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Hereditary spastic paraplegia (HSP) refers to a group of genetically heterogeneous

neurodegenerative motor neuron disorders characterized by progressive age-dependent

loss of corticospinal motor tract function, lower limb spasticity, and weakness. Recent

clinical use of next generation sequencing (NGS) methodologies suggests that they

facilitate the diagnostic approach to HSP, but the power of NGS as a first-tier diagnostic
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procedure is unclear. The larger-than-expected genetic heterogeneity—there are over 80

potential disease-associated genes—and frequent overlap with other clinical conditions

affecting the motor system make a molecular diagnosis in HSP cumbersome and time

consuming. In a single-center, cross-sectional study, spanning 4 years, 239 subjects with

a clinical diagnosis of HSP underwent molecular screening of a large set of genes, using

two different customized NGS panels. The latest version of our targeted sequencing

panel (SpastiSure3.0) comprises 118 genes known to be associated with HSP. Using an

in-house validated bioinformatics pipeline and several in silico tools to predict mutation

pathogenicity, we obtained a positive diagnostic yield of 29% (70/239), whereas variants

of unknown significance (VUS) were found in 86 patients (36%), and 83 cases remained

unsolved. This study is among the largest screenings of consecutive HSP index cases

enrolled in real-life clinical-diagnostic settings. Its results corroborate NGS as a modern,

first-step procedure for molecular diagnosis of HSP. It also disclosed a significant number

of new mutations in ultra-rare genes, expanding the clinical spectrum, and genetic

landscape of HSP, at least in Italy.

Keywords: hereditary spastic paraplegia, next generation sequencing, neurogenetics, diagnostic yield, variants

of unknown significance

INTRODUCTION

Hereditary spastic paraplegia (HSP) is a term used to refer
to a group of rare (about 1.8 individuals per 100,000) (1)
genetically heterogeneous neurodegenerative motor neuron
disorders characterized by progressive age-dependent loss of
corticospinal motor tract function, leading to lower limb
spasticity, urinary bladder dysfunction, and weakness. Next
generation sequencing (NGS) methods have recently emerged
as the best approach for the genetic study of HSP (2), having
allowed, over the past 4 years, the identification of more than 10
novel causative SPastic Gait (SPG) genes. To date, 85 different
spastic gait disease loci, and 79 known causative SPG genes, have
been identified (3, 4).

Although it is relatively easy, in appropriate clinical
practice settings, to reach probable or possible clinical
diagnoses of HSP, the high levels of genetic heterogeneity
and different patterns of inheritance associated with this
group of disorders make molecular diagnosis challenging.
NGS, with its innovative technology, is a rapid, high-
throughput and cost-effective approach for identifying
the genetic background of Mendelian disorders. Target
resequencing multigene panels (TRPs) represents the most
cost-effective approach involving analysis of the coding
exons of a restricted number of genes. Additional high-
throughput NGS methods are whole exome sequencing
(WES), covering the full set of DNA sequences encoding
and whole genome sequencing (WGS) representing the most
expensive, all-inclusive technique (5). However, the true
informativeness and diagnostic power of these techniques in
clinical settings is often limited due to difficulties in processing
the considerable amount of information generated through
deep sequencing, as well as imperfect genotype-phenotype
correlations.

To ascertain the effective diagnostic power of NGS in a real-
life neurogenetic setting, we carried out a cross-sectional study
adopting a targeted resequencing gene panel (TRP) method
already validated in research studies on HSP (6). Although
sequencing a whole-exome (or the full genome) provides
unparalleled genetic information, we reasoned that panel-based
sequencing offers some advantages owing to cost savings and
the ease and speed of data interpretation allowing more rapid
translation at bedside. The study involved 239 consecutive
patients presenting clinical signs of HSP, recruited over the past
4 years (September 2014–August 2018) in tertiary neurological
or neuropediatric centers in Italy; blood samples were analyzed
at a single center. In reporting the results of this study, we
describe different rates ofmolecular diagnosis inHSP, and discuss
the advantages and disadvantages of our strategy as a first- or
second-tier approach in the diagnostic workflow ofmotor neuron
disorders, illustrating some unexpected results as well as major
limitations.

MATERIALS AND METHODS

Patients and Study Design
With the help of the Italian Spastic Paraplegias and Ataxias
Network (ITASPAX), we consecutively collected DNA samples
from patients with a clinical diagnosis of spastic paraplegia.
Each index case underwent a detailed neurological examination,
carried out by a neurologist or neuropediatric specialist at
the clinical center to which the patient in question had been
referred. This examination included application of the Spastic
Paraplegia Rating Scale (SPRS) (7). Phenotypes were classified
as pure HSP or complicated HSP according to the Harding
criteria (8). Genes universally recognized to be responsible for
HSP (Table S1) were investigated using a customized NGS TRP
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strategy described elsewhere (6). The recruitment of patients
(n = 239) and collection of blood samples were performed
between September 2014 and August 2018. Whenever possible,
major clinical and demographic characteristics, presumed age at
disease onset, disease duration and disease severity (SPRS) scores
were recorded using a common clinical investigation proforma
(case report form, CRF); these data were subsequently used for
correlations with genes/variants identified in the study. For cross-
sectional analyses of disease severity, the first documented SPRS
score in each proband was selected, whereas all available SPRS
scores were included for longitudinal analyses.

