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Delayed auditory feedback (DAF) is a classical paradigm for probing sensori-motor

interactions in speech output and has been studied in various disorders associated

with speech dysfluency and aphasia. However, little information is available concerning

the effects of DAF on degenerating language networks in primary progressive aphasia:

the paradigmatic “language-led dementias.” Here we studied two forms of speech

output (reading aloud and propositional speech) under natural listening conditions (no

feedback delay) and under DAF at 200ms, in a cohort of 19 patients representing all

major primary progressive aphasia syndromes vs. healthy older individuals and patients

with other canonical dementia syndromes (typical Alzheimer’s disease and behavioral

variant frontotemporal dementia). Healthy controls and most syndromic groups showed

a quantitatively or qualitatively similar profile of reduced speech output rate and increased

speech error rate under DAF relative to natural auditory feedback. However, there was

no group effect on propositional speech output rate under DAF in patients with nonfluent

primary progressive aphasia and logopenic aphasia. Importantly, there was considerable

individual variation in DAF sensitivity within syndromic groups and some patients in each

group (though no healthy controls) apparently benefited from DAF, showing paradoxically

increased speech output rate and/or reduced speech error rate under DAF. This work

suggests that DAF may be an informative probe of pathophysiological mechanisms

underpinning primary progressive aphasia: identification of “DAF responders” may open

up an avenue to novel therapeutic applications.

Keywords: delayed auditory feedback, primary progressive aphasia, semantic dementia, logopenic aphasia,

Alzheimer’s disease, frontotemporal dementia, dementia, progressive nonfluent aphasia

INTRODUCTION

Speech production is a highly complex process that depends on an interaction of motor and
perceptual mechanisms. A motor programme corresponding to speech sound representations
establishes perceptual predictions about the speaker’s vocal output, and the motor programme is
in turn updated and fine-tuned based on auditory and other perceptual feedback arising from the
act of speaking (1, 2). Perturbing auditory feedback has been shown to affect vocal output. One
such commonly used perturbation is delayed auditory feedback (DAF), whereby own vocal output
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is played back to the speaker with a slight delay (typically,
between 100 and 200ms): this leads to slowing of speech output
rate and emergence of speech errors in many individuals (3–8),
although there is wide variability in individual susceptibility to
DAF (9, 10).

For many years, it has been recognized that DAF may
paradoxically improve the fluency of speech output in
stutterers, albeit with substantial individual variability (11–
13). Sensitivity to DAF (i.e., reduced speech fluidity and/or
accuracy in the presence of DAF) or less consistently,
therapeutic benefit (improved speech fluency under DAF)
have been demonstrated in various brain disorders associated
with speech dysfluency, including stroke aphasia (14, 15),
Parkinson’s disease (16, 17), progressive supranuclear palsy
(18) and autism (19). To date, however, the effects of DAF
in the canonical neurodegenerative disorders of language—
the primary progressive aphasias (PPA)—have not been
investigated. These neurodegenerative proteinopathies are
clinically, neuroanatomically and histopathologically diverse,
comprising three cardinal syndromic variants: the nonfluent
variant (nfvPPA), characterized by impaired speech production
and agrammatism due to predominant peri-Sylvian cortical
degeneration; the semantic variant (svPPA), characterized by
impaired word and object knowledge due to selective anterior
temporal lobe degeneration; and the logopenic variant (lvPPA),
characterized by impaired phonological transcoding attributable
to predominant temporo-parietal cortical degeneration (20).
Although correspondences between PPA and classical vascular
aphasic syndromes are loose, svPPA can be characterized as
a fluent aphasic disorder, whereas nfvPPA shares several key
features with Broca’s aphasia. lvPPA has certain features of
conduction aphasia but is also characterized by word-retrieval
deficits and considerable dysfluency in a high proportion of
patients (20, 21).

Certain clinical and neuroanatomical observations suggest
that further exploration of the effects of DAF in PPA syndromes
may be warranted. The speech slowing and speech sound
errors induced by DAF in healthy individuals closely resemble
the speech production deficits that characterize nfvPPA (5),
hinting at a shared cognitive or pathophysiological mechanism
and the possibility of therapeutic applications. Evidence in
stroke populations has suggested that sensitivity to DAF
may vary between aphasic syndromes, with less sensitivity
in fluent and conduction aphasia albeit with considerable
variability between reports (14, 22–24): this potentially opens
up a novel avenue to syndrome stratification and diagnosis
in the PPA spectrum, which continues to pose substantial
nosological difficulties (20). Neuroanatomically, the effects
of DAF and other forms of altered auditory feedback (e.g.
masking, frequency shifts) on speech output are mediated by
a network of areas in the healthy brain, including superior
temporal, inferior parietal and prefrontal cortices (10, 25–
29). Together, these regions comprise the dorsal language
network which (among its principal functions) links auditory
vocal representations with articulatory mechanisms and enacts
sensori-motor retuning of speech production (17, 25–27, 29, 30).
This dorsal network is targeted in nfvPPA and lvPPA (31),

further suggesting that DAF sensitivity may be altered in these
syndromes.

