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FL, United States, 2 JJohn P Hussman Institute for Human Genomics, University of Miami Miller School of Mediicine, Miami,
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Hereditary Spastic Paraplegia is an extraordinarily heterogeneous disease caused by over
50 Mendelian genes. Recent applications of next-generation sequencing, large scale
data analysis, and data sharing/matchmaking, have discovered a quickly expanding set
of additional HSP genes. Since most recently discovered HSP genes are rare causes
of the disease, there is a growing concern of a persisting diagnostic gap, estimated
at 30-40%, and even higher for sporadic cases. This missing heritability may not be
fully closed by classic Mendelian mutations in protein coding genes. Here we show
strategies and published examples of broadening areas of attention for Mendelian and
non-Mendelian causes of HSP. We suggest a more inclusive perspective on the potential
final architecture of HSP genomics. Efforts to narrow the heritability gap will ultimately
lead to more precise and comprehensive genetic diagnoses, which is the starting point
for emerging, highly specific gene therapies.
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INTRODUCTION

Hereditary spastic paraplegias (HSPs) are a genetically heterogeneous group of neurodegenerative
disorders with a prevalence of ~3-9/100,000 in most populations and a clinical hallmark of
progressive lower limb weakness and spasticity (1, 2). HSPs result from genetic alterations
resulting in dysfunction of the long axons in the corticospinal tract and posterior columns (3).
Consistent with the cardinal clinical features of HSP, the primary pathological mechanism is
distal axonal degeneration in a “dying-back” manner (4). HSPs are broadly categorized into
pure and complicated forms based on the presence of additional clinical features such as ataxia,
parkinsonism, peripheral neuropathy, cognitive dysfunction, cataracts, and icthyosis (3). HSPs
segregate in several modes of inheritance, including autosomal dominant, autosomal recessive, X-
linked, or mitochondrial (3). Although there is no evidence that HSP overall is more prevalent in
one ethnic group over another, HSP does show ethnic differences in many of the mutated genes
(Table 1).

As with many other Mendelian diseases, the introduction of next-generation sequencing (NGS)
revolutionized the genetic diagnosis of HSPs with over 76 genomic loci and 58 corresponding
genes (5). The autosomal dominant (AD) HSPs lead mostly to the pure form of disease and
are linked to 19 spastic gait (SPG) genes. The most common AD genes are SPG4/SPAST,
SPG3A/ATLI1, SPG31/REEPI, and SPG10/KIF5A. Complicated HSPs more frequently occur in
autosomal recessive (AR) families and are linked to 57 loci and 52 genes. The most common AR
genes are SPG11/KIAA1840, SPG5A/CYP7B1, SPG7, and SPG15/ZFYVE26. Though rare, X-linked
and mitochondrial inheritance are also observed. In the past 5 years alone >15 novel HSP and
HSP-related genes have been reported. However, the number of families identified in the initial and
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follow-on papers is typically low; for example, the original REEP2
publication had 2 families with a follow-on of a single family
(6, 7). Furthermore, a large number of recent SPG loci are
supported by a single publication only (Table 1). This has led to
the concern that we are in an asymptotic situation where, even
with many new genes, the diagnostic yield may not get close to
100%. This potential gap in heritability is observed in other rare
disorders as well and might be referred to as “dark matter” of
clinical genomics. This review will focus on potential causes and
efforts to overcome these challenges.

THE “DARK MATTER” OF CLINICAL
GENOMICS

It is usually assumed that HSP is caused by Mendelian
mechanisms and that eventually nearly all patients will receive
a single-gene diagnosis. However, this is not necessarily
true. Related disorders illustrate a diverse situation: inherited
neuropathies (Charcot-Marie-Tooth disease, CMT) are also
highly heterogeneous Mendelian disorders whereas amyotrophic
lateral sclerosis (ALS) is largely not explained by Mendelian
genes. The proportion of Mendelian genes is even lower in
late onset neurodegenerative diseases, such as Parkinson and
Alzheimer disease.

