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The immune system is activated in Parkinson’s Disease (PD), as evidenced by

neuroinflammatory changes within the brain as well as elevated immune markers in

peripheral blood. Furthermore, inflammatory cytokine levels in the blood are associated

with disease severity and rate of progression. However, the factors driving this immune

response in PD are not well established. We investigated cell-extrinsic factors in systemic

immune activation by using α-synuclein monomers and fibrils, as well as bacterial toxins,

to stimulate peripheral blood mononuclear cells (PBMCs) derived from 31 patients

and age/gender-matched controls. α-synuclein monomers or fibrils resulted in a robust

cytokine response (as measured by supernatant cytokine concentrations and mRNA

expression in cultured cells) in both PD and control PBMCs, similar to that induced by

bacterial LPS. We found no PD vs. control differences in cytokine production, nor in

mRNA expression. Levels of endotoxin within the recombinant α-synuclein used in these

experiments were very low (0.2–1.3EU/mL), but nonetheless we found that comparable

levels were sufficient to potentially confound our cytokine concentration measurements

for a number of cytokines. However, α-synuclein monomers increased production of

IL-1β and IL-18 to levels significantly in excess of those induced by low-level endotoxin. In

conclusion, this study: (i) highlights the importance of accounting for low-level endotoxin

in antigen-PBMC stimulation experiments; (ii) indicates that cell-extrinsic factors may be

a major contributor to immune activation in PD; and (iii) suggests that α-synuclein may

play a role in inflammasome-related cytokine production in the periphery.
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INTRODUCTION

The immune system is known to be altered in Parkinson’s disease (PD). Whilst some of these
changes may be secondary phenomena, a growing body of evidence suggests that the immune
system may play a contributory role in the primary progression of PD (1, 2). α-synuclein is the
key protein implicated in the pathogenesis of PD, forming intracellular aggregates known as Lewy
bodies (3). Fibrillar α-synuclein is the principal pathological form present in Lewy bodies (4),
but the protein also exists in monomeric and oligomeric forms within the CNS, and all three
may trigger a central immune response orchestrated by microglia (5–7). Mutations in α-synuclein
are known to be associated with PD risk (8) and in-vitro studies of the behavior of monocytes
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and microglia stimulated with mutant α-synuclein monomers
demonstrate increased cytotoxic immune responses in
comparison to wild-type α-synuclein-exposed cells (9, 10).
Components of α-synuclein have also been shown to lead to
activation of T-lymphocytes and monocytes (11, 12), all of
which suggests that α-synuclein may drive both a neuronal
pathology and an inflammatory process in PD. Overproduction
of cytokines in PD perpetuates the inflammatory response
centrally and systemically (13). Serum cytokines [for example,
IL-1ß, IL-2, IL-10, IFNγ, and TNF-α (14, 15)] and peripheral
blood mononuclear cell (PBMC) cytokine production has been
correlated with PD symptom severity (16, 17) and rate of disease
progression (2). The question therefore arises: could this be
driven by α-synuclein in the periphery?

Aberrant α-synuclein is distributed throughout peripheral
organs, blood, interstitial and extracellular fluids in PD
(18–20) and may act as a catalyst for activation of the
peripheral immune system (1). Indeed, selected α-synuclein
peptides stimulate a specific T-cell response in 40% of
patients, via presentation by MHC alleles which are known
to be genetically associated with PD risk (11). Fibrillar α-
synuclein has been shown to act via Toll-like receptor (TLR)
and inflammasome pathways in monocytes leading to IL-1β
production (12).

However, other factors such as infections or translocation of
bacterial toxins from the gut may also contribute to inflammation
in PD (21, 22). For example, lipopolysaccharides (LPS) stimulate
PBMCs via the TLR and inflammasome pathways to produce
an inflammatory cytokine response (12), and several studies
have investigated this response in PD albeit with inconsistent
results. LPS-stimulated cytokine production has been reported
to be elevated in PD compared to controls, along with the
basal production of some cytokines (IL-1ß, IFNγ, and TNF-
α) (16). A second study showed that production of IL-1ß,
IL-6, and TNF-α is enhanced in PD PBMCs, while IL-2 is
reduced (23). However, in another study, production of IFNγ

by LPS-stimulated PBMCs was lower in patients than controls,
while IL-6, IL-1α, and IL-1ß levels were no different, but
decreasing concentrations correlated worsened disease severity
(24).