Standard Protocol Approvals,
Registrations, and Consent
All the participants, including relatives involved in segregation
studies, provided written informed consent in accordance both
with Italian National Health System guidelines and with the
Declaration of Helsinki. This consent was collected by the
various clinical centers belonging to the ITASPAX network. The
study was approved by the Tuscany Regional Pediatric Ethics
Committee and also by the Ethics in Research Committee of
IRCCS Fondazione Stella Maris (Pisa, Italy). Storage/handling of
genetic and personal data complied with Italian National Health
Institute (ISS) regulations on ethical and biomedical research and
with relevant current legislation.

Targeted Sequencing Workflow and
Sequencing Analysis
Genomic DNAwas extracted from peripheral venous blood using
the MagPurix Blood DNA Extraction Kit 200 designed for the
MagPurix DNA Extractor (Zinexts, Taiwan).

A library probe was then prepared according to the
manufacturer’s instructions (Agilent Technologies, Santa Clara,
CA, United States), and the 2200 TapeStation Assay kit (Agilent
Technologies) was used to validate and quantify this library
preparation. Following the manufacturer’s recommendations,
two different customized TRPs were designed over the course
of this study. One of them, termed Spastoplex, contained 72
genes and was designed using Haloplex technology (Agilent
Technologies) for the Illumina Sequencing system (Illumina
Inc., San Diego, CA); it was employed as a second-/third-tier
test in 91 index cases in whom absence of punctate mutations
and gene deletions/duplications in SPAST/SPG4, ATL1/SPG3A,
REEP1/SPG31, SPG7, CYP7B1/SPG5, and KIAA1840/SPG11 had
already been documented (even by other laboratories) (9, 10).
The other TRP (SpastiSure3.0) was designed using SureSelect
QXT technology (Agilent Technologies) (11), and contained all
118 genes thus far associated with HSP (latest update 02/18);
it was used as first-tier diagnostic approach in the other 148
consecutive index cases (see Figure 1). Both TRPs had a mean
coverage of 99.66%, ensuring an at least 100X read depth of the
targeted regions.

Sequencing was performed on a dedicated platform where
24 samples were run in a single lane of a NextSeq500 system
(Illumina), generating 150-bp paired end reads to obtain

sequenced clusters passing filter >90% and an average coverage
of at least 250X.

Variant and Bioinformatics Analysis
Raw data (i.e., the generated fastq files in each data run) were
analyzed using SureCall3.0 software (Agilent) and converted into
vcf format. Annotation of variants was performed using the
open-source wANNOVAR software (wannovar.wglab.org/) and
the Ingenuity Variant Analysis web-based application (Qiagen,
Hilden, Germany) using a standard alignment and calling
protocol [see 6]. In view of the high number of alterations
identified in each patient, bioinformatic filters were applied to
prioritize type of mutation (missense, in/del, stop gain, or stop
loss), frequency in public and in in-house polymorphic databases,
and annotation as disease-associated variants according to a
pipeline already validated in a research setting (6). Specifically,
variants were filtered in such a way as to exclude low affinity
ones (coverage ≥30X) and those located in deep intronic or
untranslated regions. Synonymous variants were filtered out
unless they predicted alterations in exonic splice enhancers.
All variants were also filtered to retain only those with
minor allele frequency (MAF ≤1% for autosomal recessive and
≤0.2% for autosomal dominant transmission) in the 1000G
database (http://www.1000genomes.org/, last accessed 08/2018),
the dbSNP database version 146 (http://www.ncbi.nlm.nih.gov/
SNP/, accessed 08/ 2018), the ESP6500SI-V2 database (evs.gs.
washington.edu/, 12/2017), and the ExAC 3.0 browser dataset
(exac.broadinstitute.org, 08/2018), and also for number of
homozygotes as listed in gnomAD (gnomad.broadinstitute.org/,
08/2018), in order to retain those with 0 or 1 homozygotes,
or for which this data is not reported. The sole exception to
this latter criterion was the c.1529C>T, p.Ala510Val variant in
SPG7, which is reported to be pathogenic despite showing a
relatively high number of homozygotes (n = 2, allele frequency
0.002) in the European population (see gnomad.broadinstitute.
org/variant/16-89613145-C-T).

Variants were classified according to the published guidelines
of the American College of Medical Genetics and Genomics
(12) and pathogenicity was examined in silico using at least
the following seven prediction tools: Polyphen2 (genetics.bwh.
harvard.edu/pph2), SIFT (sift.jcvi.org/), UMD-Predictor (umd-
predictor.eu ), VEST missense score (https://www.cravat.us),
and GERP RS score (https://varsome.com/search-results/GERP),
which were used to evaluate missense variants, and Human
Splicing Finder v3.1 (www.umd.be/HSF3) and BDGP: Splice
Site Prediction by Neural Network (www.fruitfly.org/seq_tools/
splice.html), which were used to investigate those variants that
could affect splicing. We retained missense variants that were
predicted to be damaging by at least 4 of 5 tools, providing
they respected our filters. Presence of the specific variant in the
Human Genome Mutation Database (HGMD, www.hgmd.cf.ac.
uk/) was not considered a mandatory criterion for attributing
pathogenic significance.