The reported diagnostic yield for exome sequencing in the
general clinical setting ranges from 25 to 50% (8, 9). In hereditary
spastic paraplegias, Schiile et al. identified a molecular diagnosis
in 46% of families (240/519 families), despite extensive whole-
exome sequencing efforts, with low success in simplex families
(28%) (2). Similarly, a 20% diagnostic yield was reported in a
cohort of 98 previously unsolved HSP families analyzed by a
custom sequencing panel of 70 HSP and HSP-related genes (10).

While the genetics of certain neurodegenerative diseases
are deemed “complex;,” the field, thus far, has not applied
similar models of inheritance to HSP. We believe that it is
too early to tell whether non-Mendelian effects have a major
contribution to HSP. There are a number of valid pro-Mendelian
hypotheses as to how to close the diagnostic gap, and the
coming years will allow us to test these ideas (Figure 1). These
include non-coding regions of the genome, unorthodox types of
mutations (such as repeat expansions) and digenic inheritance
models. However, the search for risk genes and alleles will likely
contribute to the understanding of HSP in multiple ways, from
exploring oligogenic causation, gene/environment interactions,
and phenotype modifying genes; thus, expanding the inheritance
models in HSP.

THE CONTINUED SEARCH FOR
MENDELIAN CAUSES

Systematic reanalysis of unresolved clinical exomes can reveal
causative variants that were not prioritized in the initial
analysis and increase the diagnostic yield; however, the
search should ideally be expanded beyond mutations in the
protein-coding regions (11). Full exploration of the non-
coding space will require whole-genome sequencing; however,

fortunately, the untranslated regions and regions adjacent
to exons are typically covered by whole-exome sequencing.
Though sparse annotation poses considerable challenges in
interpreting these variants, Minnerop et al. found deep
intronic mutations in POLR3A to be a frequent cause
of HSP and cerebellar ataxia. After identifying intronic
variants in a single recessive spastic ataxia family, the authors
screened a cohort of 618 cases. They found that compound
heterozygous POLR3A mutations accounted for ~3.1% of
genetically unclassified autosomal recessive and sporadic index
cases. Over 80% of these cases shared the same deep-intronic
mutation which activates a cryptic splice site. This study
nicely demonstrates the potential held within the non-coding
genome.

As the limitation of non-coding coverage is overcome
by whole-genome sequencing, the clinical and functional
interpretation of variants will remain a challenge. Recently,
the complementation of genetic sequencing with transcriptome
sequencing (RNA-seq) has successfully improved the diagnostic
yield in Mendelian disorders (12, 13). RNA-seq adds a functional
layer to help prioritize genes and variants by providing
information about aberrant splicing, abnormal gene expression
levels, and extreme cases of mono-allelic expression (13). Since
gene expression and mRNA isoforms vary widely across tissues,
sequencing disease-relevant tissue is critical to the potential value
with this approach (12). Due to the difficulties in obtaining
the disease-relevant tissue, transcriptome sequencing may have
limited potential in HSP. However, the recent mapping of the
axonal transcriptome from induced pluripotent stem cell derived
motor neurons may provide an avenue to overcoming this
challenge (14).

Another contributor of genome variability that could help
resolve the diagnostic gap is structural variation, including copy
number variations, translocations, and inversions (15). Copy
number variations (CNVs), in particular, are known to play
an important role in HSPs, causing 8%-41% of SPG4 due
to the Alu genomic architecture of SPAST (16-19). Screening
of approximately 600 independent HSP cases over a 5-year
period in ATLI, SPAST, NIPA1, SPG7, and REEPI has detected
numerous deletions (20). Recently, a complex homozygous 4-
kb deletion/20-bp insertion that removes the last two exons
and part of the 3’UTR was identified in DSTYK (21). These
studies exemplify the relevance of structural variation in HSPs.
However, major challenges still exist that hinder full exploration
of these mutations. Since CNVs are also a large source of
normal variation and their pathogenic potential can depend
on genetic ancestry and environmental factors, determining
whether a CNV is benign or pathogenic remains a considerable
clinical challenge (15, 22). Additionally, CNV detection from
whole-exome sequencing remains immature and unstable, as
indicated by the low concordance between CNV variant callers
(23). Another popular method for CNV detection is high-
resolution microarray, which is commonly used in clinical
cytogenetics where sequencing based analysis can overwhelm a
typical laboratory’s workflow (24). Though research laboratories
largely rely on NGS, the additional high-resolution microarrays
may lead to diagnoses in cases with suspected CNV. Improved
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FIGURE 1 | The diagnostic heritability gap in HSP. (A) Despite unprecedented success in the identification of additional Mendelian genes, the diagnostic yield may not
get close to 100% in HSP, but rather reach an asymptotic ceiling. (B) Areas that are potentially understudied in HSP thus far for cost and technical challenges. These
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sequencing technology and structural variation interpretation
and detection will resolve more HSP families in the future.

