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With the advent of susceptibility-weighted imaging (SWI), the ability to identify cerebral

microbleeds (CMBs) associated with mild traumatic brain injury (mTBI) has become

increasingly commonplace. Nevertheless, the clinical significance of post-traumatic

CMBs remains controversial partly because it is unclear whether mTBI-related CMBs

entail brain circuitry disruptions which, although structurally subtle, are functionally

significant. This study combines magnetic resonance and diffusion tensor imaging (MRI

and DTI) to map white matter (WM) circuitry differences across 6 months in 26 healthy

control volunteers and in 26 older mTBI victims with acute CMBs of traumatic etiology.

Six months post-mTBI, significant changes (p < 0.001) in the mean fractional anisotropy

of perilesional WM bundles were identified in 21 volunteers, and an average of 47%

(σ = 21%) of TBI-related CMBs were associated with such changes. These results

suggest that CMBs can be associated with lasting changes in perilesional WMproperties,

even relatively far from CMB locations. Future strategies for mTBI care will likely rely

on the ability to assess how subtle circuitry changes impact neural/cognitive function.

Thus, assessing CMB effects upon the structural connectome can play a useful role

when studying CMB sequelae and their potential impact upon the clinical outcome of

individuals with concussion.

Keywords: traumatic brain injury, cerebral microbleed, diffusion tensor imaging, connectomics, susceptibility

weighted imaging

INTRODUCTION

Using magnetic resonance, diffusion-weighted and diffusion tensor imaging (MRI, DWI and DTI,
respectively) to quantify within-subject changes in white matter (WM) properties across time
remains a particularly challenging task of brain image analysis (1). Specifically, to identify true
longitudinal WM changes in the context of patient-tailored analysis, the neuroimaging researcher
must address major challenges associated with the inherent technical limitations of diffusion
imaging. For example, even when using the same acquisition protocol at each time point when
MRI volumes are acquired, substantial artifactual differences between scans can often be present
across imaging volumes acquired from the same subject. Such differences may pertain to (A) the
signal-to-noise ratio (SNR) ofMRI/DWImeasurements, (B) the magnitude and spatial distribution
of magnetic susceptibility artifacts, (C) the spatial pattern and extent of subject motion during
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data acquisition, etc. These and other confounds can lead to
inaccurate calculation of diffusion parameters, to imprecise
estimation of tensors for DTI analysis, and to subsequent loss
of reliability when making scientific inferences. In studies of
traumatic brain injury (TBI), the magnitude of such confounds
can be even larger than in other populations due to factors
such as (A) patients’ poor ability to control their head
motion while in the MRI scanner, (B) substantial injury-related
variations in magnetic susceptibility throughout the brain, (C)
the potential inability to calculate diffusion tensor parameters
in hemorrhagic/edematous brain regions, etc. Thus, although
potentially very useful, longitudinal analysis of WM changes
prompted by TBI remains particularly challenging.

When applied to conditions like TBI, stroke or multiple
sclerosis (MS), DTI approaches for identifying patterns
of brain connectivity change at the population level can
often be inadequate due to the large degree of inter-subject
variability encountered in these clinical conditions. In fact,
the accuracy of standard image processing operations—such
as the co-registration of DWI/DTI volumes with structural
MRI volumes—cannot be guaranteed to be successful even in
healthy adults, particularly from the standpoint of resolving
topological variabilities and from the perspective of aligning very
fine neuroanatomical structures (2). Indeed, difficulties related to
the reliable, within-subject co-registration of MRI/DWI volumes
can greatly complicate the task of their longitudinal analysis.
Although considerable effort has been dedicated to the task
of alleviating image processing errors during population-level
analysis of DWI/DTI datasets, addressing this problem when
undertaking longitudinal, subject-level studies has received
substantially less attention. Nevertheless, the need of reliable
strategies for this purpose remains strong, particularly when
considering the relevance of such methods to the analysis of
neurological conditions associated with (A) high inter-patient
variabilities in brain structure, (B) substantial heterogeneity in
observed neuroanatomical deviations from normality, and (C)
structurally subtle—yet functionally-significant—longitudinal
changes.

The first aim of this study is to illustrate a state-of-the-
art, patient-tailored method for the longitudinal analysis of
WM circuitry and for the quantitation of brain connectivity
changes due to hemorrhagic brain lesions. The second aim
is to use this approach to investigate whether TBI-related
cerebral microbleeds (CMBs) can be associated with long-range
WM connectivity disruptions which are measurable using DWI
and quantifiable via DTI tractography and related methods.
The technique is applied to two longitudinal datasets, both
consisting of repeated DWI/DTI measurements acquired from
(A) 26 healthy adults and (B) 26 victims of geriatric mild TBI
(mTBI). The mTBI cohort includes older volunteers whose only
prominent, MRI-detectable form of brain pathology consists
of mTBI-related CMBs. Part of our motivation for focusing
on geriatric mTBI is the fact that, although CMBs have been
identified frequently in the brains of TBI survivors (3), they are
relatively less common in younger victims (4). Furthermore, the
relationship between TBI-related CMBs and neurodegenerative
disorders is of interest (5). Based on their acute presentation on

multimodal MRI scans and on their longitudinal evolution, the
CMBs studied here can be distinguished frommicrohemorrhages
of chronic etiology, such as hypertensive vasculopathy or chronic
amyloid angiopathy (6). Partly because the neuroanatomic
changes effected by post-traumatic CMB evolution are typically
subtler than those of larger, MRI-detectable lesions (7), CMB-
related mass effects (e.g., compression, displacement) upon
perilesional WM are presumably more moderate than those
associated with larger lesions. For this reason, we argue that
illustrating our technical approach by quantifying the structural
effects of CMBs upon WM connectivity likely imposes a
relatively-stringent and rigorous illustration of our method’s
robustness and effectiveness. Based on the results of our analysis,
we argue that mTBI-related CMBs can be associated with
disruptions of WM connectivity and that such disruptions may
even affect brain connections which extend relatively far from
the CMBs’ immediate spatial neighborhoods. Importantly, our
insights highlight the scientific and translational significance
of patient-tailored DWI/DTI analysis and provide compelling
arguments in favor of implementing rigorous approaches to the
patient-tailored study of WM integrity and connectomics in
neurological conditions where subtle-to-severe neuroanatomic
abnormalities may be present. Finally, our contribution indicates
that such methods—though often requiring sophisticated and
ingenious analytics—should be automated solutions which are
accessible to experts and novices alike without time-consuming
user intervention.