String Network
In each patient, variants of unknown significance (VUS)
associated with clear pathogenic changes were further
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FIGURE 1 | Flowchart showing design study.

investigated using STRING (https://string-db.org) in order
to highlight possible functional protein-protein interactions.

Confirmation of Variants
Putatively deleterious variants were validated by PCR-based
standard capillary Sanger sequencing, both in probands and
in relatives available for segregation studies, also to determine
whether the mutations were inherited or occurred de novo.
Segregation analyses contributed to the definition of pathogenic
variants. Indeed, whenever more than one change had been
prioritized in the index case, study of affected (n = 113
individuals) and unaffected relatives (n = 124) helped us
to determine which variants were more likely to be disease
causative.

MLPA Testing
Multiplex ligation-dependent probe amplification (MLPA) was
always performed to detect gene deletions/duplications in
SPAST/SPG4 (13, 14), and in cases that also presented a
single mutation in a relatively frequent recessive gene (SPG7,
SACS or KIAA1840/SPG11), in order to detect possible second
mutations. We used the commercially available Salsa Kits
P165-C2 (for SPAST/SPG4 and ATL1/SPG3A), P213-B2 (for
REEP1/SPG31 and SPG7), P306-B1 (for KIAA1840/SPG11), and
P441-A1 (for SACS), according to themanufacturer’s instructions

(MRC-Holland, Amsterdam). MLPA results were analyzed using
Coffalyser v.140721.1958 software (MRC-Holland, Amsterdam).

RESULTS

Clinical Findings
Over a 4-year period, we collected 476 samples: 239 from index
patients (median age at latest examination 35 years, range 1–82
years), and 237 from patients’ affected or unaffected relatives. The
average age at disease onset in the entire group of investigated
patients was 18 years ± 18.7 (SD), and the vast majority
of the cases were Italians with Italian parents. Around half
of the cases were men (131/239, 55%) and 72% were adults
(>16 years).

Predictably pathogenic mutations were identified in 70 index
patients (34 men and 36 women), whose clinical information
is summarized in Table 1. Of these patients, assigned a positive
molecular diagnosis, 23% showed a dominant pattern of
inheritance and 27% clear recessive inheritance; the largest
proportion (44%) comprised apparently sporadic patients, while
X-linked forms accounted for the smallest proportion (6%, 4
patients). Complex forms were more frequent than pure HSP
(65 vs. 35%) and they were more common among sporadic
or autosomal recessive (AR) HSP cases, as also reported by
others (3).
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TABLE 1 | Clinical features in patients with molecular diagnostic confirmation.

M/F 34/36

Familial/sporadic 39/31

Dominant/recessive/X-linked 16/19/4

Age at onset, y, mean ± SD (n) 17.5 ± 18.7 (56)

Duration, mean ± SD (n) 20.3 ± 1.2 (59)

Disability, mean ± SD (n) 2.4 ± 1.6 (63)

SPRS, average score (n) 18.5 (48)

DISABILITY

Stick use 62.9%

Wheelchair use 28.5%

UPPER LIMB

Hypertonia 25.5%

Hyperreflexia 24.5%

LOWER LIMB

Abnormal vibration sense 68.2%

Amyotrophy 9.5%

Pes cavus 26.9%

Bilateral clonus 71.4%

Urinary dysfunction 61.7%

ABNORMAL MEP

Lower limbs 73.2%

Upper limbs 55.5%

BRAIN IMAGING FEATURES

MRI abnormalities 68%

Cerebellar atrophy 22%

Hyperintense WM 12%

Thin corpus callosum 9%

SPRS, Spastic Paraplegia Rating Scale; WM, white matter.

The patients with a conclusive diagnosis had an average
age at disease onset of 17.5 years ± 18.7 (SD) years with a
disease duration of 20.3 (1.2) years at first examination. The
time to diagnosis was calculated as the months between the
appearance of the first medical sign requiring neurological
evaluation and molecular diagnostic confirmation. This time
could be ascertained with certainty in only 28 patients, all of
whom underwent SpastiSure3.0 analysis, and it was, on average,
25.4 months (range: 5.2–37.8).

