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Objective: Cortical activity, including cognitive and emotional processes, may influence

pupillary function. The exact pathways and the site of cortical pupillary innervation remain

elusive, however. We investigated the effects of select cortical strokes, i.e. ischemic

infarcts affecting the insular cortex and prefrontal eye field, on pupillary function.

Methods: Seventy-four patients with acute ischemic stroke, consecutively admitted

to our institution from March to July 2018, were assessed 24 h after endovascular

recanalization therapy (i.e., day 2 after the stroke), using automated pupillometry. Stroke

location and volume and clinical severity (estimated by the Alberta Stroke Program Early

CT Score and National Institute of Health Stroke Scale) were recorded. We excluded

patients with posterior circulation stroke, intracranial pathology other than ischemic

stroke, midline shift on computed tomography exceeding 5 millimeters or a history of eye

disease. Pupillometry data from 25 neurologically normal patients with acute myocardial

infarction were acquired for control.

Results: Fifty stroke patients after thrombectomy were included for analysis. Twenty-five

patients (50%) had insular cortex or prefrontal eye field involvement (group 1, strategic

infarcts); 25 patients had infarcts located in other cerebral areas (group 2, other infarcts).

The pupillary light reflex, as measured by constriction velocity and maximal/minimal

pupillary diameters, was within physiological limits in all patients, including controls.

However, while pupillary size and constriction velocities were correlated in all subjects,

the correlation of size and dilatation velocity was absent in right-hemispheric infarcts (left

hemisphere infarcts, group 1 (r2 = 0.15, p = 0.04), group 2 (r2 = 0.41, p = 0.0007);

right hemisphere infarcts, group 1 (r2 = 0.008, p = 0.69); group 2 (r2 = 0.12, p = 0.08);

controls (r2 = 0.29, p ≤ 0.0001).

Conclusions: Cortical infarcts of the prefrontal eye field or insula do not impair

the pupillary light reflex in humans. However, subtle changes may occur when the

pupils dilate back to baseline, probably due to autonomic dysfunction. Replication is

needed to explore the possible influence of hemispheric lateralization. We suggest that

endovascular therapy for acute ischemic stroke may serve as a clinical research model

for the study of acquired cortical lesions in humans.

Keywords: endovascular stroke therapy, insula, prefrontal eye field, pupils, pupillometry, pupillary light reflex,

stroke, mechanical thrombectomy
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INTRODUCTION

The pupillary light reflex is a polysynaptic reflex that requires
cranial nerves II and III, as well as central brainstem connections
(1). Light falling into one eye stimulates retinal photoreceptors,
bipolar cells and subsequently retinal ganglion cells, whose axons
form the optic nerve. Some of these axons terminate in the
pretectum of the mesencephalon; and pretectal neurons project
further to the Edinger-Westphal nuclei. Then, preganglionic
parasympathetic axons synapse with ciliary ganglion neurons
which in turn send postganglionic axons to innervate the
pupillary constrictor muscles of both eyes (1).

Although the pupillary light reflex is part of the routine
neurological examination, its physiological background is less
well-understood than most clinicians are aware of. In addition to
the pathways outlined above, there is also a cortical component
of pupillary innervation. For instance, emotional responses
and cognitive processes such as decision making and mental
arithmetic may produce pupillary dilatation (2–8). Further,
electrical stimulation of the frontal eye field in monkeys leads to
pupillary dilatation (9, 10). Via connections with the intermediate
layer of the superior colliculus, the frontal eye field appears to
be able to modulate pupillary diameters, resulting in pupillary
dilation during cognitive processes (10). Another gray matter
region that may contribute to pupillary function is the insular
cortex. An important region for arousal and autonomic control
(11, 12), the insular cortex is involved [together with the anterior
cingulate cortex (13, 14)] in the control of the locus coeruleus, the
noradrenergic brainstem center (15), and may thereby influence
pupillary function via sympathetic-parasympathetic innervation
(13, 16, 17). However, the exact pathways of cortical modulation
of human pupillary function remain elusive.