MATERIALS AND METHODS

Participants
This study was carried out in accordance with the
recommendations of the Code of Federal Regulations
(45C.F.R. 46) of the US Federal Government. The protocol
was approved by the Institutional Review Board (IRB) at
the University of Southern California. All subjects gave written
informed consent in accordance with the Declaration of Helsinki.
Participant demographics are summarized in Table 1. The two
groups of primary interest to our study consisted of N1 = 26 (13
females) mTBI victims and N2 = 26 (13 females) healthy control
(HC) volunteers. The Glasgow Coma Scale (GCS) score upon
hospital emergency room (ER) admission was available for each
mTBI volunteer (mean µ = 13.7; standard deviation σ = 0.4).
Injury etiology involved falls due to loss of balance either while
walking (22 subjects), riding a bicycle (2 subjects), running
(1 subject) or playing a contact sport (1 subject). Volunteers in
the HC and mTBI groups were matched according to their sexes
and ages (HC: µ = 67.2 years, σ = 5.6 years; mTBI: µ = 66.8
years, σ = 5.9 years). The statistical significance of age and
GCS score differences between the two cohorts was evaluated
using Welch’s t-test for samples with unequal variances, and
the appropriate number of degrees of freedom were calculated
according to the Welch-Satterthwaite approximation. A smaller,
third group consisting of N0 = 6 young healthy control (HC)
adults (three females of age 22, 28, and 32, respectively; three
males of age 24, 32, and 35, respectively) were also included in the
study. This was done to estimate the variance of our quantitative
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TABLE 1 | Sample demographics for mTBI and both old and young HC

participants.

Cohort N Age [years] Sex ratio CMB load GCS

mTBI 26 66.8 ± 5.93 1:1 6.04 ± 2.63 13.7 ± 0.4

Old HC 26 67.2 ± 5.62 1:1 0.00 ± 0.00 —

Young HC 4 28.8 ± 5.08 1:1 0.00 ± 0.00 —

CMB load refers to the number of CMBs identified via GRE/SWI. Averages and standard

deviations are reported. GCS scores are unavailable for HC participants because these

volunteers had not suffered any head injury at the time of the study.

DTI metrics due to the cumulative effects of potential confounds
such as measurement noise, motion artifacts, etc.

Recruitment and Inclusion/Exclusion
Criteria
Volunteers were recruited through dissemination of IRB-
approved material to identify prospective study participants.
Potential enrollees were screened by a research-reliable
investigator both by telephone and in person to ensure that
inclusion/exclusion criteria were satisfied. Aside from theN0 = 6
young adults, only individuals aged 65 or older were included
in the study because TBI-related CMBs are most likely to be
present in the brains of older individuals (7), such that this is a
particularly convenient population from which to sample. Only
volunteers who had a GCS score equal to or greater than 13 upon
ER admission were included in the mTBI group. Volunteers
were excluded if they had a history of neurological disorder or
psychiatric disease prior to the study. Participants with mTBI
were excluded if they had a history of head trauma other than the
most recent mTBI which qualified them for the study. Only TBI
victims with CMBs were included; no volunteers were included
if their acute neuroimaging scans indicated the presence of other
types of TBI-related structural brain pathology. Furthermore,
TBI volunteers were included only if their SWI-resolvable
CMBs could be confidently linked to their TBI rather than to
chronic conditions such as hypertensive vasculopathy or CAA.
To achieve this distinction, CMBs were classified as TBI-related
based on the criteria described in the Lesion Identification
subsection.

Neuroimaging
For the young HC volunteers (N0 = 6) included in the
study for validation purposes described farther below, a total
of four scanning sessions were held approximately 1 week
apart. For mTBI volunteers, imaging sessions were held both
acutely and chronically (i.e., 3 days or fewer post-TBI and
again ∼6 months after injury, respectively). For older HC
volunteers, imaging sessions were held about 6 months apart,
subject to the inclusion criterion that all volunteers had to
be 65 years old or older by the time of the initial imaging
session. MRI [including T1- and T2-weighted volumes, fluid-
attenuated inversion recovery (FLAIR), gradient recalled echo
(GRE)/susceptibility weighted imaging (SWI)] and gradient-
echo (GE) DWI volumes were acquired using the same MRI

scanner type (Prisma MAGNETOM Trio TIM with a 20-channel
head coil, Siemens Corporation, Erlangen, Germany) and at
the same magnetic field strength (3 T). T1-weighted imaging
volumes of the head were acquired using a three-dimensional
(3D), magnetization-prepared rapid acquisition gradient echo
(MP-RAGE) sequence with the following acquisition parameters:
repetition time (TR) = 1,950ms; echo time (TE) = 2.98ms;
inversion time (TI) = 900ms; echo train length (ETL) = 1;
flip angle = 9 degrees; field of view (FOV) = 256mm ×

256mm; matrix size = 256 × 256; slice thickness = 1mm;
slice oversaturation = 45.5%; sampling = 100%; phase
encoding direction: anterior to posterior; acquisition bandwidth
(BW) = 240Hz; echo spacing = 6.8ms. T2-weighted volumes
were acquired using a 3D sequence (TR = 2,500ms; TE = 360ms;
flip angle= 120 degrees; ETL= 180; FOV= 256mm× 256mm;
matrix size = 256 × 256; slice thickness = 1mm; phase
encoding direction: anterior to posterior; BW = 750Hz; echo
spacing = 3.16ms; Turbo factor = 141). FLAIR volumes were
acquired axially (TR = 9,000ms; TE = 78ms; TI = 2,500ms;
ETL = 15; flip angle = 150 degrees; FOV = 256mm ×

192mm; matrix size = 256 × 192; slice thickness = 2mm;
sampling = 100%; phase encoding direction: anterior to
posterior; BW= 250Hz). Flow-compensated GRE/SWI volumes
were acquired axially (TR = 30ms; TE = 20ms; FOV = 256mm
× 192mm; matrix size = 512 × 256; slice thickness = 2mm;
phase encoding direction: right to left; BW = 100Hz).
DWI volumes were acquired axially in 64 gradient directions
(TR = 8,300ms; TE = 72ms; flip angle = 90 degrees; ETL = 47;
FOV = 256mm × 256mm; acquisition matrix size = 128 ×

128; slice thickness = 2mm; percentage sampling = 100; phase
encoding direction: anterior to posterior; BW = 1,345Hz; echo
spacing = 0.83ms; Turbo factor = 128). One volume with b = 0
s/mm2 and another with b = 1,000 s/mm2 (where b is the
diffusion-weighting constant of DWI) were also acquired. All
neuroimaging data were de-identified and de-linked after their
acquisition.