UNDERAPPRECIATED RARE GENOMIC
MECHANISMS

Standard clinical genomic analysis focuses on typical modes of
inheritance, such as autosomal dominant, autosomal recessive,
and X-linked, while unusual inheritance modes are often
ignored. Inclusion of these “genomic” mechanisms in analysis
pipelines, for example genomic imprinting, repeat expansions,
and uniparental disomy, can lead to successful identification of
overlooked molecular diagnoses.

Uniparental isodisomy is particularly relevant to HSPs as this
mechanism has been observed in two autosomal recessive spastic
ataxia of Charlevoix-Saguenay (ARSACS) cases, one SPG18
case, and four SPG35 cases (25-27). Uniparental isodisomy is
the inheritance of both chromosomes from the same parent,
resulting from errors in meiosis and/or mitosis (28). Isodisomic
events generate regions of homozygosity in the offspring,
allowing for the inheritance of a homozygous variant from
one heterozygous carrier-parent (29). During trios analysis,
these homozygous variants are usually discarded as sequencing
errors since only one parent is a carrier. The occurrence of
uniparental isodisomy can be inferred from very long regions of
homozygosity that are isolated to a single chromosome; therefore,
uniparental isodisomy detection can be incorporated into a
standard whole-exome pipeline by modifying existing methods
for long regions of homozygosity (30, 31). The high number of
SPG35 cases resulting from UPD suggests that this may be a
frequent genetic mechanism for FA2H homozygous mutations
in non-consanguineous families (27). Uniparental isodisomy is

important to detect because of its impact on molecular diagnosis
and recurrence risk in families.

The awareness of the genetic overlap between HSPs and
spinocerebellar ataxias (SCAs) has increased as the number of
loci causing both diseases expands; however, the overlap of HSP
and SCA caused by triplet-repeat expansions is less emphasized
(32). Bettencourt et al. reviewed the literature of triplet-repeat
expansions mimicking spastic paraplegias: expansions have been
observed at the ATXNI, ATXN2, ATXN3, ATXN7, ATNI, and
FXN loci (32). The authors recommend incorporating triplet-
repeat ataxia analysis into diagnostic algorithms, especially
ATXNS3 in autosomal dominant complicated HSP and FXN in
autosomal recessive or sporadic spastic paraplegias (32). It is
conceivable that additional, yet to be identified, coding and
non-coding repeat expansion loci cause HSP.

BEYOND MENDELIAN INHERITANCE

Based on the assumption of fully penetrant alleles, traditional
Mendelian disease analysis focuses on the rare DNA variation
that segregates within a family. However, these locus-specific
family studies treat Mendelian traits as distinct entities and
disregard a more comprehensive genetic model for human
disease in which variants of varying effect size as well
as environmental influences contribute to disease (33). The
challenge is the unexpected large amount of variation in the
human genome on a population level, where >99% of all variants
show a minor allele frequency of <1% (34). Since many of these
variants are without phenotypic consequence, some certainly are
very harmful, and a considerable number must have effect sizes
that are below the threshold of a Mendelian gene but contribute
significantly to phenotypic expression. Identification of strong
effect sizes in the background of mostly minor effects is the next
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big challenge in human genetics. Recent method developments
in statistical genetics allow for unbiased genome-wide screens for
non-Mendelian alleles, and surprisingly, are able to re-identify
bona fide Mendelian genes as well (35). The application to
HSP genomics will eventually generate a more complete genetic
architecture of the disease.

