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The human pupillary light response is driven by all classes of photoreceptors in the human

eye—the three classes of cones, the rods, and the intrinsically photosensitive retinal

ganglion cells (ipRGCs) expressing the photopigment melanopsin. These photoreceptor

classes have distinct but overlapping spectral tuning, and even a monochromatic light

with a wavelength matched to the peak spectral sensitivity of a given photoreceptor

will stimulate all photoreceptors. The method of silent substitution uses pairs of lights

(“metamers”) to selectively stimulate a given class of photoreceptors while keeping

the activation of all others constant. In this primer, we describe the method of silent

substitution and provide an overview of studies that have used it to examine inputs to

the human pupillary light response.

Keywords: pupil, melanopsin, silent substitution, color vision, pupillometry, ipRGC (intrinsically photosensitive

retinal ganglion cell), metamers

INTRODUCTION

At the input level, the size of the pupil is controlled by the activity of the different photoreceptors in
the human eye (1). These different photoreceptors differ in many respects: their wavelength tuning
(spectral sensitivity), their temporal properties, their operating range and their distribution across
the retina. The goal of this primer is to describe the method of silent substitution for examining
photoreceptor-specific pupil responses. We start with the fundamentals underlying the method of
silent substitution, provide an overview of studies that have used this method, provide a practical
guide and R code to implement silent substitution and highlight a few challenges to the method of
silent substitution.

FUNDAMENTALS

Overlapping Spectral Sensitivities of the Human Photoreceptors
Photoreception in the human retina is based on the signals produced by the three types of
cones—the long[L]-wavelength-sensitive cones, the medium[M]-wavelength-sensitive cones, and
the short[S]-wavelength-sensitive cones—, the rods, and the intrinsically photosensitive retinal
ganglion cells (ipRGCs), which contain the photopigment melanopsin (2–6). ipRGCs receive
synaptic input from cones and rods but, in the absence of those inputs, these cells themselves are
photosensitive due to the expression of the melanopsin photopigment in the cell membrane. The
peak spectral sensitivities (λmax) of the human photoreceptors are distinct. The photopigments
(cone opsins) in the L, M, and S cones peak around 420, 530, and 558 nm, respectively; rhodopsin,
the pigment in rods, has a peak at around 495 nm. Finally, the melanopsin photopigment has a
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peak spectral sensitivity at around 480 nm. Even though these
peaks are spectrally distinct and distant, the spectral sensitivities
overlap quite extensively due to the relative broadband tuning
of photopigments (Figure 1A). One challenge in targeting the
operation of a single class of photoreceptor is that the spectral
sensitivities of the photoreceptors in vivo does not necessarily
correspond to the spectral sensitivity of a pigment. All light
that reaches the retina is filtered by the lens and ocular media
(7), thereby shifting the effective spectral sensitivity. Typically,
this pre-receptoral filtering is accounted for in the spectral
sensitivities for cones, rods, and melanopsin-containing ipRGCs.

Non-specificity of Single-Wavelength
Lights
An important desideratum for examining how the different
photoreceptors contribute to the human pupillary light
response is that stimuli produce responses specific to a given
photoreceptor class. One consequence of the extensive spectral
overlap of the photoreceptors is that most light sources activate
all photoreceptors, and therefore, the responses elicited are
largely nonspecific. For example, monochromatic light with
a peak spectral output of 490 nm will activate melanopsin
maximally relative to the other photoreceptors, but it will also
lead to substantial activation of rods and the cones (Figure 1B).
The relative amounts by which a monochromatic light of a given
wavelength activates all photoreceptors is directly predicted
from the relative spectral sensitivity of the photoreceptors at
that wavelength. Monochromatic lights have been of great
use in determining the spectral sensitivity of the sustained
pupil constrictions that match that of melanopsin (8–11). This
specific type of measurement is called the “post-illumination
pupil response,” abbreviated PIPR, in which the pupil response
is typically measured in response to a non-specific short-
wavelength light flash and a non-specific long-wavelength light
flash against a dim or no background.