The present study aimed at investigating cortical modulation
of pupillary reflex pathways by using routinely collected data
in a clinical setting. To this end, we correlated automated
pupillometry with cerebral infarct locations in stroke patients
after endovascular thrombectomy, which served as a paradigm
for pupillary changes caused by select cerebral lesions. We
hypothesized that patients with strategic infarcts localized to the
prefrontal eye field (Broadman area 8) and/or the insular cortex
on either side would have pupillary abnormalities compared to
stroke patients without infarcts in these areas. Pupillometry data
from neurologically normal patients with acute but clinically
stable myocardial infarction, investigated after percutaneous
coronary intervention, served as control group.

MATERIALS AND METHODS

Inclusion Criteria
We assessed pupillometry data from stroke patients (aged ≥18
years) with an anterior circulation stroke (i.e., affecting internal
carotid artery, middle cerebral artery and/or anterior cerebral
artery territories) consecutively admitted for acute endovascular
thrombectomy to the Department of Neurology, Rigshospitalet,
Copenhagen University Hospital, during the period from March
to July 2018.

Exclusion Criteria
Patients with a history of eye disease (e.g., following cataract
operation), relevant structural pathology on CT other than
ischemic stroke (e.g., tumors), and mass effects on CT exceeding
a midline shift of 5mm (measured at the level of the pineal gland)
were excluded. In addition, we excluded patients with evidence of
posterior circulation strokes (acute or chronic) to avoid lesions
involving the brainstem and occipital cortex.

Procedures
For automated pupillometry, we used the NPi R©-200
Pupillometer (NeurOptics, Laguna Hills, CA 92653 USA),
a portable, handheld, monocular, infrared device, which allows
quantitative measurements of the pupillary response. The
pupillometer releases a flash of white light (duration 0.8 s,
pulse intensity 121 uW) to stimulate the pupillary light reflex.
Light calibration is performed by the manufacturer and does
not require any periodic re-calibration. The pupillometer
digitally registers the pupillary light response as a video
(sampling rate 30Hz) and displays numeric results on a
screen (Table 1, Figure 1). For an illustration of the NPi R©-200
pupillometer, please consider https://www.youtube.com/watch?
v=EjlZ5oocl0g&frags=pl%2Cwn. Measurements were performed
once in both eyes as part of the routine clinical evaluation
24 h after the endovascular treatment (i.e., on the second day
of stroke) immediately before the CT scan control. During
pupillometry measurement of each eye the opposite eye was
covered to minimize the consensual light reflex and its effect
on the pupillary baseline diameter. National Institute of Health
Stroke Scale (NIHSS) scores 24 h after stroke onset were also
collected as part of the clinical routine. Twenty-four hours
control computed tomography (CT) of the brain was assessed
by a trained neuroradiologist for infarctions localized in the
prefrontal eye field (Brodmann area 8), the insular cortex and/or
the thalamus in either hemisphere (Figure 1). In addition, CT
was evaluated for overall stroke volume using the Alberta Stroke
Program Early CT Score (ASPECTS) (18). We also recorded
whether infarcts occurred in the thalamus, as this region is an
important relay station of the visual pathway (19) (although
typically supplied by the posterior, not anterior, circulation).

Pupillometry, CT, and NIHSS data were dichotomized
according to stroke location: Group 1 included stroke patients
with infarcts in the prefrontal eye field and insular cortex in either
hemisphere (strategic infarcts); group 2 included stroke patients
without infarcts in these regions. The control group consisted
of patients with acute, clinically stable myocardial infarction
after percutaneous coronary intervention from the Department
of Cardiology, Rigshospitalet, Copenhagen University Hospital.
The latter patients underwent pupillometry as described, but
neither NIHSS nor CT.