The clinical presentation of HSP was found to be
heterogeneous. Whilst lower limb spasticity was detected in
almost all the patients with a clear molecular diagnosis of
HSP, brisk reflexes were found in 75%, and bilateral clonus
in about 70%. Sensory and cerebellar ataxias were rarely
observed (33%), whereas deep sensation was impaired in 68%.
Neurophysiological investigations were significantly impaired
in 75% of the cases and urinary sphincter disturbances were
recorded in about 62%. Abnormal brain MRI findings were seen
in 49% of the 70 molecularly defined cases, mostly consisting of
cerebellar atrophy or thinning of the corpus callosum, or both.
Spine MRI abnormalities were documented in 15% of the index
cases. Behavioral abnormalities, including panic disorder, major
depression, substance abuse and attention deficit hyperactivity
disorder, were observed in five cases. Other co-morbidities
included cluster headache (n = 2), optic atrophy (n = 1), lower

motor neuron disease (n = 3), early ovarian failure (n = 3),
myoclonic seizures (n = 2), and grand mal seizures (n = 1).
Disease severity was ascertained on the basis of disability scores
(where 1 = normal, 2 = walks but cannot run, 3 = walks with
aids, 4 = wheelchair bound), and corresponded to an average
score of 2.6, with less than one third of the patients found to
be wheelchair bound at the time of the study. Disease severity,
also expressed as the mean SPRS score, was 18.5/52 points (data
available for 48 cases), whereas the cross-sectional progression
rate, obtained by dividing the SPRS score by the disease duration
in each individual, was on average 0.92 SPRS points per year
(data available for 42 patients). Segregation analyses in families
documented intrafamilial variability in terms of age at disease
onset, clinical features and disease progression, as already
illustrated by us and others (15–17).

Molecular Findings
In this study, the known HSP-related SPG genes were analyzed,
using a validated NGS TRP strategy, in a large cohort of patients.
Over 95% of the bases in targeted regions showed an excellent
quality value (QC>30) and>99% coverage of the targeted region
with a read depth of at least 100X.

Spastoplex was applied as a second- or third-line investigation
in 91 index patients for molecular confirmation of HSP, whereas
148 patients underwent TRP analysis, with SpastiSure3.0,
immediately, as a first-tier approach. Bioinformatic filtering and
allele frequencies in public and internal databases were used
to prioritize variant types. It was felt that critical, multicenter
re-evaluation of clinical presentation, age at disease onset, and
segregation in the families might help to establish whether
variants could be annotated as disease associated. On the basis
of such re-evaluation, and annotation of variants and their
confirmation by Sanger sequencing, 85 known or probable
pathogenic variants (12 homozygous and 73 heterozygous) were
identified in a total of 70 cases, corresponding to a global positive
diagnostic yield of 29% (Table 2). VUS were found in 86/239
patients (36% of the full cohort) and the majority of these were
detected with the first TRP approach. Once we had adopted a
more stringent bioinformatic filters than those described before
by us and others (6), 83 patients (35% of the full cohort) were
still without a molecular diagnosis (Figure 2) at the end of our
study.

Overall, loss-of-function mutations accounted for 43%
and missense mutations for 57% of the variants detected
(Figure 3). Only four mutations causing a premature stop
codon were identified, whereas no large deletions/duplications
were detected. As regards the patterns of inheritance among
the diagnosed patients, 54% (38/70) had a documented
autosomal dominant (AD) pattern of transmission, while
40% (28/70) presented either AR HSP or were sporadic
cases in which AR inheritance had not previously been
demonstrated. The remaining four cases had X-linked HSP
(Figure 4).

Eight patients harbored mutations in SPAST (8/38), which
appeared to be the most common mutated AD gene identified
in our study. Other mutated AD genes were considerably rarer.
In our cohort, about half of the mutations in AR HSP genes
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TABLE 2 | List of mutations in 70 patients with confirmed diagnosis.

Coding Protein

Index

case

Gene NM_RefSeq cDNA NP_Ref Protein Allelic frequency References

Pt1 CYP2U1 NM_183075 c.1168C>T (hom) NP_898898 p. Arg390Ter 1.219e-5 (18)

Pt2 CPT1C NM_001199752 c.2133+1G>A (het) NP_001186681 / 9.018e-6 This work

Pt3 CYP7B1 NM_004820 c.338insT (hom) NP_004811 p.Phe114fsTer3 / This work

Pt4 DDHD1 NM_001160148 c.1429C>T (hom) NP_001153620 p.Arg477Ter / (19)

Pt5 OPA1 NM_130836 c.1180G>A (hom) NP_570849 p.Ala394Thr 3.253e-5 (20)

Pt6 FA2H NM_024306 c.1051A>G (het) NP_077282 p.Ser351Gly / (21)

Pt6 FA2H NM_024306 c.805C>T (het) NP_077282 p.Arg269Cys / (21)

Pt7 CYP7B1 NM_004820 c.440_443delGCAAinsC

(hom)

NP_004811 p.Gly147Aladel148Lys / This work

Pt8 KIF1A NM_001244008 c.167A>G (het) NP_001230937 p.Tyr56Ser / This work

Pt9 KIF1C NM_006612 c.1046G>A (het) NP_006603 p.Arg349His 1.082e-5 This work

Pt10 PLP1 NM_001128834 c.210T>G (het) NP_001122306 p.Tyr70Ter / (22)

Pt11 FA2H NM_024306 c.103G>T (het) NP_077282 p.Asp35Tyr 1,22e-8 (23)

Pt11 FA2H NM_024306 c.193C>T (het) NP_077282 p.Pro65Ser / (21)

Pt12 SPG11 NM_025137 c.2833A>G (het) NP_079413 p.Arg945Gly 3,12e-8 (24)