In this study, we assessed sensitivity to DAF in all major
PPA syndromes—nfvPPA, lvPPA and svPPA—in relation to
patients representing related dementia syndromes—behavioral
variant frontotemporal dementia (bvFTD) and typical amnestic
Alzheimer’s disease (tAD)—and healthy older individuals. We
scored measures of speech fluidity (output rate) and accuracy
(error rate), key outcome measures that have been used in
previous studies (5, 32). Since the speech of patents with
nfvPPA and lvPPA is typically slow and marred by errors in the
absence of DAF (20, 33), DAF effects were referenced to baseline
speech output and error rates under natural auditory feedback
(NAF) in all participant groups. In addition, previous work has
suggested that the impact of DAF may vary depending on the
context in which speaking occurs (14)—in particular, whether
speech is produced spontaneously (propositional speech, as
when conversing) or constrained by an external stimulus (as
when reading aloud). These different kinds of speech output
are neuropsychologically dissociable and may be differentially
affected by brain disorders, including PPA (34–38). We therefore
assessed the impact of DAF on two different speech output tasks,
based, respectively on propositional speech and reading aloud.

Based on previous evidence, we hypothesized that DAF in
healthy control participants would lead to slowing of speech
output and appearance of speech errors during both reading
aloud and propositional speech under DAF (3, 5, 14). We further
predicted that PPA syndromes would show differential sensitivity
to DAF, and that individual variation within groups would lead
to departures from any group-wise profiles. At group level,
extrapolating from previous observations in stroke aphasia (14,
22, 24), we hypothesized an overall increased sensitivity to DAF
in nfvPPA, less marked sensitivity in svPPA and a mixed profile
in lvPPA. We anticipated that group profiles of altered DAF
sensitivity in the ‘non-aphasic’ syndromes of bvFTD and tAD
would be comparable to healthy older individuals. In addition,
at individual level, we hypothesized that at least some patients
with nfvPPA and lvPPA would show improved speech fluency
under DAF (indexed by increased speech output and reduced
error rates).

MATERIALS AND METHODS

Participants
Five patients with nfvPPA [three female; mean age 73.5 ± 11.4
(SD) years], eight patients with svPPA (three female; mean
age 68.1 ± 7.0 years), six patients with lvPPA (one female;
mean age 69.5 ± 8.5 years), 11 patients with tAD (seven
female; mean age 70.0 ± 8.8 years) and eight patients with
bvFTD (one female, mean age 65.6 ± 8.7 years) were recruited
via a specialist cognitive clinic; 13 healthy older individuals
(seven female; mean age 68.4 ± 5.4 years) with no history
of neurological or psychiatric illness also participated in the
study. No participant had a history of childhood stammering
or clinically relevant otological disease and all had screening
pure tone audiometry using a previously described procedure
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(39), to provide a measure of peripheral hearing function. All
patients fulfilled current consensus diagnostic criteria for the
relevant PPA syndrome (37), bvFTD (40) or tAD (41). Brain
MRI in all patients showed an atrophy profile consistent with
the clinical syndromic diagnosis and no significant concurrent
burden of cerebrovascular damage. Cerebrospinal fluid tau/
beta-amyloid1−42 profiles were available for four of the seven
patients with lvPPA, all of which were consistent with underlying
Alzheimer pathology based on local reference ranges (total
tau: beta-amyloid1−42 ratio > 1). Demographic, clinical and
background neuropsychological data for all participants are
summarized in Table 1.

All participants gave informed consent for their involvement
in the study. Ethical approval was granted by the University
College London and National Hospital for Neurology and
Neurosurgery Research Ethics Committees, in accordance with
Declaration of Helsinki guidelines.

Experimental Procedures
All participants completed two tasks designed to assess the
impact of DAF on reading aloud and on propositional speech (see
Figure 1). Reading aloud was assessed using a slightly reduced
version of the “Rainbow passage” (42); propositional speech was
assessed by asking participants to describe a picture of a beach
scene (43). For both the reading aloud and propositional speech
tasks the order of NAF and DAF conditions was counterbalanced
across participants, such that half of the participants in each
group performed the experimental tasks first under NAF
followed by DAF, while the reverse condition order was sued for
the remaining half.,

The experimental paradigm was created using MATLAB
v2014b R© with the Psychtoolbox extension (http://psychtoolbox.
org/). We adapted a script (found at http://psychtoolbox.org/
docs/BasicSoundFeedbackDemo) to record sound from a boom
microphone attached to the Sennheiser PC350SE R© headphones
worn by all participants and play this sound back (resampled
at 48kHz) via the headphones. Two versions of the script were
used to run the NAF and DAF conditions. In the NAF condition,
the recorded sound was played back to the participant with
the shortest latency supported by the 2015 MacBook Pro R©

computer used to run the experiment (corresponding to an
imperceptible delay, typically ∼18ms, range 16–24ms); while in
the DAF condition, the recorded sound was played back with
a 190ms delay added to the minimum latency, resulting in a
total delay of ∼200ms (range 190–210ms). This latency range
was chosen as corresponding approximately to the duration
of a syllable in conversational spoken English and previously
associated with maximal fluency disruption under DAF both in
healthy individuals (3, 5, 28, 44, 45) and in patients following
aphasic stroke (14). The test was administered in a quiet room,
and speech samples were recorded for offline analysis.