Principle of Univariance
One property of photoreceptors is the principle of univariance
(12), which states that a given photoreceptor has only scalar
output, namely its photocurrent: It cannot distinguish between
changes in intensity and changes in wavelength. This is shown
in Figure 1C using theoretical lights containing power at only
a single wavelength (monochromatic light): Lights E1, E2, and
E3 all nominally elicit the same photoreceptor excitation. Lights
E1 and E3 have their peak emission at the 50% point of spectral
sensitivity on either side of the peak; light E2 is scaled to be
50% of the emission of lights E1 and E3. To the photoreceptor
(in this case melanopsin), which weights the input light by its
spectral sensitivity, the lights are equally effective. The key insight
is that photoreceptors integrate light of different wavelengths,
weighting the input spectrum by their spectral sensitivity and
summing it up. A consequence of the principle of univariance
is that single photoreceptors are color-blind: Whether two lights
differ in wavelength or intensity cannot be determined from the
photoreceptor output alone.

Wavelength Exchange
Because photoreceptors weight input light by their spectral
sensitivity function, in the case of two photoreceptors, it is
possible to find two lights and scale them such that the
excitation of one of the photoreceptors remains constant in this
wavelength exchange, while the other one “sees” a difference.
This is shown in Figure 1D: The peak emissions of lights
E1 and E2 have been chosen to match the two 50% points
of the S-cone spectral sensitivity, thereby eliciting the same
responses. This is called silencing the S cones. Because the
spectral sensitivity of melanopsin is different from that of the S
cones, our two lights E1 and E2 necessarily produce a different
response, and in this case we call melanopsin the stimulated
photoreceptor. Wavelength exchange for two photopigments
is the most simple case of silent substitution. But, with the
exception of certain classes of color-blindness such as rod
monochromacy, the human retina contains five photoreceptors.
Fortunately, the same principle can be extended tomore than two
photoreceptors.

THE METHOD OF SILENT SUBSTITUTION

In the method of silent substitution, pairs of light are found that
have the property that they stimulate the targeted photoreceptor
class (or classes) whilst not changing the excitation of the other
photoreceptors, the silenced ones. The method has a long history
for determining the properties of themechanisms of human color
vision (13, 14).

Fundamentals
To introduce the method of silent substitution we begin with
an example from human color vision. Human color vision
is trichromatic under daylight conditions, i.e., when rods do
not participate: A color-normal observer can match the color
appearance of any light using a combination of three primary
lights (15). Under these conditions, it is assumed that only the
three classes of cones participate in the color match; it follows
that because three photoreceptors participate, three independent
primary lights need to be used. It is impossible to match the
activation of three photoreceptors in one condition using just two
primary lights.

In general, to stimulate one class of photoreceptor classes
out of NR photoreceptor classes while leaving the activation of
the other NR−1 unchanged, at least NR primary lights (Np) are
necessary. When NR = NP (i. e. there are as many primary
lights as photoreceptor classes under consideration), there is
only one algebraic solution to match the activation of the NR−1
photoreceptors under one set of settings for the NP lights to
another other setting that will only stimulate the remaining
photoreceptor class.

For the case of four photoreceptor classes in the human
retina (three classes of cones and melanopsin), four lights
are necessary to match the activation of cones and stimulate
melanopsin. When including the rods, five lights are necessary
to match the activation of cones and rods and stimulate
melanopsin.
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FIGURE 1 | (A) Overlapping spectral sensitivities of the human photoreceptors. (B) Non-specificity of single-wavelength lights. Right panel: Pattern of photoreceptor

responses to the single-wavelength light at 490 nm. (C) Principle of univariance. Right panel: Pattern of photoreceptor responses to the single-wavelength lights E1,

E2, and E3 designed to elicit the same response in melanopsin. (D) Wavelength exchange between two short-wavelength lights E1 and E2 which stimulate S cones at

the same level but yield different photoreceptor responses for melanopsin. Right panel: Pattern of excitations for lights E1 and E2.