Pt12 SPG11 NM_025137 c.128delC (het) NP_079413 p.Ser43fsTer15 / This work

Pt13 CYP7B1 NM_004820 c.1108C>G (het) NP_004811 p.Arg370Gly / This work

Pt13 CYP7B1 NM_004820 c.887A>G (het) NP_004811 p.Asn296Thr / This work

Pt14 DDHD2 NM_015214 c.1978G>C (hom) NP_056029 p.Asp660His 6.493e-5 (25)

Pt15 CYP2U1 NM_183075 c.343G>A (het) NP_898898 p.Gly115Ser 6.625e-6 This work

Pt15 CYP2U1 NM_183075 c.1151G>T (het) NP_898898 p.Arg384Ile 0.002300 This work

Pt16 DDHD2 NM_015214 c.759delT (hom) NP_056029 p.

Phe253fsTer13

/ This work

Pt17 SPG7 NM_003119 c.1A>T (het) NP_003110 p.Metarg391Leu 1.146e-5 (26)

Pt18 FA2H NM_024306 c.340_363del (het) NP_077282 – / (21)

Pt18 FA2H NM_024306 c.1055C>T (het) NP_077282 p.Thr352Ile / (21)

Pt19 KIF1A NM_001244008 c.760C>T (het) NP_001230937 p.Arg254Trp / (27)

Pt20 KIF1A NM_001244008 c.1048C>T (het) NP_001230937 p.Arg350Trp / This work

Pt21 WASHC5 NM_014846 c.2504+1G>A (het) NP_055661 / / This work

Pt22 SPAST NM_014946 c.1625A>G (het) NP_055761 p.Asp542Gly 0.0004141 (28)

Pt23 CPT1C NM_001199752 c.1802C>T (het) NP_001186681 p.Thr601Met 1.219e-5 This work

Pt24 TRPV4 NM_021625 c.1981C>T (het) NP_067638 p.Arg661Cys 2.031e-5 This work

Pt25 ERLIN2 NM_007175 c.187C>A, (het) NP_009106 p.Q63K / This work

Pt26 WASHC5 NM_014846 c.1924A>G (het) NP_055661 p.Ile642Val / This work

Pt27 KIF1A NM_001244008 c. 4927G>A (het) NP_001230937 p.Asp1643Asn 0.0003241 This work

Pt27 KIF1A NM_001244008 c.155T>C (het) NP_001230937 p.Phe52Ser / This work

Pt28 SPAST NM_014946 c.1245+4_1245

+12delAGTGCTCTG

(het)

NP_055761 – / This work

Pt29 SPG7 NM_003119 c.850_851delTTinsC

(hom)

NP_003110 p.Phe284ProfsTer46 / (26)

Pt30 CAPN1 NM_001198868 c.618_619delAG (hom) NP_001185797 p.G208fsTer7 0,000005 This work

Pt31 IFIH1 NM_022168 c.1524+1G>T (het) NP_071451 – / This work

Pt32 SPG7 NM_003119 c.1013G>T (het) NP_003110 p.Gly338Val / This work

Pt33 SETX NM_001351527 c.6122T>C (het) NP_001338456 p.Ile2041Thr 0.0001383 This work

Pt34 SPG11 NM_025137 c.1203delA (het) NP_079413 p.Lys401fsTer15 / This work

Pt34 SPG11 NM_025137 c.6754+5G>A (het) NP_079413 – / This work

Pt35 L1CAM NM_000425 c.3628G>C (hom) NP_000416 p.Asp1210His 5.653e-6 This work

Pt36 SPAST NM_014946 c.323_328delTGCCGG

(het)

NP_055761 p.V108_109del / This work

Pt37 SPAST NM_014946 c.1496G>A (het) NP_055761 p.Arg499His / (29)

(Continued)
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TABLE 2 | Continued

Coding Protein

Index

case

Gene NM_RefSeq cDNA NP_Ref Protein Allelic frequency References

Pt38 SPAST NM_014946 c.1130G>A (het) NP_055761 p. Gly377Glu / (30)

Pt39 HSPD1 NM_002156 c.188T>C (het) NP_002147 p.Ile63Thr / This work

Pt40 ERLIN2 NM_007175 c.860_873dupAGG

CCATTGCTTCC (hom)

NP_009106 – / This work

Pt41 IFIH1 NM_022168 c.1583T>G (het) NP_071451 p.Leu528Arg 0.0004600 This work

Pt42 SPAST NM_014946 c.164delA (het) NP_055761 p.Tyr55fsTer5 / This work

Pt43 PNPLA6 NM_001166111 c.3585C>G (het) NP_001159583 p.Asp1195Glu / This work

Pt43 PNPLA6 NM_001166111 c.2389G>A (het) NP_001159583 p.Val797Met 0.001776 This work

Pt44 ADAR NM_001111 c.164C>T (het) NP_001102 p.Pro55Leu 0.0001119 This work

Pt45 DDHD1 NM_001160148 c.2189dupT (het) NP_001153620 p.Leu730fsTer23 / This work