Reduced Penetrant and Risk Alleles

Contrary to general expectations for HSP families, asymptomatic
carriers are not infrequent, in which case, the genotype is said to
be incompletely penetrant (36, 37). Reduced and age-dependent
penetrance is a diagnostically challenging situation observed in
autosomal dominant HSPs, especially SPG3A, which can lead to
misinterpretation of inheritance patterns due to asymptomatic
carriers and exclusion of the disease-causing allele (38-40).
Additionally, sex-dependent penetrance is suspected in SPAST
and ATLI based on the excess of affected males (41). Incomplete
penetrance can also manifest in autosomal recessive disorders
when the primary mutation leads to varying phenotypic effects
depending on the secondary mutation (36). For example, novel
compound heterozygous mutations in SPG11 let to an atypical
late onset and mild form of SPG11 (42).

To distinguish reduced-penetrance alleles, which have caused
HSP in at least some individuals under a Mendelian trait, risk
alleles have been defined as variants with smaller effect sizes
that are part of a multifactorial model of disease causation
(36). However, since the possibility of risk alleles is only
recently recognized in rare Mendelian disease, the line between
penetrance and risk is often blurred. In this context, risk alleles
more broadly refer to rare variants that may lead to a less
severe, later-onset form of disease or contribute to an individual’s
susceptibility to disease, likely through an oligogenic model. For
example, heterozygous mutations in SPG7 were identified as a
potential susceptibility factor for late-onset neurodegenerative
disorder (43). Similarly, heterozygous mutations in MME were
recently shown to predispose carriers to late-onset axonal
neuropathy (44). In MME, the comparison of the “rare variant
load” of missense and loss of function changes in late-onset CMT
to the general population showed a significant enrichment of
such variation (44).

Systematic identification of rare variant associations are
usually limited by low statistical power unless sample sizes or
variant effect sizes are very large (45). To illustrate, >60,000
cases (and an equal number of controls) would be necessary to
detect a disease association for a rare variant (0.1% frequency)
with an odds ratio of 2.0 for a disease with a 5% population
prevalence (45). Fortunately, powerful study designs can alleviate
the sample size requirement to more reasonable numbers (46).
One approach that can be explored in HSPs is the gene-
based variant burden test which collapses the number of minor
alleles into one genetic score (gene), thus reducing multiple
testing and increasing power (45, 47). One successful example
of this approach was the identification of a new ALS gene,
TBK1, in 2,869 sporadic ALS patients (35). Remarkably, other
known ALS genes showed strong associations, indicating that
additional variation in known familial ALS genes also contribute
to sporadic ALS forms (35). The rare variant association studies

are particularly useful for identifying risk genes and novel gene
associations.

Modifier Alleles

An increasing number of exceptions to the fundamental “one
gene, one phenotype” paradigm are being published across
Mendelian phenotypes (48). The oversimplified view that
phenotypic expression, even for classically monogenic disorders,
is driven exclusively by mutations at a single locus is being
replaced by the concept of genetic modification (49). Though
several types of genetic modification are possible, the simple
definition is the effect of one allele on the phenotypic outcome
of a second allele (49). If the primary allele is sufficient to cause
disease, then the secondary allele is a “modifier” that modulates
phenotypic expression, such as disease severity or progression.

Given the high clinical variability observed across HSP
patients, genetic modification of the primary allele was
anticipated. Over a decade ago, intragenic polymorphisms were
suggested to modify the age at onset of SPAST mutations (50, 51).
More recently, SPAST deletions spanning the adjacent DPY30
gene were shown to have significantly reduced age at onset (52).
Furthermore, in a study of a large Cuban spinocerebellar ataxia
type 2 (SCA2) cohort, 33% of the residual age at onset variance
was attributed to genetic modifiers (53). Examples of genetic
modifiers from related Mendelian disorders exist in the literature;
for instance, a polymorphism in miR-149 was recently associated
with onset age and severity in Charcot-Marie-Tooth disease type
1A (CMTI1A) (54).