Outcome Measures
Outcome measures included the pupillary diameter before and
after light exposure, percentage change of pupillary diameters,
and pupillary constriction and dilatation velocities, as well as
the neurological pupil index (NPi), which is a proprietary
pupillometry sum score (i.e., a composite of quantitative
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pupillary parameters and a measure of the briskness of the pupil
light reflex) from 0 to 5, with ≥3 indicating physiological limits
(including a maximal difference between the 2 eyes of <0.7)

TABLE 1 | Variables assessed by pupillometry.

Size = Maximal Diameter (in

millimeters)

Maximum pupil size before constriction

MIN = Minimal Diameter (in

millimeters)

Pupil diameter at peak constriction

% CH = Change in diameter (%) % of change from maximal to minimal pupil

diameter

LAT = Latency of constriction (in

seconds)

Time of onset of constriction following initiation

of the light stimulus

CV = Constriction Velocity (in

millimeters per second)

Average of how fast the pupil diameter is

constricting measured in millimeters

per second

MCV = Maximum Constriction

Velocity (in millimeters

per second)

Maximum velocity of pupil constriction of the

pupil diameter responding to the flash of light

measured in millimeters per second

DV = Dilation Velocity (in

millimeters per second)

The average pupillary velocity when, after

having reached the peak of constriction, the

pupil tends to recover and to dilate back to the

initial resting size, measured in millimeters

per second

NPi = Neurological Pupil Index

(absolute value)

Proprietary algorithm that takes all variables

above as inputs and compares to normative

model to give a composite score of pupillary

response from 0 to 5, with ≥3 being within

physiological limits (21)

(20, 21) (Table 1). In addition, strategic infarcts were evaluated
as outlined above (Figure 1).

Statistics
Statistical tests were performed using Prism 7 software
(GraphPad Software; La Jolla, CA, USA). Baseline characteristics,
dichotomized ASPECT (18) scores and NIHSS (22) and all
pupillary parameters were first compared between group 1
(strategic strokes) and group 2 (other strokes), and then
between group 1 and controls using either Fisher’s exact test
or unpaired or paired two tailed Student’s t-tests. Where
required, the Holm-Sidak method was performed to adjust
results for multiple testing. In addition, the relationship between
constriction and dilation velocities, respectively, maximum size
before constriction and minimum size after constriction (i.e.,
diameter at maximal constriction) was examined using Pearson’s
correlation coefficient and linear regression for left and right eye
in group 1 and controls; for left and right hemisphere infarcts in
all three groups. A statistically significant difference was defined
by a value of p < 0.05.

Ethics
All measurements were performed as part of routine clinical
assessment. Data were anonymized and handled according to the
EuropeanUnion’s Data Protection Law. The Ethics Committee of
the Capital Region of Denmark approved the study concept and
waived the need for written consent because risks were deemed
negligible.

FIGURE 1 | We performed a clinical practice study investigating the cortical modulation of pupillary function following strategic cerebral strokes. This figure depicts CT

of the brain from 2 exemplary stroke patients 24 h following endovascular therapy for large vessel occlusive stroke. Strategic ischemic infarctions are seen in the left

prefrontal eye field (Left) and right insular cortex (Central). Using automated pupillometry [(Right); courtesy of https://commons.wikimedia.org/wiki/Main_Page], we

collected pupillometry data of patients with strategic infarcts in the prefrontal eye field and/or insular cortex (group 1) and compared them to data from stroke patients

without infarcts in these areas (group 2) and to data from patients with myocardial infarcts but without clinical evidence of brain injury (control group).

Frontiers in Neurology | www.frontiersin.org 3 October 2018 | Volume 9 | Article 916

https://commons.wikimedia.org/wiki/Main_Page
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Peinkhofer et al. Pupillary Function After Cortical Infarctions

RESULTS

Patients
Seventy-four patients were admitted for acute endovascular
thrombectomy from March 1 to July 11, 2018. Twenty-four
patients fulfilled exclusion criteria and their data were omitted.
Fifty patients with an anterior circulation stroke were included
for analysis [26 (52%) females; mean age 71.8 years, SD ± 10.8].
All stroke patients received endovascular treatment, followed
by a control CT, NIHSS score and an assessment of pupillary
function 24 h later. The control group consisted of 25 age- and
sex-matched patients [11 (44%) females; mean age 67.8 years,
SD ± 13.6] with acute, clinically stable myocardial infarction
and without known cerebral stroke. Clinical baseline data are
provided in Table 2. For raw data (clinical, radiological and
pupillometric data) see Supplementary Table 1.