Given this ambiguity in the literature and the absence of
any study investigating both α-synuclein and LPS stimulation
of PBMCs in PD patients, we sought to understand how
stimulation by α-synuclein monomers, fibrils, and LPS affects
PBMC cytokine production in PD patients and matched
controls.

METHODS

Early-stage PD patients (Hoehn and Yahr ≤2), fulfilling UK
PD Brain Bank Criteria, aged 55–80, were recruited from the
PD Research Clinic at the John van Geest Center for Brain
Repair, Cambridge. A movement disorder accredited neurologist
conducted clinical and neuropsychological assessments.

Age and gender matched control participants were
recruited from the NIHR Cambridge Bioresource

(http://www.cambridgebioresource.org.uk) and had no history
of neurological disease, self-reported memory problems, or
depression. Ethical approval was obtained from the East of
England-Cambridge Central Research Ethics Committee (REC
03/303). Exclusion criteria were: other neurodegenerative
disorders, chronic inflammatory or autoimmune disorders,
current clinically significant infection or use of anti-
inflammatory/immunomodulatory medications, surgery
within the last month, or recent vaccinations. Data from this
cohort also contributed to our previously published study
(25).

PBMCs were extracted from venous blood by centrifugation
over a Ficoll gradient, washed and cultured (37◦C, 5% CO2)
for 24 h in RPMI (Life Technologies) and 10% fetal calf
serum (FCS, Sigma) in aliquots of 1 million cells per mL
per well, either unstimulated, or with LPS (1 ng/mL), α-
synuclein monomers (2 nmol/mL) or fibrils (2 nmol/mL).
Supernatant was collected and stored at −80◦C, and
cultured PBMCs were washed and stored in RNA protect
(Qiagen) at −80◦C. Matched samples were processed in
parallel.

Recombinant α-synuclein was produced by expression in
E.coli Rosetta using human α-synuclein cDNA, and aggregates
were confirmed on SDS-PAGE gel (Supplementary Methods

and Supplementary Figure 1). Endotoxin levels were
determined using LAL assays (Lonza Verviers SPRL, Belgium).

Cytokines (IFNγ, IL-1β, IL-2, IL-4, IL-6, IL-8, IL-10, IL-
12p70, IL-13, TNF-α) were measured in culture supernatants
using the Meso Scale Discovery (Rockville) platform V-
Plex Pro-inflammatory panel 1 electrochemiluminescence
assay. Secondary analyses were performed in a subset of
samples/conditions to measure IL-18 (MSD U-PLEX Human
IL-18 assay) and caspase-1 (Human caspase-1/ICE Quantikine
ELISA kit, R&D Systems) as markers of inflammasome
activation. Assays were run according to manufacturer’s
instructions. Supernatant samples were diluted 1:10 or 2:3 in
the appropriate buffer and assayed in duplicate. Cytotoxicity
post-culture was quantified with the Pierce LDH Cytotoxicity
Assay Kit (ThermoFisher).

RNA was extracted from cultured PBMCs using the
RNeasy Mini Kit (Qiagen) according to the manufacturer’s
instructions. RNA was reverse-transcribed using SuperScriptTM

III First-Strand Synthesis SuperMix for qRT-PCR (ThermoFisher
Scientific). TaqMan Real-Time PCR was used for quantification
of gene expression, and primers were IL-6 (HS00174131M1)
and IL-1ß (HS001555410M1) (ThermoFisher Scientific). Assays
were run in triplicate. Relative quantification was carried
out on a QuantStudio 12K Flex Real-Time PCR machine
and calculated using comparative cycle threshold (11CT
method) relative to the housekeeping gene GAPDH, and
a randomly selected endogenous control common to all
plates.

Cytokine concentrations across antigens and PD status
were compared using repeated-measures ANOVAs, and mRNA
production using 2-way ANOVAs (GraphPad Prism version 7,
SPSS version 25). Outliers were removed using Grubbs’ tests
(p < 0.05).
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FIGURE 1 | (A) Supernatant cytokine concentration produced by PD and control PBMCs cultured for 24 h in media containing LPS (1ng/ml), α-synuclein fibrils, or

α-synuclein monomers (1 nmol = 27.3 ng/ml). (B) Individual level data for IL-1β and IL-6 concentrations in post-culture supernatant in PD cases and matched controls

for direct comparison between unstimulated, LPS and α-synuclein monomer stimulation for two key inflammatory cytokines. Error bars represent SEM.
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RESULTS

31 PD patients [mean disease duration 4.3 (1.1) years] and
31 controls (matched for age and gender) were included
(Supplementary Table 1).