It is possible to have more primary lights than photoreceptors
under consideration, i.e., NR < NP. This would for example
be the case when there were, e.g., eight independent primaries
and the retina to be studied was a human one. In that case,
there are infinitely many solutions to match the activation of
the NR−1 photoreceptors under one set of settings for the
NP lights to any other setting that will only stimulate the
remaining photoreceptor class. In practice, this is typically
solved by implementing a numerical optimization which
maximizes the contrast seen by the stimulated photoreceptor
while setting a constraint to have no contrast on the

unstimulated ones, and enforcing additional constraints on the
optimisation.

Contrast

The term contrast refers to a specific quantity, which is the
fractional difference of activation of a photopigment around a
background:

I =
Imodulation − Ibackground

Ibackground

Intuitively, when the light-adapted background activates a given
photoreceptor by some amount, e.g., 100 (arbitrary units),
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and the modulation activates it by a higher amount, e.g.,
120 (arbitrary units), the contrast in that case would be 0.2
or 20%. Contrast can be specified either as fractions or as
percentages.

An Intuitive Example
We now describe an example case for the method of silent
substitution corresponding to the stimuli used in Spitschan,
Jain, Brainard and Aguirre (16). These authors used a calibrated
spectrally tuneable light source that modified the output of
a broadband Xenon arc lamp using a digital micromirror
device (DMD) to produce, effectively, arbitrary spectral power
distributions. While this is a special case of light sources,
most experimenters have used a set of discrete lights, the
intensities of which are controlled to produce silent substitution
stimuli. The goal is to produce two lights with spectral power
distributions that do not differ in the amount they activate the
cones, and only yield a change in the amount they activate
melanopsin. Such pairs of stimuli are also called metamers–
they are indistinguishable to the cones, despite having different
spectral power distributions. In this example, we ignore
the rods.

1. Background spectrum: In the first instance, we begin with a
background spectrum of known spectral power distribution
(Figure 2A). We call this the background spectrum because
the observer is typically light-adapted to this spectrum, and
the silent-substitution stimuli are shown to the observer
“around” this background in the form of pulses or temporal
modulations. This background spectrum elicits a pattern
of photoreceptors responses (Figure 2B, right panel). The
activation of photoreceptors is calculated by weighting the
spectrum by the spectral sensitivities and summing it up for
each photoreceptor class.

2. Increasing melanopsin activation: Pragmatically, we can
increase the amount of light seen by melanopsin by
simply increasing the amount of light emitted near the
melanopsin peak. This is shown in Figure 2B. However,
this is only partly successful: Because of the overlapping
peak spectral sensitivities of the human photoreceptors,
such an increase in emitted light leads to an increase in
activation of all photoreceptors (Figure 2B, middle panel).
Rather than considering the absolute amount of activation
of the photoreceptors (which is also dependent on the exact
light level), it is customary to speak of contrast (Figure 2B,
right panel). Contrast here refers to the percentage difference
in activation of photoreceptors between the modulation
spectrum (red line in Figure 2B) and the background
spectrum (Figure 2A and dashed line in Figures 2B–F). As can
be seen in the right panel in Figure 2B, the increase in light
near the melanopsin peak leads to an increase in contrast to all
photoreceptors. To reiterate, the desideratum here is to have
no contrast seen by L, M and S cones, and positive contrast
seen by melanopsin.

3. Silencing S cones: To zero, or silence, the S cones, we decrease
the amount of short-wavelength light, to which the S cones are
most sensitive (Figure 2C). This indeed leads to a silencing of S

cones (Figure 2C, middle panel). There is no difference in the
absolute activation of S cones, and consequently, the S cone
contrast is zero–they are silent.

4. Silencing L and M cones: To silence the L and M cones, a
similar trick is applied: Light near the peak spectral sensitivity
of L and M cones is decreased to reduce the overall absolute
activation of L and M cones (Figure 2D). However, we note
that there has been an “overshoot” in the decrease in L and M
cones activation (Figure 2D, middle panel): The modulation
spectrum is now producing less activation in the L and M
cones than the background spectrum. This translates into
a small amount of negative contrast seen by the L and
M cones (Figure 2D, right panel). This can be overcome
by again increasing the amount of long-wavelength light
in the modulation spectrum (Figure 2E), thereby equalizing
the activation of L and M cones relative to the background
spectrum (Figure 2D, middle panel). The L, M and S cones
are now silent (Figure 2E, right panel), and melanopsin
is stimulated at 50%. Because no attempt was taken to
silence the rods, they are also stimulated by this spectral
exchange.