Another study design that increases the statistical power for
association testing of rare variants is the extreme phenotype
sampling (EPS) approach (46). Based on the assumption that
rare causal variants are more likely found in the extremes
of a quantitative trait such as age of onset or severity of a
symptom, EPS can increase the power to detect rare variants over
random sampling (46). For example, Emond et al. utilized an
extreme phenotype sampling approach to identify an association
between rare coding variants in DCTN4 and time to first
Pseudomonas infection (measure of cystic fibrosis severity) (47,
55). Additionally, Tao et al. identified SIPAIL2 as a genetic
modifier of muscle strength impairment in CMTI1A. In vitro
knock down of SIPA1L2 in Schwannoma cells lead to a significant
reduction in PMP22 expression, offering a potential pathway for
therapeutic strategies (56). Application of EPS to an HSP cohort
may also reveal modifier alleles that contribute to disease.

Oligogenic Inheritance

Digenic or oligogenic inheritance refers to instances when one
primary allele is insufficient to cause disease, instead requiring
the combined consequence of multiple alleles (49). Evidence
of oligogenic inheritance has emerged in other neurological
disorders. In both sporadic and familial amyotrophic lateral
sclerosis (ALS) cases, patients harboring two or more rare
variants had lower survival or earlier age at onset, suggesting that
the combined effect of rare variants affects ALS development and
progression (57-59). Similarly, over 30% of Parkinson’s disease
(PD) patients carried additional rare variants in Mendelian PD
genes and had younger ages at onset (60). An increased rare

Frontiers in Neurology | www.frontiersin.org

November 2018 | Volume 9 | Article 958


https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles

Bis-Brewer and Zichner

Evolving Genomics of HSP

variant burden was also observed in two cohorts of inherited
neuropathy cases, which was followed up in vivo zebrafish
experiments (61). In zebrafish, more severe phenotypic outcomes
were observed as a consequence of increased mutational
burden in neuropathy genes, consistent with a positive genetic
interaction mechanism of oligogenic inheritance (61).

Demonstrating oligogenic inheritance from family studies
is challenging without experimental models. However, one
trending approach to assessing oligogenic inheritance—which
has been explored in Parkinson, ALS, Frontotemporal Dementia,
Congenital Hypothyroidism, Inherited Neuropathy, and more—
is to evaluate the mutational burden across known disease
genes through Fisher’s exact test or logistic regression (60—
64). However, caution should be used with this approach
as Koegh et al. warns that systematic bias can lead to the
apparent enrichment of “oligogenic” variants in familial cases and
controlling such bias is essential for investigating an oligogenic
role in neurodegenerative diseases (65).

CONNECTING THE MANY LOCI: A
NETWORK BIOLOGY APPROACH

Though the high amount of locus heterogeneity present in HSPs
complicates clinical diagnosis, it does provide an opportunity
to study the overarching biological pathways through analysis
of molecular networks. Genes and their products form complex
networks within cells that are governed by specific laws and
principles (66). These complex networks model the non-linear
genotype-phenotype relationships observed in HSPs, such as
incomplete penetrance and epistasis, that deviate from the “one
gene, one phenotype” principle (66, 67). Functionally related
proteins interact with each other to accomplish similar biological
mechanisms, thus forming cellular pathways (66). Network
medicine capitalizes on these interactions and hypothesizes
that perturbation of a single gene product will propagate
along the entire network (68). The interactions between a set
of disease-causing genes can be summarized into a disease
module for further study (69). A disease module can be
analyzed for differences in complete loss of gene products vs.
interaction-specific perturbations, global relationships to other
human diseases, novel candidate disease genes, and emerging
biological pathways (68, 70-73). Novarino et al. combined exome
sequencing with network analysis to summarize a global view of
HSP (74). A HSPome was created from previously published HSP
seed genes and candidate genes from whole exome sequencing.
From the HSPome, they extracted subnetworks of functionally
related proteins that form pathological modules, including ER-
associated degradation, endosomal and membrane-trafficking,
and purine nucleotide metabolism. Three candidate genes arose
from the HSPome that were found to be mutated in HSP
patients. Lastly, the authors discovered the HSP seed genes
were significantly overlapping with amyotrophic lateral sclerosis,
Alzheimer’s disease, and Parkinson’s disease, while no overlap
was observed between HSP and neurodevelopmental disorders
nor non-neurological disorders (74). Recently, the relationship

between the inherited axonopathies, HSP and Charcot-Marie-
Tooth 2 (CMT2), was explored through a network analysis
of protein-protein interactions. The HSP disease module was
found to significantly overlap both the CMT2 and hereditary
ataxia modules. Pathway analysis revealed ribosomal protein and
viral infection response pathways (75). With the rapid pace of
gene discovery in HSPs, network analysis will continue to be
a powerful approach for deciphering the complex interactions
underlying the phenotype.