Pt45 DDHD1 NM_001160148 c.1503+6T>A (het) NP_001153620 – / This work

Pt46 GCH1 NM_000161 c.510-1G>C (het) NP_000152 – / This work

Pt47 AP5Z1 NM_014855 c.1302-1 G>T (het) NP_055670 – / This work

Pt47 AP5Z1 NM_014855 c.2287G>A (het) NP_055670 p.Val763Met 0.0001060 This work

Pt48 ADAR NM_001111 c.2159T>C (het) NP_001102 p.Val720Ala 2.165e-5 This work

Pt49 ERLIN2 NM_007175 c.502G>A (het) NP_009106 p.Val168Met / This work

Pt50 BICD2 NM_001003800 c.793A>G (het) NP_001003800 p.Met265Val 2.525e-5 This work

Pt51 ABCD1 NM_000033 c.836T>C (het) NP_000024 p.Leu279Pro / (31)

Pt52 DDHD2 NM_015214 c.38delA (het) NP_056029 p.Gln13fsTer16 / This work

Pt52 DDHD2 NM_015214 c.864A>C (het) NP_056029 p.Ile288Ile 0.0003393 This work

Pt53 GCH1 NM_000161 c.454-2A>T (het) NP_000152 – / This work

Pt54 ZFYVE27 NM_001002261 c.149A>G (het) NP_001002261 p.Tyr50Cys 3.968e-5 This work

Pt55 SPAST NM_014946 c.1728+1G>A (het) NP_055761 – / (32)

Pt56 SPG11 NM_025137 c.6754+5G>A (hom) NP_079413 – / This work

Pt57 ABCD1 NM_000033 c.1165C>T (emi) NP_000024 p.Arg389Cys 4.634e-5 (33)

Pt58 SETX NM_001351527 c.3992C>T (het) NP_001338456 p.Pro1331Leu 0.0004152 This work

Pt59 REEP1 NM_001164730 c.54-2A>G (het) NP_001158202 – / This work

Pt60 TUBB4A NM_001289129 c.1072C>T (het) NP_001276058 p.Pro358Ser / This work

Pt61 REEP1 NM_001164730 c.324 + 1G>A (het) NP_001158202 – / This work

Pt62 WASHC5 NM_014846 c.1550A>G (het) NP_055661 p.Asn517Ser 2.922e-5 This work

Pt63 POLR3A NM_007055 c.1031G>T (het) NP_008986 p.Arg344Leu / This work

Pt63 POLR3A NM_007055 c.1909+22G>A (het) NP_008986 – 0,00001 (34)

Pt64 SPAST NM_014946 c.1456A>G (het) NP_055761 p.Thr486Ala / This work

Pt65 ATL3 NM_015459 c.758T>C (het) NP_056274 p.Ile253Thr / This work

Pt66 POLR3A NM_007055 c.3201_3202delGC

(het)

NP_008986 p.Arg1069fsTer2 / This work

Pt66 POLR3A NM_007055 c.1909+22 G>A (het) NP_008986 – 0,00001 (34)

Pt67 KIF1A NM_001244008 c.460G>T (het) NP_001230937 p.Val154Phe / This work

Pt68 MFN2 NM_014874 c.2183A>G (het) NP_055689 p.Gln728Arg / This work

Pt69 CYP7B1 NM_004820 c.1362dupT (het) NP_004811 p.Ala455CysfsTer17 4.063e-6 This work

Pt69 CYP7B1 NM_004820 c.344 C>T (het) NP_004811 p.Ser115Phe 4.106e-6 This work

Pt70 SPG11 NM_025137 c.5014G>T (het) NP_079413 p.Glu1672Ter / (35)

Pt70 SPG11 NM_025137 c.3122_3124delGAC

(het)

NP_079413 p.Arg1041del / This work

occurred in four genes, namely KIAA1840/SPG11, FA2H/SPG35,
CYP7B1/SPG5, and DDHD2/SPG54 (Figure S1). In the X-
linked forms, two patients carried different missense variants
in ABCD1, one had a missense variant in L1CAM /SPG1,
and a single case harbored a nonsense change in PLP1/SPG2
(Figure 5).

Interestingly 26/70 patients (36%) with a clear molecular
diagnosis of HSP also showed VUS in other genes, especially
KIAA1840/SPG11 and SACS. However, STRING analysis of these
cases did not reveal obvious protein-to-protein interactions that
might have partly explained a more complex genotype (data not
shown).
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FIGURE 2 | The graphs show the results obtained separately from the two panels used for the study: Spastoplex (A) and Spastisure3.0 (B). The dotted area indicates

patients who received a genetic diagnosis; the gray area those found to harbor variants of unknown significance (VUS); and the striped area the cases that remained

unsolved. The third graph (C) displays the final result of the cross-sectional study, obtained by averaging the data from the various panels. The VUS section contains a

small striped segment, representing the patients (21%) found to carry a single variant in genes that, if mutated, can give rise to their phenotype.

FIGURE 3 | This pie chart shows the different mutation types and their relative

frequency among the pathogenic ones identified in this study. As expected, the

missense type (thin stripes) is the most frequent, followed by the Ins/Del/Dup

(dark gray), splicing (dots), and finally nonsense (thick stripes) types.

