estimator (10) is truly an
LMMSE estimator and, thus, Bayesian optimal. Nevertheless, the
results on both synthetic and experimental signals confirm the
effectiveness of the proposed tremor estimation.
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