5. Inverting the melanopsin activation: The modulation
spectrum shown in Figure 2E (red line) produces a significant
increase in melanopsin excitation. By “mirroring” the
modulation spectrum around the background spectrum
(i.e., an increase in emitted light in the positive modulation
spectrum becomes a decrease by the same amount in emitted
light in the negative modulation spectrum), we can also
generate a negative (rather than a positive) melanopsin
stimulus (Figure 2F, blue line), thereby producing negative,
or decremental, contrast on melanopsin (Figure 2F, right
panel). In practice, negative and positive modulation spectra
are alternated to yield the highest differential activation
possible.

A Quantitative Example
We provide a quantitative example along with code in
Appendices A1, A2, respectively. We use the stimuli from
Woelders et al. (17) for this example.

History of Silent Substitution
The method of silent substitution has enjoyed use in empirical
work well before the discovery of melanopsin and the ipRGCs.
We point the reader to Estévez and Spekreijse (13) for an
exposé of the early history of the method, which indeed
dates back to experiments involving wavelength exchanges
performed in 1906 (18) (see above section “Wavelength
exchange”). From the insight that metameric lights such
as those obtained in color matching experiments are silent
substitution stimuli (i.e., matching the activation of the three
cone types), the extension to experimentally control more
photoreceptors is conceptually straightforward. In the 1990s,
methods to manipulate four photoreceptors independently
(three cone classes and rods) using mixtures of four primary
lights were developed (18, 19). These methods were then
expanded to examining melanopsin function either by
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A

B

C

D

E

F

FIGURE 2 | (A) Background spectrum (left panel) to which the observer is light-adapted, eliciting a pattern of responses in the photoreceptors (right panel). (B)

Increase in emitted light near the melanopsin peak relative to the background spectrum (left panel; dashed line = background spectrum, red line = modulation

spectrum) leads to an increase in the excitation of all photoreceptors (middle panel), or equivalently, positive contrast on the photoreceptors (right panel). (C) To

balance the excitation of the S cones, a decrease in emitted short-wavelength light (left panel) leads to silencing of the S cones (middle panel), or equivalently, zero

contrast on the S cones (right panel). (D) To balance the excitation of the L and M cones, a decrease in emitted medium-wavelength light (left panel) leads to a

reduction in L and M cone activity (middle panel) but not yet zero contrast on the L and M cones (right panel); indeed, the contrast seen by the L and M cones is now

negative. (E) To silence the excitation of the L and M cones, a decrease in emitted long-wavelength light (left panel) leads to balancing of the L and M cones (middle

panel), or equivalently, zero contrast on the L and M cones (right panel). The contrast seen by melanopsin is 50%. (F) The modulation spectrum shown in (E) yields

positive contrast relative to the background spectrum but the spectrum can also be “mirrored” around the background spectrum, thereby leading to a negative

modulation of melanopsin (and rods).

assuming rod saturation at high light levels (20), or using five
primaries (21).

OVERVIEW OF SILENT SUBSTITUTION
STUDIES CONCERNING THE PUPIL

We provide an overview of extant studies examining specifically
melanopsin photoreception using the method of silent
substitution in Table 1 and hope that it serves to the reader
as an orientation to the literature. This overview includes
literature available in early September 2018. We note that both

authors of this article have published papers using the method of
silent substitution which are included in the table [M.S.: (16, 28),
T.W.: (17)]. The table shows that there is a set of experimental
parameters that are subject to the experimenters’ discretion. We
summarise these here.

Number of Primaries
As described above (The method of silent substitution–
Fundamentals), when stimulating melanopsin, at least four
(for matching the cones) or five (for matching both cones and
rods) independent primary lights are necessary. Most silent
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substitution studies that have examined pupil responses to
photoreceptor-specific modulations have employed a finite set
of LEDs (four or five), though using spectrally tuneable light
sources, more effective primaries are possible.