OVERCOMING THE PHENOTYPIC DIVIDE

Historically, many movement disorders, including HSPs, have
been clinicogenetically classified based on the predominant
phenotype of the first gene locus (76). These classification systems
have similar shortcomings, including erroneously assigned loci,
duplicated loci, missing loci, and unconfirmed loci (76, 77).
Furthermore, these classification systems suggest that HSPs
are a distinct and isolated disorder, when in fact HSPs exist
on a spectrum between inherited ataxias and axonal Charcot-
Marie-Tooth disease (CMT2) (76, 78). Not only do these
disorders share clinical symptoms, such as prominent lower
extremity spasticity, but they can also be caused by mutations
within the same genes (76, 78, 79). Next-generation sequencing
greatly facilitated the appreciation of these genetic overlaps
by providing an unbiased approach that broke through the
prior clinical and diagnostic preconceptions (76). Phenotypic
expansions continue to blur the lines drawn in neurological
disorders; for example, HSP was recently associated to PLA2G6,
the causative gene underlying heterogeneous PLA2G6-associated
neurodegeneration (PLAN) (80). Additionally, KIF5A, known to
cause both HSP and CMT2, contains a C-terminal hotspot of
mutations that can cause a classical amyotrophic lateral sclerosis
phenotype (81). Furthermore, mutations in ATP13A2, originally
linked to a rare form of juvenile-onset atypical Parkinson
disease (Kufor-Rakeb syndrome), are now also associated with
neurodegeneration with brain iron accumulation, neuronal
ceroid lipofuscinosis, and most recently, complicated HSP (82-
84). Awareness and consideration of phenotypic expansions will
be essential for both individual genetic diagnoses as well as
revealing common pathways underlying neurodegeneration (80).
As the phenotypic spectrum broadens across the neurologic
community, these historical classifications are being reconsidered
(78). To address this issue, Synofzik and Schiile have proposed
a mechanism based classification system for the ataxia-spasticity
spectrum, based on unbiased modular phenotyping, that captures
nuanced phenotypic expression, opens ataxia and spasticity to a
multisystem neuronal dysfunction, and help to prioritize research
on shared pathways (76).

THE NECESSITY OF DATA AGGREGATION
AND COLLABORATION

The above-mentioned approaches increasingly require larger
datasets which contradicts, of course, the low prevalence of
rare disease. This requirement exceeds what single labs have
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traditionally been able to collect from local clinics. It will
be insufficient to exchange candidate gene information or
candidate alleles. To apply statistical approaches, one needs
to gather hundred if not thousands of HSP samples and
adequate controls. This led to the notion of raw genetic data
aggregation as the next frontier for HSP gene discovery. The
most prominent example of systematic data aggregate in HSP
is the GENESIS Project database (tgp-foundation.org). Over
600 HSP, 500 ataxia, and 890 CMT exomes or genomes have
been aggregated from several dozen laboratories in 22 different
countries(85). We have begun to complement Mendelian
gene discovery efforts with modifier gene studies and rare
variant burden analyses. It is still early, but it appears that
significant results can be achieved beginning with 200+ exomes
and sufficient control samples. For example, an exome-wide
association study with 202 cases and 6,905 controls successfully
found a signal in GREBIL (joint p-value = 2.3 x 1077) in
renal agenesis and hypodysplasia (86). Another exome-wide
association study in CMT, with 343 cases and 935 controls,
identified a significant association in EXOC4 (p-value = 6.9 x
107°%, OR = 2.1) and nominal associations with other known
CMT genes (87).

CONCLUDING REMARKS

The current period is a remarkable time for HSP research.
Studies from many countries are reporting a steady pace of novel
Mendelian genes, complementing existing multigene clinical
panels. The diagnostic yield has never been higher; albeit it
is hindered by an increasing burden of Variants of Uncertain
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