Pre-processing
For this and subsequent subsections, the reader is referred to
Figure 1 for a schematic representation of the image analysis
workflow, which is also summarized elsewhere (8). First, as a
preprocessing step, imaging volumes were skull-stripped and
their intensities were normalized across volunteers to reduce
the potential confound of intensity differences across subjects
when performing lesion identification. Intensity normalization
was implemented by dividing the intensity values associated
with voxels within the brain mask by the median intensity of
these voxels. Eddy-current corrections were applied to each DWI
volume, followed by an appropriate rotation of the B matrix
(9). Bias field correction was implemented using the algorithm
of Sled et al. (10) because this approach has been shown to be
adequate when processing GRE/SWI volumes (11). In the study
cohort, time-dependent changes in neuroanatomy are likely
due primarily to traumatic axonal injury (TAI) and to CMB-
related changes because (A) only volunteers whose MRI scans
exhibited these types of pathology were included in the study, and
because (B) no CMB was observed to appear/disappear across
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FIGURE 1 | Neuroimage analysis flowchart for SWI and DWI volumes. The flowchart summarizes the analytic steps described in the Methods section, to which the

reader is referred for details. Briefly, after standard pre-processing of SWI and DWI volumes, DTI streamlines and SWI volumes are each used for streamline matching

and lesion identification, respectively. After the latter operation, the parameters of identified lesions are used as additional input to the streamline matching process.

Once streamlines have been matched, statistics of interest are computed along streamlines.

time points in any volunteers. In the HC cohort, where there
were no incidental findings, observed neuroanatomic differences
are likely due mostly to natural brain aging. Consequently, for
each study volunteer, changes within each set of longitudinally-
acquired MRI/DWI volumes were assumed to be diffeomorphic
(one-to-one). For this reason, the skull-stripped brains—as
acquired using each imaging modality—were co-registered to

the T1-weighted volume using a rigid, affine, six-parameter
registration.

Lesion Identification
A voxel classifier was used to identify image features as CMB
candidates using the Microbleed Anatomic Rating Scale (MARS)
guidelines (12), which classify CMB labels as either certain or
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doubtful. The former type of CMB is defined as a small, spherical
or circular, clearly-defined hypo-intensity which features clear
margins within the brain parenchyma. The latter type of CMB
deviates from sphericity or circularity and/or is less well defined,
i.e., more isointense than a definite CMB. Hypo-intensities
connected to the boundary of the brain are not marked as CMBs
because, by definition, CMBs are not connected to the meninges.
False positive detections were removed using a second, object-
based classifier which took into consideration the shapes of CMB
candidates before finally labeling candidates as CMBs. CMB
deviation from sphericity was quantified using the algorithm
of ter Haar Romeny (13), which calculates the sphericity of
a CMB from its curvature. To estimate the sensitivity and
specificity of the lesion identification procedure, the results of
the automated algorithm were compared to the manual labels
assigned by a human expert with training in neuroanatomy
and neuroradiology. SWI-resolvable CMBs were retained for
subsequent analysis only if their etiology could be linked
confidently to TBI rather than to chronic conditions such as
hypertensive vasculopathy and CAA, both of which are common
in the elderly (14). Specifically, each CMB was assumed to be
TBI-related only if the following two conditions were satisfied:

(1) At the acute stage of injury, the CMB had to be
surrounded—either partially or entirely—by one or several
focal FLAIR hyperintensities which were fully adjacent to the
CMB in question and whose contour encircled that the CMB;
(2) By the chronic stage of injury, the said FLAIR
hyperintensities had to be undetectable on FLAIR scans.

If both conditions above were satisfied, the CMB was assumed
to be TBI-related because (A) the acute post-TBI presence of peri-
hemorrhagic FLAIR hyperintensities is very frequently indicative
of post-traumatic edema (15), and (B) the absence of acutely-
detected CMBs on chronic FLAIR scans is consistent with the
resolution of such edema post-TBI (3). By contrast, in conditions
such as hypertensive vasculopathy or CAA, the voxel intensity
of chronic edema surrounding CMBs on FLAIR MRI typically
changes very little over the course of 6 months (16, 17). For
these reasons, the two criteria listed above are likely necessary
and sufficient to allow CMB etiology to be established from
multimodal, longitudinal SWI and FLAIR scans.

DTI Tractography
DWI volumes were processed in TrackVis (http://trackvis.org)
and 3D Slicer (http://www.slicer.org). Tensors were fit to
DWI data to perform DTI, and tractography streamlines
were reconstructed using deterministic tractography subject
to the following parameters: seed spacing = 0.5mm; linear
measure start threshold = 0.3; stopping value = 0.17;
minimum streamline length = 20mm; maximum streamline
length = 110mm; stopping criterion = fractional anisotropy
(FA) value; stopping criterion value = 0.17; stopping track
curvature = 0.96; integration step length = 0.5mm. The
algorithm used for tractography was fixed step-length streamline
propagation. Here and throughout, the term “streamline
bundles” is used when referring to the DTI-resolved proxies of
WM tracts, in order to emphasize that WM fibers’ tractography

streamline counts should not be expected to equate to axonal
counts (18).