Scoring of Speech Samples
Speech samples were first edited manually in Audacity R© to
remove any extraneous noises during the recording and then
analyzed to identify any speech sound errors, in each of five
categories: (i) omissions (e.g., “rainbow” instead of “rainbows”);

(ii) substitutions or misarticulations (e.g., “retraction” instead
of “refraction”); (iii) duplications or additions (e.g., “sunlight-
t” instead of “sunlight”); (iv) elongations (phonemes judged
to have been prolonged based on the remainder of that
participant’s speech sample; e.g., “horiiizon” for “horizon”);
(v) dysfluencies, (e.g., “um,” “er” or equivalent). In analyzing
the spontaneous speech condition, we included an additional
category of grammatical errors.

The total number of words produced in each condition was
manually counted, and the speech output rate in words per
minute (WPM) for each condition was then calculated as:

(total number of words produced/(recording length in seconds)) ∗ 60.

In line with previous work (5, 32), an overall speech error rate per
100 words (PHW) was calculated as:

(total number of errorsmade/(number of words produced)) ∗ 100.

Data Analyses
Clinical and background neuropsychological data were analyzed
using Stata v14.0 R©. Each patient group was compared to
the healthy control group using independent-samples t-tests
for continuous variables and chi-square tests for categorical
variables.

Analyses of NAF and DAF data were run for the reading aloud
and propositional speech task conditions separately. For each
task condition, we derived change variables for speech output rate
and speech error rate, calculated as the difference between NAF
and DAF rates. Using these four change variables, each patient
group was assessed for within-group change in speech output
rate and speech error rate between the NAF and DAF conditions,
using dependent-samples t-tests.

Each patient group was then compared to the healthy
control group using change scores as dependent variables,
in independent-sample t-tests directed by the result for that
group from the within-group analysis. Where assumptions
of the general linear model were violated, an appropriate
nonparametric equivalent test was used (Wilcoxon signed-
rank for dependent-samples t-tests; Mann-Whitney U for
independent-samples t-tests).

All tests were two-tailed, and a statistical significance criterion
thresholded at p < 0.05 was accepted in all cases.

RESULTS

Participant Group Demographics and
General Neuropsychological
Characteristics
Participant groups (see Table 1) did not differ overall in terms
of age [F(1, 49) = 0.32, p = 0.572], handedness (χ2 = 5.08,
p = 0.407), gender (χ2 = 7.95, p = 0.159), peripheral hearing
ability (χ2 = 11.54, p = 0.317) or education [F(1, 49) = 2.16,
p = 0.148]. Patient groups did not differ in mean symptom
duration [F(1, 36) = 2.67, p = 0.111] or Mini-Mental State
Examination score [F(1, 36) = 0.95, p = 0.337; an index of overall
cognitive severity].
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TABLE 1 | Demographic, clinical and neuropsychological characteristics of participant groups.

Characteristic Controls nfvPPA svPPA lvPPA tAD bvFTD

DEMOGRAPHIC AND CLINICAL

No. (male:female) 6:7 2:3 5:3 5:1 4:7 7:1

Age (years) 68.4 (5.4) 73.5 (11.4) 68.1 (7.0) 69.5 (8.5) 70.0 (8.0) 65.6 (8.7)

Handedness (R:L) 13:0 4:1 8:0 5:1 10:1 8:0

Education (years) 17.2 (1.7) 14.2 (2.8) 15.1 (2.9) 15.2 (2.6) 14.6 (1.7) 16.0 (3.1)

MMSE (/30) 29.8 (0.4) 25.6 (4.5) 24.4 (5.5) 19.0 (8.3) 17.1 (4.8) 17.1 (4.8)

Symptom duration (years) NA 3.6 (1.1) 5.6 (2.2) 3.8 (2.4) 5.5 (3.0) 6.5 (3.3)

PTA (Normal:Mild:Moderate) 3:8:0 1:2:1a 2:4:0b 2:1:2a 2:7:0b 1:5:2

GENERAL INTELLECT

VIQ 127.1 (6.0) 81.2 (18.6) 78.3 (14.1) 70.7 (16.7) 87.1 (14.9)a 96.8 (24.2)

PIQ 127.0 (13.8) 97.0 (22.3) 121.5 (15.0) 82.0 (12.6) 81.9 (18.4)a 106.3 (18.5)

EPISODIC MEMORY

RMT words (/50) 45.1 (11.0) 39.0 (6.0)a 32.3 (7.4)a 40.5 (7.8)b 15.3 (2.8)a,* 38.4 (10.5)a

RMT faces ( /50) 43.7 (4.6) 37.0 (4.1)a 35.6 (5.4)a 36.4 (8.8)a 17.7 (2.7)a,* 33.1 (10.1)a

WORKING MEMORY

Digit span forward (max) 7.1 (1.0) 5.4 (1.3) 6.6 (1.4) 4.6 (1.1)a 5.6 (1.4) 6.7 (1.5)

Spatial span forward (max) 5.6 (0.9)a 5.2 (1.1) 4.9 (0.9)a 3.2 (0.8) NA NA

EXECUTIVE SKILLS

Digit span reverse (max) 4.8 (1.3) 2.8 (1.0)a 5.0 (1.9) 2.8 (0.8)a 3.6 (0.7)a 4.4 (1.2)