Peak Wavelength and Width of the Primary
Lights
In the case where the primary lights are discrete (such as
LEDs), the peak emission wavelengths are subject to design
considerations when building the apparatus. Both the choice
of peak wavelengths and primary widths affects the contrast
available for the silent substitution modulations. The contrast
available is also called the gamut. In principle, choosing broader
primaries will reduce also the amount of susceptibility to
individual differences in the cone spectral sensitivities (29).
In practice, unless a spectrally tuneable light source is used
allowing to create arbitrary spectral power distributions, the
choices of primary wavelengths and widths is limited by what is
commercially available. When building a system, we recommend
first estimating the gamut for a given configuration of peak
wavelengths and widths.

Viewing Geometry
Typical viewing geometries include Ganzfeld viewing conditions
(in which the stimulus is a homogenous field in an integrating
sphere) or Maxwellian view (in which an image is focused on the
entrance pupil of the observer). These again depend on the type
of design used when building the stimulation system.

Field Size
As can be seen in the table, the field sizes used in the field
vary somewhat, and will again depend on constraints set by the
optical apparatus used to deliver the stimuli, as well as theoretical
considerations such as the distribution of the photoreceptor types
across the retina.

Modulations and Contrast
Depending on the spectra of the primary lights, different amounts
of contrast are available to stimulate melanopsin. Typically, the
highest contrast can be achieved when LEDs are chosen of which
the distribution of peak wavelengths is as broad as possible.

Background Light
The choice of background light level is again somewhat arbitrary
in many situations, though experimenters typically strive to be
well in photopic conditions, where rods are assumed to be
saturated, and can therefore be ignored (but see Rod intrusion
below).

Spectral Sensitivities Assumed
The extent to which a given melanopsin-stimulating modulation
silences the cones depends on the spectral sensitivities assumed.
Various spectral sensitivities are available (30). Choosing the
wrong spectral sensitivities can lead to artefactual results, unless
care is taken to correct the modulations. We recommend
the use of the CIE 2006 “physiologically relevant” cone
fundamentals (31) as it allows for flexible extensions to simulate
individual differences parametrically (32). For melanopsin, there

is currently no standard(ised) spectral sensitivity, though by
using a template (also called nomogram) centered at 480 nm and
assuming a low peak optical density, such a spectral sensitivity
can easily be derived (33, 34).

CHALLENGES TO SILENT SUBSTITUTION

There are various sources of uncertainty when using silent
substitution stimuli. We highlight a few of these here.

Retinal Inhomogenities
The human retina is inhomogeneous. One obvious feature of
the retina making it inhomogeneous is the spatial location
of the macular pigment around the fovea, with a drop-off
toward the periphery. A consequence of macular pigment is
that all light seen by the fovea is filtered through the pigment,
thereby shifting the effective peak spectral sensitivity of the
foveal cones vs. the peripheral cones. In addition, there are also
differences in how much photopigment is expressed in foveal
vs. peripheral cones—the optical densities are different. Another
source of retinal inhomogeneity is that cones that are in the
partial shadow of retinal blood vessels—penumbral cones—have
a different spectral sensitivity than the open-field cones (35).
Effectively, for the method of silent substitution, this means
that that there are three additional photoreceptor classes that
need to be silenced, and therefore, more primaries are necessary.
Practically, penumbral cones can be desensitized using a white-
noise stimulus (26), or silenced, though with a significant drop in
contrast (36).

Individual Differences in the Cone Spectral
Sensitivities
There are individual differences in the spectral sensitivities of
the cones and this biological variability will affect the degree
to which the cones are truly silenced in a melanopsin-directed
modulation. Inter-observer differences have been a concern in
the accurate specification of cone signals well before the discovery
of melanopsin (37–39). Biological variability arises from inter-
observer variability in lens density, macular pigment density,
taxial density of the pigment (32, 37–39); and the peak spectral
sensitivity due to polymorphisms in the opsin genes (40–43).
A given set of cone fundamentals only describes the average
spectral sensitivities within a population and ignoring biological
variability will introduce error. In the field of melanopsin-
mediated pupillometry, some experimenters correct the stimuli
by having the observers perform a color matching procedure
(25, 26), while others (16, 17, 28) simulate the variability of the
stimuli using simulations based on estimates of the biological
variability of parameters of the cones (32).