DTI Measurement and Tractography
Confounds
Before assessing time-related changes in DTI-resolved WM
streamline properties, it is both prudent and useful to estimate
the extent to which tractography measures can differ due
to confounds (e.g., scanner noise, subject motion, magnetic
field inhomogeneity differences, tensor estimation inaccuracies,
tractography reconstruction errors, etc.) rather than to actual
WM changes effected by the biological processes being studied,
such as injury progression/resolution. The cumulative effects
of confounds can be quantified by comparing repeated
measurements acquired from HC subjects across relatively-short
time intervals on the order of days. Specifically, if the MR
acquisition parameters and DTI tractography/analysis workflows
are identical across MRI acquisition sessions, this type of analysis
can allow one to estimate the extent to which perceived WM
differences are due to confounds rather than to the biological
phenomena under investigation. This is the motivation behind
our decision to include N0 = 6 young HC subjects, from
whom MRI data were acquired over four sessions held at
1-week intervals. Thanks to the availability of these data, the
cumulative effects of confounds upon DTI metrics of interest
can be estimated and a useful baseline can be established to
provide a reference distribution of metric values against which
CMB-related effects upon brain circuitry can be compared.

Confound effects upon tractography metrics can be quantified
by estimating, at each WM voxel, the extent of that voxel’s
spatial neighborhood within which any DTI-derived differences
in WM properties being measured across time are likely due to
artifacts rather than to TBI-related phenomena visible on MRI
scans. Conceptually, the major axis of an ellipsoid centered at a
voxel’s location is a useful parameter to describe the extent of
the spatial neighborhood in question. In loose analogy with the
confidence (hyper-)ellipsoid of multivariate statistical analysis
(19), we name this neighborhood the uncertainty ellipsoid of the
voxel and its major axis the uncertainty radius. The uncertainty
ellipsoid can be conceptualized as the spatial region around a
voxel within which any perceived between-scan differences in
DTI-derived WM measures should be interpreted with great
caution due to their high likelihood to be confounded by
measurement noise, motion artifacts, DTI tractography errors,
etc. One advantage of quantifying such uncertainty using an
ellipsoid rather than a sphere is the usefulness of accounting for
the local anisotropy of water diffusion in the WM. As described
in subsequent subsections, an approach to overcoming artifact-
related confounds involves the implementation of methods like
DTI streamline matching and prototyping, which allow one
to focus on large-scale, topologically-consistent WM changes,
i.e., on DTI streamlines whose properties differ substantially
both across time points and over a spatial extent which is
sufficiently larger than the uncertainty ellipsoid. When used
together, these techniques can facilitate estimation of the mean
value and standard deviation of the uncertainty radius within
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the WM. Here we restrict this estimation to the corpus
callosum because (A) the trajectories of its WM fibers have
been mapped extensively (20), (2) its inter-subject variability
has been well quantified (21), (3) the WM tracts belonging to
this structure are relatively straightforward to reconstruct from
DTI tractography, and (4) callosal WM fibers have relatively
well-behaved geometries, thereby reducing the risk of their
resolvability being poor—as in the case of kissing or crossing DTI
streamlines) (22, 23).

DTI Streamline Matching
When quantifying within-subject WM circuitry differences, it
is important to address the task of matching DTI tractography
streamlines across time points. Given that some streamlines
and/or their reconstructed trajectories may be artifactual for
reasons described previously as well as for a host of other
reasons, we argue that this analysis step is necessary if realistic
estimates of longitudinal WM differences are to be obtained. In
what follows, the assumption is made that streamlines can be
treated as piecewise-differentiable three-dimensional (3D) space
curves with rotationally- and translationally-invariant curvature
κ and torsion τ . Calculation of these two properties allows
direct labeling of corresponding space curves to be established,
local transformations of curve pairs to be calculated, and a final
global transformation to be estimated, as described by Leemans
et al. (24). Briefly, the intrinsic properties of any parametrized,
regular space curve are uniquely defined by its curvature and
torsion. For this reason, as described by differential geometry
(25), any two curves which lie within a rigid transformation
of each other are guaranteed to have identical curvature and
torsion, provided that a one-to-one correspondence (called
curve index correspondence) exists between parametrizations.
To establish curve index correspondence, the appealing tract-
based morphometry (TBM) approach of O’Donnell and Westin
(26) is used in this study. This approach involves using subject-
specific tractography bundle segmentations to generate arc length
parametrizations of each bundle with point correspondences
across all time points, thereby allowing tract-based measurement
and analysis. Once curve index correspondence has been
established within each subject, for each space curve and
across all time points, a local transformation is computed
to implement point-to-point co-registration via Schönemann’s
solution to the orthogonal Procrustes problem (24). Next,
a global transformation which maps source curves to target
curves is estimated from the set of local curve transformations
by minimizing the global residue of squared inter-curve
distances. A conceptual, pictorial representation of the DTI
streamline matching process is shown in Figure 2, where DTI
tractography streamlines are reconstructed based on DWI
volumes acquired at different time points (Figure 2A), and the
reconstructed streamlines are then co-registered within each
subject (Figure 2B).

Along-Tract Analysis
Once curves have been matched, the distance map method
of Maddah et al. (27) and the streamline affinity approach of
O’Donnell and Westin (26) can be used in tandem to perform

FIGURE 2 | Conceptual representation of streamline matching, which involves

(A) the reconstruction of DTI streamlines from DWI volumes acquired during

each session, (B) the co-registration of streamlines within each subject, and

(C) the selection of a streamline which is representative of a bundle’s spatial

trajectory.
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streamline prototyping. This procedure involves the selection of
a streamline which is most representative of a bundle’s spatial
trajectory (Figure 2C). As in the approach of O’Donnell and
Westin (26), along-streamline measures of diffusivity (e.g., FA)
can be calculated for each streamline’s arc-length coordinate, and
the descriptive statistics of each measure (mean, variance) are
evaluated point wise at each of these coordinates. Because the
streamlines within each bundle often vary in length, a curve
portion amenable to the calculation of along-tract statistics must
be identified. In this study, the curve portion in question is
chosen as the range of arc-length coordinates which are common
to a preponderance of streamlines in a bundle of interest. To
illustrate along-tract analysis, we attempted to identify between-
scan differences in the mean FA of perilesional streamlines. The
mean FA was chosen because it is a widely-used DTI measure
which depends on all three eigenvalues of the diffusion tensor.
To determine whether between-scan differences in the mean FA
of perilesional streamline bundles were unlikely to be artifactual,
these differences had to be compared against empirically-
established reference distributions of mean FA differences
between scans. The mean and variance of these reference
distributions were first calculated over streamlines which had
been matched across scans, and two reference distributions were
determined, one for each younger HC volunteer and another
for each older HC volunteer. The distribution parameter values
obtained within each of these subjects were then pooled within
their own group (i.e., once over all younger HC volunteers and
another time over all older HC volunteers). For each perilesional
streamline bundle of interest, the null hypothesis was formulated
as the statement that there was no between-session difference
in the mean FA of streamlines within the bundle in question.
This hypothesis was tested within the formalism of an analysis of
variance (ANOVA) where sex was treated as a covariate whereas
age group (young vs. old) and diagnosis (HC vs. mTBI) were used
for stratification and comparison. The statistical significance of
each hypothesis test was calculated at the α = 0.05 level, subject
to the family-wise error rate (FWER) correction for multiple
comparisons (28).