Location of Cerebral Infarcts and Stroke
Burden
Of 25 patients with strategic infarctions (group 1), 17 had an
involvement of the insular cortex alone, 2 of the prefrontal eye
field, and 5 of both areas (Figure 1). Only 1 patient had a thalamic
infarct, together with both insular and prefrontal eye field lesions.
Eleven patients (44%) had a left hemispheric stroke, 14 (56%) a
right-side hemispheric stroke. Twenty-five patients had lesions
in other brain areas, 12 (48%) had a left sided stroke, 13 (52%) a
right hemispheric stroke (group 2).

As expected, infarct volumes (estimated with the ASPECT
score) were correlated with the presence of a strategic stroke.
Patients with an ASPECT score ≤7 (n = 20 or 80% in group 1; n
= 3 or 12% in group 2), indicating higher stroke volumes, had a
significantly higher chance of having an insular or prefrontal eye
field involvement compared to those with ASPECT >7 (Fisher’s
exact test; p < 0.0001).

The clinical severity, as revealed by the NIHSS score, was also
associated with stroke location. NIHSS scores >10 (n = 15 or
56% in group 1; n= 6 or 24% in group 2) correlated with a higher
probability of strategic infarctions (Fisher’s exact test; p= 0.01).

Pupillometry
General pupillary function was normal in the 3 groups: The
NPi index was >3 in all 75 patients (i.e., 150 eyes examined).
Likewise, NPi differences between left and right eyes were
always within physiological limits (<0.7). Maximal and minimal
pupillary diameters, percentage changes in pupillary sizes, latency
of pupillary constrictions, as well as constriction and dilation
velocities were also similar between group 1 (strategic infarcts)
and group 2 (other infarcts) (Table 3). There were neither any
differences of these parameters between group 1 and controls
following adjustment for multiple testing (Table 3). In addition,
the relative amplitude (initial diameter–minimum size) of the
pupillary light reaction was calculated for group 1 and compared
between left and right eyes (paired t-test p = 0.25, effectiveness
of pairing r = 0.63, p = 0.0003), indicating normal consensual
pupillary reactions.

A positive correlation between maximum size and
constriction velocity was found for both right and left eyes.
The Pearson coefficient for left eyes was r = 0.62 (p = 0.0009) in
group 1 (strategic infarcts) and r = 0.83 (p < 0.0001) in controls,
and for right eyes the coefficient was r = 0.76 (p < 0.0001) in
group 1 and r = 0.85 (p < 0.0001) in controls (Figure 2).

A weak correlation was also found for minimum size and
dilation velocity in controls but not in patients with strategic
infarctions. Thus, the coefficient for left eyes in group 1 was r =
0.25 (p = 0.23) and in controls r = 0.47 (p = 0.018, adjusted p =
0.054), and in group 1 for right eyes r = 0.065 (p = 0.75) and in
controls r = 0.60 (p= 0.0013, adjusted p= 0.005) (Figure 3).

Linear regression analysis of constriction velocities, plotted
against maximum pupillary diameters, was unaffected by

TABLE 2 | Clinical baseline characteristics.