Spatial span reverse (max) 5.6 (0.9)a 4.2 (1.1) 5.0 (1.0)a 3.0 (1.0)a NA NA

Letter fluency (total) 20.5 (5.5) 6.8 (5.7)a 10.3 (4.3) 5.3 (5.9)b 8.4 (4.2) 10.5 (4.8)

Category fluency (total) 24.8 (5.6) 8.6 (5.9) 21.1 (41.3) 6.0 (9.0)a 5.3 (3.0) 13.3 (8.5)

Trails A (s) 30.7 (8.2) 82.8 (45.7) 41.0 (21.9) 106.5 (36.5) 95.8 (37.0)b 38.3 (25.5)

POSTERIOR CORTICAL SKILLS

GDA (/24) 15.8 (4.1) 7.3 (6.6)b 12.7 (7.4)a 1.3 (2.3)c 1.9 (1.0)c 10.9 (7.4)

VOSP object decision (/20) 19.2 (1.0) 17.2 (2.2) 17.5 (1.6) 14.7 (3.1) 15.5 (2.3) 17.3 (3.6)a

NEUROLINGUISTIC SKILLS

Speech perception

PALPA-3 (/36) 35.4 (0.3) 34.4 (3.0) 35.1 (0.3)a 33.0 (2.2)a NA NA

Word retrieval

GNT (/30) 26.9 (2.7) 15.8 (4.5) 1.0 (2.2) 7.4 (8.2)b 10.1 (8.4)a 15.3 (11.9)

Comprehension

BPVS (/51) 47.8 (6.3) 35.8 (10.2) 13.0 (15.6) 26.6 (17.2)a 38.3 (5.9)a 40.6 (10.0)

Concrete synonyms (/25) 24.7 (0.1) 19.5 (4.8)a 17.3 (1.5)b 17.8 (2.4)a NA NA

Abstract synonyms (/25) 24.6 (0.3) 20.0 (6.0)a 16.7 (1.5)b 18.8 (1.6)b NA NA

PALPA-55 sentences (/24) 23.9 (0.1) 18.8 (4.9) 22.3 (0.9)a 16.4 (5.6)a NA NA

Speech repetition

Polysyllabic words (/45) 44.8 (0.1) 39.8 (8.0) 44.0 (0.6)a 32.3 (11.9) NA NA

Graded sentences 9.6 (0.2) 6.0 (3.2) 8.3 (0.4)a 5.0 (3.8) NA NA

Mean (standard deviation) values are shown; values in bold are significantly different from the healthy control group. Reduced numbers of participants are indicated: an-1; bn-2;
cn-3; *Note that participants with tAD were given the short (25 item) RMT for both faces and words. BPVS, British Picture Vocabulary Scale; bvFTD, patient group with behavioral

variant frontotemporal dementia; Controls, healthy control group; GDA, Graded Difficulty Arithmetic test; GNT, Graded Naming Test; lvPPA, patient group with logopenic variant primary

progressive aphasia; nfvPPA, patient group with nonfluent-agrammatic variant primary progressive aphasia; PALPA, Psycholinguistic Assessment of Language Processing in Aphasia;

PIQ, Performance IQ; PTA, pure tone audiogram (degree of hearing loss); RMT, Recognition Memory Test; svPPA, patient group with semantic variant primary progressive aphasia; tAD,

patient group with typical Alzheimer’s disease; VIQ, verbal IQ; VOSP, Visual Object and Space Perception battery.

Effects of DAF: Participant Group Profiles
For all participant groups, speech output parameters under NAF
and DAF are summarized in Table 2 and changes in speech
output and speech error rates are presented in Table 3 and
Figure 2.

Speech Output Rate

During the reading task, DAF produced significant slowing of
speech output relative to NAF in healthy controls (t = −5.08,

p < 0.001), in the nfvPPA group (z = −2.02, p = 0.043) and
svPPA group (t = −2.85, p = 0.024) but not the lvPPA group
(z = −1.15, p = 0.249); speech also slowed significantly under
DAF in the bvFTD group (z =−2.38, p= 0.017) but not the tAD
group (t =−1.57, p= 0.146). Slowing of speech was attributable
mainly to prolongation of syllable durations rather than silent
pauses. During the propositional task, DAF produced slowing
of speech output in healthy controls (t = −3.50, p = 0.004)
and there was a trend toward a significant effect in the svPPA
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FIGURE 1 | Stimuli used to elicit speech in the DAF experiment. (A) Reduced version of the Rainbow passage (42) used in the reading aloud task. (B) A beach scene

[adapted from Warrington (43)] used in the propositional speech task.

group (t = −2.17, p = 0.066) but no significant effect in
the nfvPPA group (z = −0.41, p = 0.686) or lvPPA group
(z = −0.11, p = 0.917); speech slowed significantly under DAF
in the tAD group (t=−3.37, p= 0.014) but not the bvFTD group
(t =−3.37, p= 0.110).