PBMCs were cultured with LPS (n = 31 case-control pairs),
and α-synuclein monomers and fibrils (n = 19 case-control
pairs). A subset of α-synuclein-cultured PBMCs were used for the
gene expression assays based on RNA availability.

Stimulation with either LPS, α-synuclein monomers or fibrils
led to robust cytokine stimulation compared to the unstimulated
condition (p < 0.0001, RMANOVA, main effect of antigen).
There was no main effect of patient vs. control status on cytokine
production for any antigen (p > 0.05, RMANOVA; Figure 1).
PBMC supernatant LDH levels were not different between α-
synuclein, LPS, or unstimulated cultures. Expression of IL-6 and
IL-1β was quantified by qRT-PCR, given that these cytokines
showed the greatest PD-control differences on LPS stimulation
in previous studies (16, 24). IL-6 and IL-1β expression were
elevated in response to stimulation by both LPS and α-synuclein
(2-way ANOVA and post-hoc Tukey’s test p < 0.0001; Gene
expression, relative units mean ± standard deviation(SD), IL-
6: unstimulated PD = 2.18 ± 4.28, Control = 1.67 ± 2.82; α-
synuclein PD = 929.72 ± 485.93, Control = 845.05 ± 419.67;
LPS PD = 989.05 ± 968.66, Control = 810.00 ± 731.10, IL-
1β: unstimulated PD = 2.99 ± 3.72, Control = 2.54 ± 3.76; α-
synuclein PD = 207.01 ± 95.13, Control = 171.39 ± 60.10; LPS
PD= 155.59± 116.50, Control= 136.77± 86.64). There was no
main effect of disease status between PD and control groups (p >

0.05, two-way ANOVA).
Given that α-synuclein produced a similar magnitude of

cytokine response to LPS, we examined the α-synuclein for the
presence of any associated endotoxin. Despite procedures to
remove contaminating endotoxin as detailed in the methods,
endotoxin concentrations in samples at 2 nmol/mL were 0.2–
1.3EU/mL on testing multiple aliquots (Lonza). LPS (1 ng/mL)
contained >10 EU/mL. To ascertain whether the levels of
contaminating endotoxin were sufficient to confound cytokine
measurements in the α-synuclein cultures, we used six endotoxin
standard dilutions (0, 0.1, 0.26, 0.64, 1.6, and LPS>10EU/mL)
to stimulate PBMCs using otherwise identical conditions (PD
n = 5, Control n = 4, age = 68.9 (not different from previous
cohort) and compared supernatant cytokine concentrations with
data obtained in our initial experiments (Figure 2). An endotoxin
concentration of 1.6EU/mL produced similar levels of cytokine
to α-synuclein (monomers or fibrils) for most cytokines thus
suggesting a possible confounding effect of endotoxin. However,
for IL-1β and IL-18, monomeric α-synuclein had a significantly
greater effect than 1.6EU/mL endotoxin (p = 0.01), an EU level
in excess of the measured level of contaminating endotoxin.
A similar pattern was seen for α-synuclein fibrils compared
to endotoxin at 1.6EU/mL, but this did not reach statistical
significance. Despite the excess production of inflammasome-
related cytokines IL-1β and IL-18 by PBMCs stimulated with
α-synuclein monomers, there was no corresponding increase in
caspase-1 secretion (p > 0.05, Figure 2D).

DISCUSSION

We found that PBMCs collected from both PD patients and
age/gender-matched controls stimulated by α-synuclein (both
monomeric and fibrillary) produced a robust inflammatory
cytokine response. The response was similar in magnitude to
LPS stimulation as assessed by both cytokine concentrations in
culture supernatant and mRNA expression. Whilst this response
may have been confounded by low levels of endotoxin in the
α-synuclein preparation, the response of the IL1-β and IL-18
is greater than this low level endotoxin effect, which suggests
that α-synuclein may have a specific independent effect on
inflammasome-related pathways. Interestingly, it has previously
been shown that α-synuclein fibrils (produced from a strain
of E. Coli with strongly reduced endotoxicity) stimulate the
NLRP3 inflammasome pathway in monocytes to produce IL-
1β, in addition to the TLR pathway that is activated by
bacterial endotoxin (12). In our study, we found that α-synuclein
monomers had a more pronounced effect on IL-1β production
than fibrils, but comparison between studies is difficult given the
likely variability in aggregate size according to the methodology
used to prepare fibrils. We found no significant increase in
the PBMC supernatant levels of the inflammasome pathway
mediator caspase-1 with α-synuclein stimulation, suggesting
that α-synuclein may be acting via caspase-1 independent
inflammasome pathways in this setting (26).