Group 1 Group 2 Controls p-value* p-value**

Stroke patients with strategic

infarctions (n = 25)

Stroke patients without

strategic infarctions (n = 25)

Patients with myocardial

infarction (n = 25)

Age (years; mean ± standard

deviation)

72.6 ± 11.8 71.9 ± 8 67.8 ± 13.6 NS NS

Females 12 (48%) 14 (56%) 11 (44%) NS NS

Hypertension 23 (92%) 20 (80%) 15 (60%) NS 0.009

Cholesterol 19 (76%) 21 (84%) 23 (92%) NS NS

Diabetes 5 (20%) 4 (16%) 2 (8%) NS NS

Smoking 7 (28%) 8 (32%) 5 (20%) NS NS

Alcohol Abuse 4 (16%) 3 (12%) 0 NS NS

Platelet Inhibition 18 (72%) 20 (80%) 24 (96%) NS NS

Anticoagulation 7 (28%) 5 (20%) 3 (12%) NS NS

Antihypertensives 20 (80%) 16 (64%) 14 (56%) NS NS

Sedative medication (i.e.

antiepileptic and psychotropic

drugs)

1 (4%) 6 (24%) 1 (4%) NS NS

NS, not significant; significance level p < 0.05; *Group 1 vs. group 2; **Group 1 vs. controls.
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TABLE 3 | Pupillometry data from stroke patients with and without strategic infarctions, and controls.

Group 1 Group 2 Controls p-value* p-value**

Stroke patients with strategic

infarctions (n = 25)

Stroke patients without strategic

infarctions (n = 25)

Patients with myocardial

infarction (n = 25)

Npi L 4.52 ± 0.08 4.38 ± 0.08 4.42 ± 0.07 0.2 0.36

Size L (mm) 3.44 ± 0.16 3.31 ± 0.15 3.17 ± 0.17 0.55 0.24

Min L (mm) 2.33 ± 0.01 2.41 ± 0.09 2.30 ± 0.09 0.53 0.32

%Ch L 31.6 ± 1.71 26.1 ± 1.63 25.4 ± 2.07 0.03† 0.02†

CV L (mm/s) 2.09 ± 0.17 1.87 ± 0.16 1.71 ± 0.17 0.36 0.13

MCV L (mm/s) 3.39 ± 0.28 2.75 ± 0.25 2.59 ± 0.26 0.1 0.05†

DV L (mm/s) 0.88 ± 0.06 0.84 ± 0.08 0.80 ± 0.07 0.68 0.43

Lat L (s) 0.24 ± 0.01 0.24 ± 0.01 0.24 ± 0.01 0.54 0.84

Npi R 4.45 ± 0.08 4.44 ± 0.08 4.44 ± 0.07 0.99 0.94

Size R (mm) 3.34 ± 0.14 3.29 ± 0.17 3.17 ± 0.18 0.81 0.45

Min R (mm) 2.33 ± 0.09 2.35 ± 0.11 2.3 ± 0.09 0.84 0.84

%Ch R 29.4 ± 2.14 27.7±1.42 25.4 ± 2.03 0.53 0.18

CV R (mm/s) 2.03 ± 0.15 2.09 ± 0.14 1.66 ± 0.17 0.74 0.12

MCV R (mm/s) 3.19 ± 0.27 3.06 ± 0.23 2.53 ± 0.24 0.88 0.11

DV R (mm/s) 0.83 ± 0.08 0.83 ± 0.06 0.84 ± 0.09 0.94 0.89

Lat R (s) 0.24 ± 0.01 0.23 ± 0.01 0.24 ± 0.01 0.33 0.97

Values are referring to mean±SEM; significance level p < 0.05; L, left; R, right; mm, millimeters; s, seconds; for other abbreviations see Table 1; *Group 1 vs. group 2; **Group 1 vs.

controls;
†
No longer significant after adjustment for multiple testing (%Ch L p = 0.026, adjusted p = 0.344; p = 0.025, adjusted p = 0.333; MCV L p = 0.0461, adjusted p = 0.507).