Melanopsin Bistability and Tristability
The method of silent substitution assumes that melanopsin
the spectral sensitivity of melanopsin can be described by
a single function. There is ample evidence that melanopsin
is a bistable (44–49) or tristable photopigment (50). While
the cone and rod photopigment is regenerated in the retinal
pigment epithelium (RPE), melanopsin, being expressed in
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ipRGCs in the inner retina, and therefore removed from the
RPE is thought to rely on a different mechanism for pigment
regeneration. A bistable (or tristable) photopigment relies on
light itself to regenerate the pigment, and that this regeneration
process again is wavelength-dependent and therefore has a
separate spectral sensitivity. It is controversial whether the
multistable photochemistry of melanopsin has physiological
consequences (51–53). Under conditions of adaptating to a
constant background light as employed in silent substitution,
melanopsin will be in photoequlibrium, i.e., the different states
of the pigment will exist in fixed (though possibly unknown)
proportions.

Rod Intrusion
Under daylight conditions, rods are typically thought to be
saturated (54, 55), though the range of light levels in which both
rods and cones are known to be active is substantial (56, 57).
Using a five-primary stimulator [e.g., (25, 26)], it is possible to
generate melanopsin-directed stimuli which not only silence the
cones but also silence rods. Typically, when rods are silenced,
the contrast available to melanopsin is typically only around 1/3
relative to a stimulus in which rods are ignored, though this will
depend on the choice of background.

Scatter
The human eye is an imperfect optical system. In cases where
the stimulus is a spatially extended light source and there
is light outside the primary stimulation area (both centrally,
if the macular region is blocked, and in the far periphery),
there will be undesired stimulation of potentially unadapted
photoreceptors (such as the rods). This can be addressed by
adding a light outside the primary stimulation area that light-
adapts the photoreceptors outside of the primary stimulation
area.

Device Uncertainty
The light source used may not be stable over time and change
spectral output between operations, or throughout the sessions.
These drifts in device output need to be either calibrated, or at
least characterized.

EXPLOITING PROPERTIES OTHER THAN
SPECTRAL SENSITIVITY

We have noted in the introduction that the photoreceptors
contributing to pupillary control differ not only in their
spectral sensitivity (as is exploited in the method of silent
substitution) but also in their temporal properties, their
operating range and their distribution across the retina. These
properties might also be exploited to selectively stimulate
melanopsin. For example, the retinal location corresponding

to the blind spot does not contain rods and cones, but
light might stimulate melanopsin in the axons of ipRGCs.
Delivering a stimulus only in the blind spot would therefore
ensure that only melanopsin would be activated (58–60),
but there could be scatter on rod and cone photoreceptors
near the blind spot, and accidental displacement of a small
circumscribed stimulus field would need to be controlled
for. In the temporal domain, melanopsin photoreception is
much slower than cone- and rod-mediated photoreception, and
thus, the temporal properties of a stimulus can be optimized
to bias the measured response toward melanopsin-mediated
properties, e.g., the steady-state pupil size under continuous
light (61).

CONCLUSION

The method of silent substitution is a powerful technique to
stimulate a specific photoreceptor class or specific photoreceptor
classes in the living human retina while leaving other classes
un-stimulated. The method has been used successfully to
examine the photoreceptor contributions to the human
pupillary light responses. The method is not failsafe as several
factors need to be considered (retinal inhomogeneities,
individual differences, rod intrusion, scatter, and device
uncertainty), but these can be addressed experimentally or in
simulation. We hope that the method of silent substitution
will gain traction to tease apart the contributions of different
photoreceptors to human vision and to elucidate their role in
the non-invasive assessment of the human visual system using
pupillometry.
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