RESULTS

Demographics and Pathology Findings
As expected, the mean age difference between groups was not
significant (Welch’s t23.93 = −0.78, p > 0.77). By design, there
is no sex ratio difference across groups. TBI-related CMBs were
first identified visually and labeled by a human rater trained
in their identification, and the process was then repeated using
the automated method. The average sensitivity of the automatic
algorithmwas found to be 94.4% (σ= 4.2%) across all volunteers.
Thus, for this particular dataset, the classification accuracy is
comparable or superior to that achieved by Bian et al. (29),
Ghafaryasl et al. (30), and by van den Heuvel et al. (11) in similar
studies. TBI-related CMBs were identified in the brain of each
mTBI volunteer, with no preferential localization to any specific
region. Across mTBI volunteers, the count of TBI-related CMBs
ranged from 2 to 13 (µ= 6.04, σ= 2.6). No CMBs were identified
in any of the HC volunteers, whether younger or older. The

correlative relationships between CMB count, age, sex, and other
demographic variables are not reported here because our sample
sizes, while adequate for a methodological study such as ours, are
undesirably small for this type of statistical analysis.

Alleviation of DTI Tractography Confounds
Figure 3 shows the T1-weighted MRI scans of a younger HC
adult whose DTI-derived callosal streamlines (as reconstructed
based on scans from two distinct sessions held 1 week
apart) are superimposed on anatomic MR images. The
two DTI reconstructions (blue and yellow, Figure 3A) are
similar, although noticeable differences are also visible. In
this example, such differences are unlikely to be due to
rigid co-registration errors alone because we were unable to
explain them successfully using either manual co-registration or
automatic co-alignment using a gradient-descent optimization
of all registration parameters. Nevertheless, when displayed
using red-green-blue (RGB) encoding of streamline orientations,
the DTI streamlines derived from scans acquired during
session 1 (Figure 3B) are consistent with satisfactory, adequate
reconstructions of the corpus callosum, based on their agreement
with the widely-mapped neuroanatomy of this structure (31).
This conclusion emerges from the inspection of Figure 4 as well,
where DTI reconstructions for each scan session are displayed
both separately (Figure 4A) and in overlap with reconstructions
from other sessions (Figure 4B). For the young HC volunteer
whose callosal streamlines are shown in Figures 3, 4, the
uncertainty radius is found to have µ = 2.7mm and σ = 0.8mm,
with µ and σ being computed only over DWI voxels which
exclusively contain callosal streamlines. In the other young
HC volunteers, uncertainty radii are comparable (volunteer 2:
µ = 2.9mm, σ = 0.7mm; volunteer 3: µ = 3.1mm, σ = 0.4mm;
volunteer 4: µ = 2.8mm, σ = 0.5mm; volunteer 5: µ = 2.9mm,
σ = 0.9mm; volunteer 6: µ = 2.7mm, σ = 1.1mm).

Perilesional Streamline Matching
To illustrate the type of analysis which can be carried out using
our streamline identification and matching approach, Figure 5
shows representative examples of perilesional streamlines in
three mTBI victims. Patient 1 (Figure 5A) is a female mTBI
victim with upper good recovery [indicated by a Glasgow
Outcome Scale-Extended (GOS-E) of 8] who, acutely, was
found to exhibit a ∼4 mm3 CMB within the fornix, near the
hippocampal commissure. At the chronic time point (∼6months
after injury), the location and trajectory of the right fimbria
are found to differ visibly compared to the acute time point.
Patient 2 (Figure 5B) is a male mTBI victim (GCS = 13)
with upper good recovery (GOS-E = 8) and with a ∼3 mm3

CMB located near a DTI streamline bundle connecting the
right parietal and temporal lobes. Comparison of the glyphs
across time points suggests that, 6 months after injury, the
bundle in question shifted slightly inwards and toward the right
lateral ventricle, possibly due to decreased inflammation and/or
intracranial pressure. Patient 3 (Figure 5C) is a male mTBI victim
with a ∼4 mm3 CMB close to a left-hemisphere streamline
bundle belonging to the splenium of the corpus callosum.
There is notable asymmetry of the depicted structure with
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FIGURE 3 | Depiction of DTI-derived streamlines in the corpus callosum superimposed on the T1-weighted MRI scans of a sample HC volunteer. (A) Two sets of

streamlines (blue, yellow) were reconstructed based on scans acquired during distinct sessions. Despite similarities between the two sets of streamline bundles,

noticeable differences abound. (B) When displayed using red-green-blue (RGB) encoding of streamline orientations, the DTI streamlines derived from scans acquired

during session 1 are consistent with the expected neuroanatomy of the healthy corpus callosum.

respect to the longitudinal fissure, with brief—though clear—
separation of the WM streamline trajectories ipsilateral to the
CMB. Furthermore, the asymmetry is not found to have resolved
by the time of the chronic scan. Together, these results suggest
that CMBs can be present near WM streamlines which exhibit
visible acute deformations and/or chronic trajectory changes
even when CMB volume is relatively small. Furthermore, due
to the asymmetry of the streamlines in Patient 3 and to the
deformations observed ipsilateral to the lesion, the findings in
this patient suggest that such WM changes may (occasionally)
involve CMBs biomechanically and perhaps even causally. We
propose that further analysis of CMBs in a larger patient sample
is required for rigorous testing of these hypotheses.