FIGURE 2 | Pupillometry data from patients with strategic cerebral infarcts and controls: Maximal pupillary diameters and constriction velocities. Solid lines denote the

best fit from linear regression analysis. (Left) Relationship between maximum diameter and constriction velocity of the left eye, group 1 in green (Y = 0.5945X+2.2,

r2 = 0.38, p = 0.0009); controls in red (Y = 0.8142X + 1.772, r2 = 0.69, p < 0.0001). (Right) Relationship between maximum diameter and constriction velocity of

the right eye, group 1 in green (Y = 0.6748X + 1.975, r2 = 0.57, p < 0.0001); controls in red (Y = 0.9028X +1.671, r2 = 0.72, p < 0.0001).

hemispheric stroke lateralization (Figures 4, 5), but the
correlation of dilatation velocities with minimal pupillary
diameters was lost with strategic infarcts in the right hemisphere
[group 1 (r2 = 0.008, p = 0.69); group 2 (r2 = 0,12, p = 0.0821);
controls (r2 = 0.29, p ≤ 0.0001)] (Figure 5).

DISCUSSION

The human pupillary light reflex, as assessed by the speed
of pupillary constriction and diameters before and after

constriction, does not seem to be affected by strategic infarcts
of the prefrontal eye field or insular cortex. This finding
does not support the hypothesis of strategic strokes altering
pupillary function, probably because the present model is a
model of cortical lesioning as opposed to cortical activation.
Hence, cortical activation may lead to pupillary dilation (5,
9) [or, more rarely, constriction (23–26)], but the absence of
cortical input to the pupils following cortical damage does
not appear to affect the light reflex. To our knowledge,
this is the first systematic human study investigating cortical
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FIGURE 3 | Pupillometry data from patients with strategic cerebral infarcts and controls: Minimal pupillary diameters and dilatation velocities. Solid lines denote the

best fit from linear regression analysis. (Left) Relationship between minimum diameter and dilatation velocity of the left eye, group 1 in green (Y = 0.3976X + 1.977, r2

= 0.063, p = 0.23); controls in red (Y = 0.5857X + 1.83, r2 = 0.22, p = 0.018, adjusted p = 0.054). (Right) Relationship between minimum diameter and dilation

velocity of the right eye, group 1 in green (Y = 0.07548X + 2.263, r2 = 0.004, p = 0.75); controls in red (Y = 0.6646X + 1.738, r2 = 0.37, p = 0.0013, adjusted p =

0.005).

FIGURE 4 | Pupillometry data from patients with left, respectively, right hemisphere cerebral infarcts (plotted against pupillometry data from controls without

hemispheric strokes): Maximal pupillary diameters and constriction velocities. Solid lines denote the best fit from linear regression analysis. (Left) Left hemisphere

infarcts, group 1 in green (Y = 0.9538X + 1.322, r2 = 0.67, p ≤ 0.0001); group 2 in blue (Y = 0.9257 X + 1.428, r2 = 0.7, p < 0.0001); controls in red (Y = 0.8583X

+ 1.721, r2 = 0.7, p ≤ 0.0001). (Right) Right hemisphere infarcts, group 1 in green (Y = 0.3189X + 2.861, r2 = 0.3, p = 0.0077); group 2 in blue (Y = 0.6064X +

2.086, r2 = 0.4, p = 0.0005), controls in red (identical values as above).

modulation of pupillary function in a true-to-life clinical
setting.

Subtle changes in pupillary function, however, may still be
possible immediately after the light reflex, i.e., when the light
stimulus is over, and the pupils dilate back to baseline. Thus,
while we observed a robust correlation between pupillary size
and constriction velocity [confirming previous studies (27, 28)],
minimum size and dilation velocity were still correlated in
controls but no longer in patients with strategic infarctions.
In addition, in patients with strategic infarcts the correlation
of dilatation velocities with pupillary diameters was weak with
left hemispheric strokes and lost with right-sided strokes.
In contrast, this correlation was still robust in controls and
in stroke patients without strategic infarcts, irrespective of

hemispheric lateralization (Figure 4). Several explanations are
possible. First, strategic infarctions in the prefrontal eye field
and/or insular cortex may indeed influence pupillary function
in subtle ways, perhaps by impaired sympathetic control or
reduced parasympathetic inhibition, resulting in decreased
pupillary dilation velocity (27). This is consistent with the
insular cortex being an important center of autonomic control.
Indeed, strokes affecting the insular cortex are associated with
significant autonomic dysfunction (11, 12, 29, 30), in particular
ischemic stroke events involving the right-sided insular cortex
(31). Second, the observed difference could be related to infarct
volume. Patients with strategic infarcts had larger stroke volumes
and more severe neurological deficits compared to patients
without strategic infarcts, and, although strokes producing