Speech Errors

During the reading task, DAF produced significantly more
speech errors in the healthy control group (t = 3.29, p = 0.006),
in all PPA syndromic groups (nfvPPA z = 2.02, p = 0.043;
svPPA z = 2.52, p = 0.012; lvPPA z = 2.20, p = 0.028) and
in the bvFTD group (z = 2.52, p = 0.012) but there was no
significant effect in the tAD group (z = 1.60, p = 0.106).
During the propositional task, DAF produced significantly more
speech errors in the healthy control group (t = 3.14, p = 0.008)
and svPPA group (z = 2.46, p = 0.014) but not the nfvPPA
group (z = −0.135, p = 0.893) or lvPPA group (z = 1.36,
p = 0.173); a DAF effect was also shown by the tAD group
(t = 3.18, p = 0.010) but not the bvFTD group (z = 1.76,
p= 0.079).

A detailed breakdown of error categories made by each
participant group is presented in Table S1 on-line; overall,

omissions were the most frequent error type induced by DAF,
attributable mainly to the effect on reading aloud in the nfvPPA
group. Grammatical errors during propositional speech were not
significantly increased under DAF in the nfvPPA group.

Effects of DAF: Patient Groups vs. Healthy
Controls
Speech Output Rate

For the propositional task, the nfvPPA group showed
significantly less slowing of speech output under DAF than
healthy controls (z = −2.22, p = 0.027; see Figure 2 and
Table 3); no other patient group differed significantly from
healthy controls (svPPA z = 0.87, p = 0.385; lvPPA z = −1.49,
p = 0.136; tAD z = 0.61, p = 0.543; bvFTD z = 0.36, p = 0.717).
For the reading task, the nfvPPA group showed a trend toward
significantly less slowing of speech output under DAF than
healthy controls (z = −1.73, p = 0.085); no such trend
relative to healthy controls was identified for any other patient
group (svPPA z = −0.87, p = 0.385; lvPPA z = −1.14,
p = 0.254; tAD z = −1.42, p = 0.156; bvFTD z = −0.22,
p= 0.828).
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TABLE 2 | Speech output parameters under natural and delayed auditory feedback in participant groups.

Parameter Controls nfvPPA svPPA lvPPA tAD bvFTD

NAF DAF NAF DAF NAF DAF NAF DAF NAF DAF NAF DAF

READING ALOUD

Time (seconds) 79.2

(11.5)

98.1

(23.8)

147

(66.1)

146

(97.0)

110

(36.5)

133

(32.5)

156

(52.9)

183

(61.8)

107

(33.4)

114

(28.4)

87.9

(21.9)

120

(52.3)

Total words 216

(1.9)

217

(3.1)

160

(90.7)

130

(96.7)

201

(41.6)

200

(47.7)

223

(5.6)

220

(17.3)

213

(48.4)

208

(49.4)

215

(2.3)

213

(3.8)

Output rate 166

(23.4)

139

(29.5)

59.6

(18.1)

48.6

(18.2)

116

(35.5)

96.2

(34.8)

92.4

(23.2)

78.9

(23.9)

123

(33.8)

110

(27.1)

154

(36.7)

125

(51.2)

Error rate 1.3

(0.9)

6.6

(5.7)

52.7

(45.0)

61.2

(47.3)

5.8

(5.1)

21.0

(24.4)

14.9

(14.8)

31.7

(43.9)

15.6

(14.9)

23.2

(24.4)

2.6

(2.2)

12.0

(16.4)

PROPOSITIONAL

Time (seconds) 45.6

(20.4)

47.2

(24.1)

59.4

(38.6)

60.8

(31.0)

68.4

(43.8)

69.3

(38.1)

76.8

(45.4)

82.0

(43.4)

62.2

(23.4)

67.3

(26.7)

51.1

(22.6)

50.9

(26.8)

Total words 105

(36.1)

100

(46.6)

43.6

(44.1)

45.6

(28.4)

129

(91.1)

113

(69.4)

102

(55.7)

114

(72.1)

118

(56.3)

107

(50.7)

105

(63.8)

95.9

(70.4)

Output rate 143

(22.2)

129

(19.5)

41.5

(18.9)

44.1

(8.0)

123

(42.3)

102

(26.7)

81.1

(16.5)

81.3

(14.8)

112

(23.3)

95.8

(23.6)

123

(52.2)

105

(43.9)

Error rate 2.9

(2.8)

9.6

(6.2)

38.4

(48.1)

53.9

(26.2)

3.0

(4.3)

9.6

(15.3)

8.6

(4.3)

14.0

(9.5)

5.2

(4.7)

15.4

(13.5)

3.0

(3.0)

8.4

(8.3)

The table shows speech output rates and speech error rates in each participant group with natural auditory feedback (NAF) and delayed auditory feedback (DAF), for reading aloud

and propositional speech tasks. Speech output rate is defined as number of words per minute; speech error rate is defined as total number of errors per hundred words (see Table S1

on-line for a detailed breakdown of error types). Mean (standard deviation) values are shown; values in bold indicate significant within-group differences (p < 0.05); numbers >100 are

reported without decimal places to aid visual interpretation. bvFTD, patient group with behavioral variant frontotemporal dementia; Controls, healthy control group; lvPPA, patient group

with logopenic variant primary progressive aphasia; nfvPPA, patient group with nonfluent-agrammatic variant primary progressive aphasia; svPPA, patient group with semantic variant

primary progressive aphasia; tAD, patient group with typical Alzheimer’s disease.