Overall, most VUS occurred in a set of four genes, namely
KIAA1840/SPG11, SACS, AP5Z1/SPG48 and LYST (Figure S2).
Among the 86 patients presenting VUS, we enlisted 18 (21%)
who are still under investigation because they harbor a single
variant in at least one gene that, if mutated, is known to
give rise to the clinical conditions they display (Figure 2C).
However, since we lack complete CRF data for these cases and/or
segregation analysis could not be performed in them, patients
were considered bona fide members of the VUS group in spite

FIGURE 4 | This pie chart shows the frequency of HSP inheritance patterns:

autosomal dominant HSP is the most frequent (dots), followed by the

autosomal recessive (squares) and the X-linked (dark gray) forms.

of lacking a complete molecular study. The other 68 HSP cases
with VUS showed no molecular findings correlating directly
with their clinical features; however, it cannot be excluded that
some of the genetic changes they show, as well as new (as yet
unknown) genetic changes, play a role in causing the phenotype.
Eighty-three index cases resulted molecularly undefined in our
NGS study (35% negative yield). Full dataset of gene variants
generated for this study can be found in the ClinVar genetic
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FIGURE 5 | Pie charts showing gene mutation rates by pattern of inheritance in 70 patients.

repository (https://www.ncbi.nlm.nih.gov/clinvar/) (submission
code SUB4568040).

DISCUSSION

The wide clinical and genetic heterogeneity of HSP and the
increasingly thin line between the various ataxic-spastic and
spastic-dystonic forms mean that it is still difficult to arrive at a
rapid and precise diagnosis of this condition. NGS approaches are
increasingly being used for genetic diagnostics in routine clinical
settings, and different published papers report successful use of
this technology in HSP (36–39), with positive yields ranging
from 20% in adult cases to 52.5% in child cohorts (3, 39–43).
To our knowledge, the present cross-sectional study of 239 HSP
cases is among the largest in Europe and Italy to have used
TRP analysis. The present study, which addressed “many genes
in many patients” and investigated practically all the known
genes related to HSP and similar motor neuron disorders, was
expected to give a higher positive diagnostic yield than it actually
did; furthermore, at least 60% of the patients were investigated
underwent NGS testing as a first-tier approach, in order to reflect
modern procedures in diagnostic laboratories. However, initial
expectations notwithstanding, the overall findings showed a 29%
diagnostic yield, a rate similar to those reported in other studies,
including more recent ones that present population-specific data
(44, 45). There are two possible reasons for this unexpected
result. First, the molecular criteria and filtering options used
in the present study to define positive cases were perhaps too
stringent. Had we used looser criteria and disregarded absence
of clinical and segregation data, we would have identified 18
additional cases. Second, about 20 further patients who harbored
single potential pathogenic mutations were classified as VUS,
since we did not specifically look for second mutations. For
example, in two cases we identified, respectively, the p.Ala510Val
mutation in SPG7, which is the most common alteration of the

paraplegin gene (46), and a nonsense variant in FA2H/SPG35,
but did not look for deep intronic changes or gross genomic
rearrangements by additional methodologies such as customized
array-CGH. Moreover, we decided to exclude variants with >1
homozygous count in gnomAD even those predicted to be
deleterious and reported in the Human Gene Mutation Database
(HGMD, www.hgmd.cf.ac.uk/). Thus, we can reasonably assume
that our diagnostic yield is at least 10–15% lower than the
true rate, and therefore can hardly be considered a complete
molecular picture of the cohort. The higher yield we obtained
when using TRP for first-tier analysis could be attributed to the
fact that our collaborators’ clinical data collection became more
precise and complete once we had adopted common criteria for
inclusion in the study (a common CRF), or it may indicate that
new TRP designs offer improved “genotypability,” or even both.
Our study is offering results in line with current literature of
diagnostic power in HSP (see Table 3). Previous studies have
adopted TRPmethods (either alone or followed byWES analyses)
to corroborate a clinical diagnosis of HSP and the range of
diagnostic yield varied from 19 to 62% (36, 39, 41–44, 47–52).

The study we presented also identified a large set of novel
variants (see Table 2): indeed, <40% of the 85 pathogenic
mutations detected in this research had previously been reported
in the literature, or are listed in HGMD. These findings
therefore further corroborate the larger-than-expected allelic
heterogeneity of the Italian HSP population previously reported
in the literature. We confirmed that mutations in SPAST/SPG4
account for more than 20% of solved cases, followed by
other relatively less common AD SPG genes (namely, KIF1A
and WASHC5). It is of note that we found few variants in
REEP1/SPG31 but did not detect mutations in ATL1/SPG3A,
which has previously been reported to be the second most
common genes responsible for AD HSP, and among those
frequently involved in early-onset pure forms (53). However,
in our cohort only 16 patients developed pure HSP before
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TABLE 3 | Relative frequency of diagnostic yield in NGS analyses of patients with

hereditary spastic paraplegia.