Frontiers in Neurology | www.frontiersin.org 6 October 2018 | Volume 9 | Article 916

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Peinkhofer et al. Pupillary Function After Cortical Infarctions

FIGURE 5 | Pupillometry data from patients with left, respectively, right hemisphere cerebral infarcts (plotted against pupillometry data from controls without

hemispheric strokes): Minimal pupillary diameters and dilatation velocities. Solid lines denote the best fit from linear regression analysis, showing the relationship

between minimum diameter and dilation velocity. (Left) Left hemisphere infarcts, group 1 in green (Y = 0.5528X + 1.705, r2 = 0.15, p = 0.04); group 2 in blue (Y =

0.8756X + 1.538, r2 = 0.41, p = 0.0007); controls in red (Y = 0.6312 X 1.78, r2 = 0.3, p ≤ 0.0001). (Right) Right hemisphere infarcts, group 1 in green (Y =

−0.1018 X+2.549, r2 = 0.008, p = 0.69); group 2 in blue (Y = 0.5222X + 2.023, r2 = 0.12, p = 0.0821), controls in red (identical values as above).

mass effects were excluded, this may have influenced pupillary
function either by accumulative neuronal loss or damage to still
unidentified neuronal groups that may be important for pupillary
function. Third, the results may be flawed due to the relatively
small sample size. However, if these findings can be replicated
with larger numbers, loss of cortical innervation would, indeed,
seem to produce subtle pupillary changes as we excluded strokes
with mass effect and posterior circulations strokes, i.e., the
occipital visual areas and the subcortical neuronal innervation of
the pupils were intact.

Limitations to our study, besides the modest sample size,
include the use of CT instead of Magnetic Resonance Imaging
to estimate stroke location and the use of the ASPECT score
which is a crude measure of stroke volume (18). Also, we did
not adjust for stroke volumes but, as stated, excluded significant
mass effects, ensuring integrity of brainstem pathways. Lastly, the
NPi is an index based on a proprietary algorithm, and although
it is commonly used in the clinical setting e.g., (20, 21, 32, 33), it
cannot be publicly verified, which limits its intrinsic value to the
scientific community (We contacted the manufacturer but were
unable to receive information about how the NPi is computed).

On the positive side, all pupillometry data besides the NPi
are based on objective and well-known indices (Table 1), and
this is one of the few systematic studies investigating cortical
modulation of pupillary function in humans. Moreover, we
worked within a true-to-life clinical research setting, using
noninvasive and easily available tools; we included controls
adequately matched in terms of sex, vascular co-morbidity and
age (34, 35). Further, we excluded confounding factors such as eye
diseases, posterior circulation strokes and intracranial structural
pathologies other than ischemic stroke.

Of note, we also introduced a new cortical lesion model
in humans (which are very rare for obvious reasons), using
strategic infarctions in patients after endovascular thrombectomy
for acute ischemic stroke. Given the rapidly increasing use of
endovascular stroke therapy (36), this seems to be a feasible way

to recruit patients within a comparatively short timeframe and to
systematically study the neuronal effects of select cortical lesions
in a real-world setting.

CONCLUSIONS

Overall pupillary function is unaffected by prefrontal eye field or
insular cortex strokes in humans. Subtle changes, perhaps related
to autonomic dysfunction, may still occur immediately after the
light reflex when the pupils dilate back to baseline. Replication
using a larger sample size is needed to further explore the
possible influence of hemispheric lateralization. We suggest that
endovascular therapy for acute ischemic stroke due to occlusive
large vessel disease may serve as a pragmatic and realistic clinical
research model for the study of acquired cortical lesions in
humans.
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