TABLE 3 | Change in speech fluency under delayed auditory feedback in participant groups.

Controls nfvPPA svPPA lvPPA tAD bvFTD

READING ALOUD

Output rate −27.6 (19.6) −11.1 (9.5) −19.9 (19.7) −13.5 (18.9) −12.3 (25.9) −29.8 (29.1)

Error rate 5.3 (5.8) 8.6 (5.8) 15.3 (21.1) 16.8 (30.2) 7.6 (13.8) 9.4 (15.2)

PROPOSITIONAL

Output rate −13.6 (11.9) 2.5 (12.3) −21.0 (27.5) 0.2 (17.6) −16.3 (16.1) −18.2 (28.1)

Error rate 6.6 (7.4) −0.1 (33.8) 6.6 (11.2) 5.3 (8.5) 10.2 (10.6) 5.4 (7.7)

The table shows changes in speech output rates and speech error rates in each participant group under delayed auditory feedback (DAF) relative to natural auditory feedback (NAF)

[DAF score minus NAF score], during reading aloud and propositional speech tasks (see also Table 1 and Figure 2). Mean (standard deviation) values are shown; values in bold are

significantly different from healthy controls at p < 0.05. bvFTD, patient group with behavioral variant frontotemporal dementia; Controls, healthy control group; lvPPA, patient group

with logopenic variant primary progressive aphasia; nfvPPA, patient group with nonfluent-agrammatic variant primary progressive aphasia; svPPA, patient group with semantic variant

primary progressive aphasia; tAD, patient group with typical Alzheimer’s disease.

Speech Errors

Change in error rates under DAF did not differ significantly
between the healthy control group and any patient group, either
for reading (nfvPPA z = −1.23, p = 0.218; svPPA z = −0.80,
p = 0.426; lvPPA z = −0.79, p = 0.430; tAD z = 0.38, p = 0.707;
bvFTD z = −0.07, p = 0.942) or during the propositional task
(nfvPPA z = 0.44, p = 0.657; svPPA z = 0.47, p = 0.657; lvPPA
z= 0.26, p= 0.793; tAD z=−0.75, p= 0.451; bvFTD z= 0.671,
p= 0.447).

Individual Variability in DAF Response
It is noteworthy on inspection of Table 2 that the svPPA and
bvFTD groups showed directional effects on speech output under
DAF that were qualitatively similar to healthy controls: i.e.,

slowing of speech output rate and increased speech error rate
during both reading and propositional speech tasks. In contrast,
both the nfvPPA group and the lvPPA group showed a striking
lack of effect of DAF on propositional speech rate under DAF.
Individual patients within the PPA syndromic groups showed
wide variation in the magnitude and direction of DAF effects
on speech output and speech error rates (Figure 2); this was
particularly evident for the nfvPPA and lvPPA groups, and is
likely to have attenuated overall group effects relative to healthy
controls.

Under DAF during the propositional task, speech output
rate increased for two of the five individuals with nfvPPA (by
1.3 and 23.8 WPM, respectively) and three of six individuals
with lvPPA (by 9.6, 19.9 and 14.8 WPM, respectively); and
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FIGURE 2 | Box plots showing change in speech output rate and speech

error rate under delayed audtory feedback in participant groups. The y-axis

indicates changes in speech output rates and speech error rates for each

participant group under delayed auditory feedback (DAF) relative to natural

auditory feedback (NAF) [DAF score minus NAF score], during reading aloud

and propositional speech tasks (see also Table 2): speech output rate is

defined as number of words per minute; speech error rate is defined as total

number of errors per 100 words. Boxes code the interquartile range and

whiskers the overall range of values in each group; the horizontal line in each

box represents the median. Values falling outside these ranges are indicated.

bvFTD, patient group with behavioral variant frontotemporal dementia;

Controls, healthy control group; lvPPA, patient group with logopenic variant

primary progressive aphasia; nfvPPA, patient group with nonfluent-agrammatic

variant primary progressive aphasia; svPPA, patient group with semantic

variant primary progressive aphasia; tAD, patient group with typical Alzheimer’s

disease.

speech error rate decreased for three of five individuals with
nfvPPA (−2.0, −1.7, and −53 PHW, respectively) and one of
six individuals with lvPPA (−6.3 PHW). Similar “paradoxical”
effects on propositional speech output were exhibited by three
of eight individuals with bvFTD (by 17.3, 2.7 and 15.2 WPM,
respectively) and two of 11 individuals with tAD (6.7 and 9.2
WPM, respectively), while no healthy individuals showed any
such effect on propositional speech output.