Along-Tract Analysis
In HC volunteers, as expected, the along-tract analysis failed
to identify statistically-significant differences in the mean FA
of any DTI streamline bundles. In the mTBI group, significant
differences in the mean FA of peri-lesional streamline bundles
were found in 21 of 26 volunteers. All these differences involved
negative differences (decreases) in mean FA. In the 21 volunteers

where significant differences had been found, an average of
47% of all identified TBI-related CMBs (σ = 21%) were in the
spatial neighborhoods of DTI streamline bundles which exhibited
statistically-significant (p < 0.001) differences in mean FA across
time points. In other words, given an mTBI victim with TBI-
related CMBs, the expected probability for any of that volunteer’s
CMBs to have neighboring (perilesional) streamline bundles
with statistically-significant (p < 0.001) differences in mean FA
across time was 47%. No immediately-discernable criterion could
be identified to distinguish TBI-related CMBs associated with
significant WM differences from those which were not. Further
study of larger cohorts is likely necessary to identify the biological
factors responsible for causing only certain perilesional WM
streamlines to degrade over time.

DISCUSSION

Background, Motivation and Significance
The advent of personalized medicine, coupled with growing
interest in quantifying changes to cortical structure and/or WM
circuitry prompted by gross pathology, have led to renewed
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FIGURE 4 | WM streamline reconstructions based on DWI volumes acquired during four distinct sessions scan session are displayed both separately (A) and in

overlap with reconstructions from other sessions (B). Careful visual examination and comparison of these reconstructions reveal differences which are likely the

cumulative result of confounds such as motion artifacts, magnetic field inhomogeneity differences across scans, diffusion tensor estimation errors, etc.

efforts toward developingmethods which can facilitate DWI/DTI
analysis in longitudinal—rather than cross-sectional—studies,
particularly studies of neurotrauma. Writing about the relative
advantages and shortcomings of both approaches, Aarnink
et al. (32) noted the benefits of automating intra-subject WM
analysis across time points while implementing this operation
separately for each subject in a cohort. Such an approach
can allow researchers to reduce the adverse effects of inter-
subject variability upon the reliability of statistical analysis,
while preserving the efficiency and objectivity of automated
quantification methods.

Many longitudinal DWI/DTI analysis methods—including
voxel-based morphometry (VBM), tract-based spatial statistics
(TBSS), automated longitudinal intra-subject analysis (ALISA)
and similar approaches—use skeletons, atlases or similar
constructs based on inter-subject averaging, whether for brain-
wide or for structure-specific analysis. By contrast, to identify
tract correspondences across time points in the presence of
lesions (as in the case of TBI, stroke or MS), the current study
advocates the use of a subject-specific approach whose aim is
to implement a rigorous, longitudinal analysis of WM tracts
located in the (pen)umbrae (spatial neighborhoods) of such
lesions. One motivation behind this strategy is the considerable
clinical interest in understanding how pathology-related changes
in local brain structure, metabolism and blood oxygenation
affect portions of brain tissue which are adjacent to pathology
and which may appear healthy on MRI scans despite this not
always being the case. For example, in mTBI patients who
exhibit CMBs throughout the brain parenchyma, it is far from

clear whether these forms of pathology are clinically silent or
whether their presence can give rise to WM reorganization and
to subsequent neurological and/or cognitive deficits (33). Though
pathology-tailored MRI sequences such as fluid-attenuated
inversion recovery (FLAIR) may be combined with DWI/DTI to
obviate the presence of cytotoxic and vasogenic edema in CMB
penumbrae, the effect of transient local inflammation upon WM
circuitry is poorly understood andworthy of further investigation
(34). Similarly, WM connections passing through brain regions
directly affected by stroke or by MS lesions can change in ways
which cannot be made plain by noninvasive imaging methods
currently available. Nevertheless, injury-relatedmechanismsmay
lead to the reorganization of the connectome and to neurological
impairments (35). For this reason, the availability of robust
methods for the assessment of brain circuitry changes after
neurotrauma is increasingly useful and desirable in the emerging
era of personalized medicine.

Comparison to VBM and TBSS
VBM is one of the earliest approaches for the longitudinal
quantification of brain shape. When carefully applied and
rigorously validated, VBM approaches can draw valid
conclusions, even in the setting of a longitudinal analysis
(36, 37). Nevertheless, one frequently-quoted disadvantage of
this method is that, as originally proposed and implemented,
it cannot typically resolve the ambiguity of whether apparent
longitudinal differences in WM properties across time points
are truly due to WM changes or rather to local mis-registration
of DWI volumes (2). For example, it is typically unsafe to
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FIGURE 5 | Representative examples of perilesional streamlines in three TBI victims. For each case, standard views (coronal, sagittal, axial) of T1-weighted MRI are

shown in addition to DTI glyphs associated with perilesional WM streamline bundles imaged acutely (red) and chronically (green). White arrows indicate CMB

locations. (A) Patient 1 exhibits a CMB near the fornix, near the hippocampal commissure. Six months after injury, the location and trajectory of the right fimbria are

visibly different from their acute presentation. (B) Patient 2 has a CMB in the deep WM, near connections between the right parietal and temporal lobes; glyph

comparison indicates a spatial shift of the longest streamline bundle toward the longitudinal fissure. (C) Patient 3 has a hemorrhage close to a left-hemisphere

streamline bundle belonging to the splenium of the corpus callosum. The splenium is notably asymmetric at both time points, with the asymmetry being close to the

CMB. If a causal relationship between the CMB and this neuroanatomic correlate could be established, this example would provide proof-of-concept that some

CMB-related alterations in brain structure can persist for months after the traumatic event.

assume that even a nonlinear registration with many degrees
of freedom can align DWI/DTI volumes well enough to permit
the unambiguous interpretation of voxel-wise statistics. The
approach of the present study performs co-registration of DTI
streamlines rather than of DWI volumes, and our uncertainty
radius quantifications highlight the drawbacks of using VMB for
within-subject, longitudinal DTI analysis.