In contrast to previous studies (16, 23, 24), there was no
evidence of PD-control difference in cytokine production or
mRNA expression. Notably, our case-control pairs were well-
matched for age and gender and processed in parallel to eliminate
variation that may have confounded previous studies. Hence, our
data do not support a differential effect of PBMC stimulation in
PD cases vs. controls, irrespective of the stimulating antigen. The
lack of any patient vs. control differences in cytokine production
in response to PBMC stimulation suggests raised levels of
inflammatory markers in the serum in PD may relate more
to levels of exogenous stimulating antigens or other cytokine
sources, rather than to intrinsic properties of the peripheral
mononuclear cells. Additionally, oligomeric α-synuclein species
might contribute to inflammation in PD but this has not been
specifically tested in this study.

The generation of α-synuclein for experimental use typically
involves producing recombinant protein in E.coli, which
invariably leads to endotoxin contamination of the protein
product; contamination which can be removed to some extent by
cleaning methods, but may remain at low levels and confound
cellular processes with sensitivity to endotoxin (27). Our data
confirms that even very low level endotoxin levels can have
a significant confounding effect. A previous study found that
α-synuclein-derived peptides drive specific T-cell responses in
PD (11), but it is unclear whether the presence of associated
endotoxin had been entirely excluded in these experiments.
However, it may be relevant to further study co-stimulation
with endotoxin and α-synuclein, given that endotoxin may act
synergistically with α-synuclein in TLR stimulation (12), as
has been shown in α-synuclein-primed murine microglia (28).
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FIGURE 2 | Comparison of low concentration endotoxin and α-synuclein stimulation of PBMCs. Squares represent cytokine concentrations from PBMC cultures with

varying concentrations of endotoxin (A, B: n = 9, 5 PD and 4 controls, C,D: n = 6, 3PD and 3 controls, assayed in duplicate; left of dashed line). Circles represents

PD (black) and control (gray) concentrations in post-culture supernatants from the original assays cultured with α-synuclein monomers, fibrils, or LPS (α-synuclein

conc: 1 nmol = 27.3 ng/ml, LPS conc: 1 ng/ml). P-values indicates comparison between 1.6 EU/ml (comparable to endoxin level in our α-synuclein preparation) and

grouped PD/control cohort stimulated by α-synuclein monomers (No PD/control differences were observed in post-culture cytokine concentrations) Bars represent

mean value and first and third quartiles. (A) Data suggest that IL-1β production is stimulated by α-synuclein in excess of stimulation by the equivalent value of

endotoxin present as a contamiant. (B) IL-6 (and all other measured cytokines) do not show this increased production. Data indicates that endotoxin is the primary

driver of elevated IL-6 concentration, rather tha α-synuclein. (C) IL-18 prodution is also significantly increased in response to α-synuclein stimulation, compared to

stimulation with an endotoxin concentration comparable to contaminating levels. (D) Caspase-1 levels are not significantly increased by α-synuclein stimulation

compared to the unstimulated condition.

Furthermore, endotoxin may influence the conformation of α-
synuclein, with different LPS β-sheet content driving alterations
in fibril density and changes in associated behavioral phenotypes
in animal models (29). However, these mechanisms are not well
understood in patients.

A limitation of this study is that the assessment of
the PBMC response to varying endotoxin concentrations
was undertaken in an independent sub-sample. However,
subjects included were similar in age and disease status
and the measured cytokine concentrations had minimal
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between-subject variation suggesting that the responses were
representative.

In conclusion, our data suggest that even low levels
of endotoxin can confound the measurement of immune
cell responses to α-synuclein in-vitro and future studies
should consider endotoxin quantification. α-synuclein may have
independent effects on production of inflammasome-related
cytokines, which may perpetuate the immune response in PD.
Furthermore, PD and control PBMCs behaved similarly in
the face of stimulation in our study which suggests that cell-
extrinsic factors may be an important contributor to the chronic
inflammation which has been observed in PD. The nature of
these agents remains to be fully determined but both α-synuclein
and bacterial endotoxins may play a critical role.
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