DISCUSSION

Here we have shown that canonical PPA syndromes are
associated with differential sensitivity to DAF at latency 200ms;

and that sensitivity to DAF is significantly reduced in nfvPPA,
as indexed by a lack of effect on propositional speech output
compared with a healthy older control cohort. Overall, both
the healthy control group and most patient groups showed
quantitatively or qualitatively similar profiles of DAF sensitivity,
manifesting as speech slowing and increased speech error
rates during propositional speech and reading aloud. The only
exceptions to this pattern were exhibited by the patient groups
with dysfluent PPA syndromes—nfvPPA and lvPPA—in which
there was no overall slowing of propositional speech output
under DAF. Our findings corroborate previous work in healthy
individuals (3, 5, 10, 44, 45) but only partly substantiate studies in
stroke and other aphasic syndromes (14, 22–24). Within the PPA
spectrum, lvPPA shares certain features with the fluent stroke
aphasia syndromes of Wernicke’s and conduction aphasia, while
nfvPPA most closely resembles Broca’s aphasia and svPPA has
no close vascular analog (20): in the stroke aphasia literature,
reduced sensitivity to DAF has been documented in fluent
aphasic syndromes (14, 22) whereas patients with nonfluent
aphasia and speech apraxia have tended to show increased DAF
sensitivity, though by no means invariably (14, 23, 24).

Based on previous behavioral and functional neuroimaging
work in the healthy brain (3–8, 10, 25–27, 29), these profiles
of DAF sensitivity in canonical dementia syndromes may
reflect differential involvement of the dorsal language network.
Dementia syndromes not primarily underpinned by damage to
this network (svPPA, bvFTD, and tAD) show DAF sensitivity
characteristics broadly similar to the healthy older reference
group. In contrast, PPA syndromes that principally target
this network might be anticipated to show altered DAF
sensitivity (31, 32). While the underlying pathophysiology
of DAF in these syndromes remains to be established,
neurodegenerative proteinopathies and vascular insults are likely
to exert fundamentally different effects on relevant neural
circuits: whereas stroke interrupts neural networks focally and
acutely, proteinopathies spread diffusely across networks with
effects that unfold insidiously. Accordingly, syndromes of PPA
and stroke aphasia might be expected a priori to show discrepant
profiles of DAF sensitivity, reflecting the nature of the lesion
they induce within the dorsal language network. The dorsal
language and auditory cortical pathways behave as a functional
unit, the progressive transcoding of information along these
pathways supporting sensori-motor integration of speech output
with auditory feedback about the speech signal produced (30, 46).
If processing within these pathways is intrinsically “noisy” due to
disruption of integrative computations by a neurodegenerative
proteinopathy, this would make the tuning of speech output by
auditory feedback less efficient and precise under both NAF and
DAF and might thereby attenuate the impact of DAF relative
to NAF.

In functional neuroanatomical terms, the critical mediator
of DAF sensitivity may be temporo-parietal cortex, which plays
an essential role in auditory-motor transformations that are
fed forward to inferior frontal and other cortices governing
speech output (30). The temporo-parietal junction is a core
locus of pathology in lvPPA (20, 47). Whereas, involvement
of inferior frontal and opercular cortices is often emphasized
in formulations of nfvPPA, neuropsychological and structural
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and functional neuroimaging evidence has implicated additional,
distributed and more posterior components of the dorsal
language network and inter-connecting white matter tracts
in the pathogenesis of nfvPPA (5, 20, 48–50). In line with
this, recent work has highlighted more general deficiencies
of complex sound analysis in nfvPPA that are not primarily
motor or indeed, specifically verbal (50–55). The distributed
network basis of both lvPPA and nfvPPA could potentially
reconcile apparent discrepancies between our findings in PPA
and previous observations concerning DAF sensitivity in aphasic
stroke syndromes. Involvement of long dorsally directed white
matter tracts including arcuate fasciculus would tend to interrupt
auditory feedback mechanisms and reduce DAF sensitivity both
in classical conduction aphasia and lvPPA (14). On the other
hand, differential involvement of these pathways and their
posterior connections in nfvPPA vs. Broca’s aphasia would
predict divergent DAF effects: more extensive involvement (in
nfvPPA) would lead to blunting of DAF sensitivity, whereas
sparing of feedback mechanisms (in Broca’s aphasia) might
amplify the more anteriorly sited primary deficit of speech
production in this syndrome under DAF.

Claims to syndromic profiles of DAF sensitivity in PPA
syndromes need to be heavily qualified, given the wide individual
variability observed within syndromic groups. This factor
(together with the relatively small cohort size) is likely to account
for the absence of a significant group-level DAF effect for the
lvPPA cases here. However, both the nfvPPA and lvPPA groups
contained a substantial proportion of individuals who showed
improvement in speech fluency under DAF: no such benefit was
observed in any healthy controls. It is of interest that previous
reports of therapeutic benefit from DAF have generally been
based on single cases (16, 18). The mechanism of this benefit and
the factors that drive variation in individual response have not
been defined, though ability to compensate for DAF in healthy
individuals has been shown to correlate with engagement of
a distributed neural network including prefrontal, insular and
parietal cortices and their subcortical connections (10): a closely
overlapping network is targeted by the pathological process in
nfvPPA and lvPPA (20). It is therefore plausible that amelioration
of function in these damaged areas under DAF could lead
to partial renormalisation of speech output in dysfluent PPA
syndromes; however, this leaves open the physiological basis of
the beneficial effect.