The widely-applied TBSS method was introduced to alleviate
some of the perceived shortcomings of VBM (38). In TBSS,
localized statistical testing of FA and other DWI-derived
measures is used to reduce image misalignment by projecting
maps of these measures into a common space. Specifically, after
an initial, approximate nonlinear registration, TBSS projects the

FA maps of individual subjects onto an alignment-invariant tract
called the mean FA skeleton. Though allegedly superior to VBM
in some ways, TBSS has its own limitations. For example, it
has been argued that, as in VBM, longitudinal analyses of WM
integrity using TBSS remain highly dependent upon the accurate
registration of DWI/DTI volumes, which can be challenging
to achieve in the presence of brain malformations or of mass
effects which result in large anatomical shifts, like in TBI, stroke,
and MS (1). Another limitation is that only those tracts which
can be reliably traced and separated from others can be used
to create a trustworthy FA parametrization; this shortcoming
can sometimes make TBSS unamenable to the study of WM
connectivity affected by mass effects and by their underlying
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pathology. In TBI, for example, structural abnormalities may be
present far from the FA skeleton used in TBSS, such that it may
not be possible to assess local pathology effects unless the lesions
of interest are in immediate proximity to the WM tracts which
form this skeleton. In our approach, longitudinal DTI analysis
can be implemented for arbitrary locations within the WM,
whether such locations are near or far from the TBSS skeleton.
Furthermore, the tract-matching technique implemented here
can ensure that only streamlines with consistent trajectories
across time points are included in the analysis.

Comparison to Parametric Surface
Methods
To overcome some of the limitations inherent to TBSS,
Yushkevich et al. (39) argued in favor of taking into account the
unique properties of specific anatomical structures and proposed
that focusing on such structures is often more appropriate than
performing analyses over the entire brain. These authors made
the astute observation that an analysis which restricts its attention
to structures of specific interest produces inferences which are
also structure-specific, and which can be communicated and
visualized more effectively than whole-brain results. Instead of
using skeletonization (as in TBSS), Yushkevich et al. represented
the skeletons of their structures of interest as parametric surfaces
which facilitate manifold-based statistical analyses similar to
those used on inflated cortical maps (40). In their approach,
deformable medial models are fit to binary segmentations of
fasciculi in a common space (atlas) to describe the skeleton and
boundaries of a geometrical object as parametric surfaces with
pre-defined topology. This method is most frequently applied
to population-level studies, and rather rarely to within-subject
studies. Nevertheless, its validity and potential advantages for
segmentation, modeling and analysis in subject space—where
shape analysis can be critical for identifying tracts across time
points—have been pointed out (39), such that the method may
constitute a useful alternative to our own.

Partially inspired by the work of Yushkevich et al. (39),
Aarnink et al. (32) advocate the use of ALISA. In ALISA,
DWI/DTI volumes acquired longitudinally from each participant
are averaged over to create a subject-specific DWI/DTI template
which is then applied at every time point, as necessary. One
challenge of implementing this method, however, arises when
not enough longitudinal scans are available to generate a subject-
specific atlas which is sufficiently unsusceptible to noise, motion
artifacts, etc. Another difficulty presents itself if brain structure
changes substantially across time points, as in the case of typical
development, neurodegeneration or in pathological conditions
like those of interest here. These considerations set the stage and
argue in favor of our own methodological approach, whose most
prominent features are justified and discussed in what follows.

Longitudinal Analysis Via Lesion-Robust
Curve Matching
Performing tractography at each time point within a given subject
and then matching the resulting streamlines across time points
stands in contrast to the scenario where DWI volumes are first

co-registered and then used to perform tractography. In our
case, part of the rationale for adopting the former—rather than
the latter—strategy is the fact that, due to pathology evolution,
longitudinal imaging datasets containing lesions may exhibit
substantial topology changes across time. This phenomenon
and related challenges may result in localized deformations
of WM tracts, causing substantial local errors in volume co-
registration. In turn, this can lead to the reconstruction of
tractography streamlines whose similarity is artificially imposed
by the volume co-registration process, rather than by their true
geometric resemblance. By generating tractography streamlines
at each time point and then matching streamlines across time
points, more insight into true tract shape changes across time can
be gained without the potential confound of DWI/DTI volume
co-registration prior to tractography.

Topology-Informed Curve Matching
Of substantial significance during longitudinal DWI/DTI
analysis is the method used for matching streamline bundles;
in the present study, this is particularly important when
matching prototyped streamlines. In DTI, the assumption of
curve index correspondence between streamlines imaged at
different time points may conceivably hold for cases where
there are small, diffeomorphic changes in space curve properties
across time points. This assumption, however, can be easily
violated in cases where gross neuropathology causes substantial
curve deformation. For example, the spatial expansion of a
hemorrhagic lesion often leads to the shearing and tearing
of axons, which may raise challenges when attempting to
identify WM fiber portions which exhibit injury-related
alterations. For these and other reasons, it is important to
reduce the confounding effects of both spatial distortions as
well as DWI/DTI measurement variability across time points
when implementing curve index correspondence. A powerful
approach to this problem, as proposed by O’Donnell et al.
(41), involves taking advantage of WM bundles being relatively
symmetric with respect to the longitudinal fissure, such that
generating arc length correspondences across hemispheres can
be used to enforce appropriate curve index correspondence.
Whereas this approach can indeed be very useful when studying
either healthy brains or brains affected by disorders which are
expected to affect both hemispheres equally, invoking symmetry
arguments in cases such as ours can be nefarious for at least
three important reasons. Firstly, the asymmetric nature of brain
lesion sizes and distributions implies that the mirror symmetry
of WM tracts in the two hemispheres of the brain may not be
preserved after injury. Secondly, both local and global edema
may affect WM tract trajectories, thereby creating or augmenting
inter-hemispheric asymmetry. Thirdly, even in the absence of
lesion-related effects, the phenomenon of lateralization and
its underlying structural basis can preclude the existence of
inter-hemispheric arc length correspondence in cases where
substantial inter-subject variability exists. For all these reasons,
though our work is inspired by that of O’Donnell and Westin
(26), we advocate identifying curve index correspondences
without resorting to brain symmetry assumptions.
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Curve Index Correspondence
Various approaches have been used to implement curve index
correspondence, a very successful one being the prototype
streamline calculation method (42, 43), where a prototype
streamline that is representative of an entire bundle is identified.
In applications such as ours—where along-streamline statistics
for WM tracts in (pen)umbral areas are of clinical interest—the
ability to calculate prototype streamlines is of key importance
for several reasons. Firstly, lesions may occur anywhere in the
brain, e.g., at locations where both major and minor tracts
intersect, such that relying on tractography results in the absence
of streamline prototyping can lead to substantial error. This is
because perilesional streamlines (1) may belong tomore than one
major fasciculus or bundle, and (2) can have spatial trajectories
ranging from largely-uniform to highly-diffuse. In such cases—
particularly in situations where the tracts of interest have highly-
variable trajectories—choosing prototype streamlines along each
of these trajectories can be important when attempting to
alleviate the potential effects of noise, subject motion, structural
brain changes and of other factors which may negatively impact
tractography or subsequent along-tract analysis.

Tract Parametrization Approaches
The practice of parametrizing WM tracts to find trajectory
correspondences can be implemented in various ways, e.g., (1)
using manual specification of fiducial points along streamlines by
a human expert (44), (2) by assuming endpoint correspondences
to align curves (42), (3) via implementation of statistical bundle
models with point correspondences to perform streamline
clustering andmeasurement (27), (4) based on skeletons to define
locations which correspond to the central portions of bundles
like in TBSS (2), or (5) using the tractography-derived medial
model of Yushkevich et al. (39). More recently, O’Donnell et al.
(41) proposed calculating mean bundle trajectories and various
diffusion-related metrics in the coordinate system of prototype
bundles so as to facilitate along-tract statistical comparisons
across subjects using TBM. In contrast to TBSS and to medial
model approaches, TBM employs subject-specific tractography
segmentations instead of relying on an atlas, which is an
important commonality between TBM and the present approach.

DTI Analysis in the Spatial Neighborhood
of Lesions
Besl and McKay (45) introduced an influential, iterative
closest point (ICP) algorithm for the co-registration of
three-dimensional (3D) parametric space curves defined as
linear combinations of cubic B-splines and control points.
Partially inspired by this approach, Leemans et al. (24)
proposed an automatic, multi-scale, feature-based, rigid-body co-
registration technique for DTI tractography bundles. In the latter
method, minimization of the mean-squared difference between
corresponding tract pathways in the parameter space formed
by tract curvature and torsion is attempted. Importantly, this
technique is adequate for local transformations within regions
of interest (ROIs). In ALISA, Aarnink et al. (32) define a single
ROI using a subject-specific template, after which the same ROI
is applied to the DWI/DTI volumes acquired at each time point.

This approach, however, assumes negligible geometric variations
across time points, and this assumption is often false when lesions
are present. Because of this, accounting for changes in lesion
size and shape can be essential when attempting to quantify the
effects of brain injury upon WM connectivity. To accommodate
these requirements, our present approach relies on delineating
the (pen)umbrae of lesions as ROIs within each subject. The DTI
streamline segments within each ROI are then identified across
time points using the results of curve index correspondence
calculations to identify the streamline portions to which the
segments in question belong.

Fiber Selection for Along-Tract Analysis
In our case, the validity of along-tract analysis is highly reliant
upon the ability to perform fiber matching and tract prototype
selection. To select prototype DTI tractography bundles, one
can alternatively choose (1) the longest streamline in the bundle
of interest, (2) the longest streamline weighted by some local
measure of streamline integrity, or (3) the streamline which is
most representative of the bundle trajectory according to some
appropriate measure, such as the O’Donnell-Westin streamline
affinity metric (26). In applications such as ours, the first two
methods can result in poor streamline prototyping because some
streamlines may be elongated by gross pathology processes,
and this can negatively affect the identification of appropriate
curve index correspondences. Choosing the longest streamline
available can negatively impact this process as well because
maximum streamline length is a metric vulnerable to DWI
measurement noise, to DTI tractography artifacts and to other
sources of error which can lead to both global and local
instability while solving the optimization problems associated
with curve index correspondence calculations or with fiber
prototype selection. For these reasons, O’Donnell’s streamline
affinity approach appears to be more suitable for applications
such as ours, due to its greater stability compared to the
other two methods. When prototype streamline selection is
implemented for sets of streamlines whose spatial trajectories are
(highly) variable, however, the number of prototype streamlines
identified by the method may be larger than typically expected.
In such cases, an important and interesting observation on
streamline prototyping in our approach is that performing
fiber selection is somewhat analogous to the application of a
low-pass, three-dimensional spatial filter to DWI/DTI image
intensities with the goal of identifying the most significant and
most topologically-consistent directions of water diffusion within
a ROI. However, in contrast to 3D smoothing of DWI/DTI
volumes (which is topology-agnostic), the prototyping procedure
advocated here takes into consideration the topology of WM
streamline trajectories, their fundamental properties (κ and τ ) as
well as the underlying neuroanatomy of the brain, all of which
can result in a relatively more principled way of attenuating
the effects of measurement noise, motion artifacts and of other
confounds.

Implications and Conclusion
The task of longitudinal, within-subject analysis of WM changes
in the human brain is of substantial interest in studies of aging,
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brain injury, dementia, development, etc. Although strategies
for population-level studies have received comparably more
attention than methods for single-subject analysis, the advent
of personalized medicine and the heterogeneity of brain injury
patterns indicate that the need for techniques which can
accommodate single-subject analysis and profiling is likely to
increase in the foreseeable future. Such analysis can be greatly
complicated by the presence of both hemorrhagic and non-
hemorrhagic lesions, and the effects of such lesions upon
WM circuitry has not been studied sufficiently. Nevertheless,
understanding the effect of blood-brain barrier breakdown due
to hemorrhagic TBI is likely important because CMBs occur in a
sizeable number of TBI victims, including mTBI (3). The analysis
workflow demonstrated in this study allows one to identify
CMBs automatically, to match perilesional DTI streamline
bundles across scans in principled ways, and to identify WM
structures whose properties differ significantly across time
points in victims of neurological disease compared to age- and
sex-matched HC volunteers. As illustrated here, longitudinal
DTI analysis can be confounded both by MR measurement
artifacts and by technical limitations, to the extent that methods
which are neuroanatomy-agnostic may be unreliable. Partly for
this reason, longitudinal analysis techniques which incorporate

constraints pertaining to local WM structure (e.g., streamline
prototyping and matching) are likely to provide more realistic
information than topology-agnostic approaches. Furthermore,
the ability to interpret WM differences across scans while also
accounting for the expected variability of such differences in the
presence of confounds is essential when developing principled
strategies for the study of brain connectivity in both health and
disease.
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