Various explanations have been proposed to account for
the apparently paradoxical benefit of DAF in some people
with developmental stuttering, including amelioration of an
intrinsic overreliance on auditory feedback during speech output,
engagement of a language mirror neuron system and regulation
of speech rate (10, 13, 56). The notion that DAF regularizes
the timing of articulation events by resetting and smoothing the
operation of a damaged neural time-keeper might potentially
account for the variable effects of DAF on speech output in
developmental stuttering as well as dysfluent PPA and other
neurodegenerative syndromes (such as tAD and bvFTD) in
which the fine control of sensori-motor integration is vulnerable
even though it is not the primary focus of pathology (56). In
nfvPPA, it has been proposed that inflexible prior predictions

about perceptual data generated by inferior frontal cortex
lead to reduced ability to update behavior in response to
sensory feedback (57): this proposal is in line with generative
models of cognition that are gaining wide currency as a
fundamental principle of brain operation in health as well as
many disease states, and accords with the overall reduction in
DAF modulation of speech output observed for the nfvPPA
group here. Interestingly, Cope and colleagues (57) found
(using magnetoencephalography) that patients with nfvPPAwere
around 200ms slower than healthy controls in applying top-
down predictions about degraded speech signals: to the extent
that auditory feedback is being used to guide speech output in
patents with nfvPPA, a DAF latency of 200ms might therefore
compensate for this intrinsic delay in top-down analysis of the
speech signal, thereby improving speech fluency in at least some
individuals with nfvPPA. On the other hand, such a mechanism
would less easily account for the overall reduction in DAF
sensitivity shown by the nfvPPA group here, particularly noting
that patients with Broca’s aphasia (and focal inferior frontal
cortical damage) do seem to remain sensitive to DAF (14).
As DAF always imposes a load on sensori-motor integrative
mechanisms underpinning speech output, the overall impact
of DAF on the disordered language system might depend on
whether this load simply amplifies the effects of already “noisy”
or inefficient neural processing or instead displaces an “under-
damped” system into an optimized, partially compensated state.
Disease-related factors (such as stage, severity, neuroanatomical
and histopathological substrates) and stimulus-related factors
(such as latency) could potentially influence the net effect of DAF,
as could the context of speech output: constrained speech (as
when reading aloud) may be particularly sensitive to DAF (13).
Furthermore, both nfvPPA and lvPPA are likely to encompass
separable sub-syndromes that could plausibly show distinct
profiles of DAF sensitivity (20, 21, 58); any such syndromic
stratification is likely to interact with consititutional factors (4)
but will only be resolved by studying larger patient cohorts.

This work has several limitations which should direct
future work. Case numbers in each syndromic group were
relatively small; larger cohorts would increase power to
demonstrate group level effects and also allow any stratification
into syndromic subgroups to be more adequately assessed.
Relatedly, it will be relevant to compare the effects of DAF
in neurodegenerative and vascular pathologies; and to study
DAF sensitivity longitudinally in patients with dementia, since
it is likely a priori that syndromic profiles transform as
involvement of the language system becomes more widespread
and compensatory mechanisms are exhausted (in the case
of genetically mediated diseases, assessing DAF sensitivity in
presymptomatic individuals would be of particular interest).
Measurement of objective speech parameters alone does not
capture the full impact of DAF: in future work it will be important
to garner patient caregiver impressions about speech fluency
and quality the subjective effort associated with speaking under
DAF vs. NAF (28). There are a number of other potentially
relevant variables and parameters that were not assessed in
our study–these include participant constitutional factors (such
as a history of developmental stuttering), effects of aging,
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cerebrovascular and other comorbidities and stimulus factors
such as DAF latency and the addition of frequency-based and
other feedback manipulations. Patients with rapid, festinating
speech phenotypes in the context of progressive supranuclear
palsy (18) and Parkinson’s disease (16) may benefit from shorter
DAF latencies in the range of 50–100 ms: these phenotypes
overlap clinically and pathologically with the PPA spectrum,
especially nfvPPA. Moroever, different DAF latencies may
access distinct pathophysiological mechanisms (10). Comparing
DAF with frequency alteration and other speech feedback
manipulations might illuminate underlying pathophysiological
mechansims (56). Identification of underlying neural substrates
will entail structural and fucntional neuroanatomical techniques;
in an era of increasing interest in reversible brain dysfunction
in dementia, DAF might be particularly well suited for
incorporation in paradigms that address dynamic neural
processes, using tools such as magnetoencephalography and
transcranial magnetic stimulation (59). Ultimately, we hope that
DAF will find therapeutic applications in people with PPA: to
achieve this prospect, identification of the factors that charaterise
“DAF responders” within syndromic groups will be crucial. Any
attribution of “benefit” to DAF will need to take into account its
translatability to natural communication in daily life. However,
analogously with other forms of speech signal distortion
(60), DAF might constitute a novel target for cholinergic
and other pharmacological manipulations designed to restore
sensitivity to auditory feedback in the degenerating language
network.

CONCLUSIONS

Sensitivity to DAF is reduced in nfvPPA and (less robustly) in
lvPPA relative both to healthy older controls and other canonical
dementia syndromes. Importantly, there was considerable
individual variation in sensitivity to DAF within syndromic
groups and some patients in each group (though no healthy
controls) apparently benefited from DAF, showing paradoxically
increased speech output rate and/or reduced speech error
rate under DAF. This work identifies several areas for
future clarification, notably the pathophysiological mechanisms

that underpin DAF effects and the characteristics of “DAF
responders” with a view to future therapeutic applications.
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