NGS

method

Genes

analyzed

Number of

patients

Diagnostic

rate (%)

References

TRP 16 31 15/31 (48%) (39)

TRP 60 42 13/51 (25%)a (36)

TRP 12 29 14/29 (48%) (42)

TRP (I) 34 25 8/25 ( 32%) (44) (total

20%)

TRP (II) 70 73 12/73 (16%)

TRP 159 105 20/105 (19%)b (43)

TRP 113 47 29/47 (62%) (47)

TRP 62 55 34/55 (62%) (48)

TRP 149 99 47/99 (47%) (49)

TRP +

WES

58 97 25/97 (26%) (41)

TRP+WES 51 37 150/526

(28.5%)

(50)

Clinical

exome

2,731 9 6/9 (67%) (39)

Clinical

exome

4,813 66 18/66 (27%) (40)

Clinical

exome

unknown 48 8/48 (17%)c (45)

WES / 9 13/51 (25%)a (36)

WES / 12 6/12 (50%) (51)

WES / 21 13/21 (62%) (52)

TRP, targeted resequencing panel; WES, whole exome sequencing. aconsidering the

whole cohort of patients; b29%, if also variants of unknown significance were considered;
c33%, considering also probably causative variants.

the age of 10 years and they were all studied using Spastoplex
where involvement of ATL1/SPG3 had been ruled out by others
before their inclusion in the present study. With regard to
the recessive forms, our study confirmed that SPG11 is one
of the most common AR HSP genes: indeed, together with
those in CYP7B1/SPG5, DDHD2/SPG54, and FA2H/SPG35,
mutations in SPG11 account for half of all AR cases. Finally, the
relatively low frequency of mutations in SPG7 might be related
to their study in a concurrent “ataxia-associated” NGS panel
(54).

It is worth noting that our data lend support to the notion that
zygosity is no longer a barrier to defining amolecular diagnosis in
HSP.We detected at least three genes (ERLIN2,KIF1A and SPG7)
in which mutations could be inherited in an either dominant
or recessive fashion, suggesting that an even more HSP genes
might actually have different modes of inheritance. Were this
found to be the case, it would have implications for the estimated
diagnostic yield in real-life molecular diagnostic settings and
could point to differences in disease-associated phenotypes.
Importantly, we found unusual clinical manifestations in some
cases. We detected two families with the same mutation in
POLR3A; in one patient this was found to be associated with pure
HSP, and in another with HSP plus optic atrophy and sensory
ataxia. In another family, we found slight motor involvement,
cataract, cluster headache and lower limb motor impairment in
a mother, and lower motor neuron disease in a grandmother,
as well as stiff legs, urinary urgency, and slight cerebellar

involvement with bipolar disorder in a daughter harboring the
same mutation in KIF1A. Given that we are expanding the ways
in which we genotype HSP patients, we should no longer be
surprised to encounter an increasing variety of features associated
with the condition.

Finally, it is worth dwelling on one particular result emerging
from this study. Around 36% of the patients studied presented
VUS, and were therefore left with molecularly undefined or
uncertain diagnoses. Clinical manifestations in this group (see
Table S2). we’re not significantly different from the index cases
with a molecular definition. Various technical limitations of the
present study, the failure to investigate large gene rearrangements
or regulatory intron regions, and even the rare presence
of mosaicisms are all factors that might account for these
incomplete diagnoses. Alternative explanations, such as very
rarely, different zygosity for a known gene, the presence of clinical
phenocopies, or the involvement of new HSP genes yet to be
discovered, can also apply to this group of patients, as well as
to the 83 index cases who were undiagnosed. Nonetheless, we
feel that this apparent “missing heritability” in HSP is unlikely
to be attributable solely to mutations in as yet unidentified genes.
New genes emerged in the past 4 years account for less of 1%
of the unsolved cases. It is far more likely that mutations not
amenable to current standard approaches including structural
variants and variants outside of annotated coding exons account
for a substantial share of unexplained cases. Although full use
of exome sequencing in clinical diagnosis is an option (44),
we therefore propose that the next TRP to be designed should
consider complete gene regions and use better bioinformatics
tools in order to detect structural variants and uncover the
significance of changes in regulatory regions.

Considering the limitations of our study, the increasing
clinical overlap between the neurogenetic conditions in different
motor neuron diseases (4), and the still large number of HSP
patients who remain unsolved, it should be asked whether
modern NGS approaches in clinical diagnostic laboratories
should switch to more comprehensive technologies. Whilst
genome sequencing is increasingly “knocking at the door” of
routine clinical diagnostic practice, most national health systems
cannot afford to implement this technique fully. In this setting,
exome analyses seem to be a practical option. Use of clinical
exome sequencing has shown its value in guiding practical patient
management, and its diagnostic yield, ranging from 16 to 40%
(5, 36), is similar to that of TRP, though reimbursements of costs
is not similarly obvious in most health services. Furthermore,
coding exon sequencing appears to be a feasible as first-
tier diagnostic approach in naive HSP patients. It also seems
reasonable to speculate that only full genome studies, or a
combination of whole-exome sequencing with RNA studies, are
likely to increase diagnostic yield beyond the present rates, once
their costs are more affordable on a large scale.

CONCLUSION

The advent of the NGS technique in the last decade has
revolutionized the way we approach neurogenetic diagnoses in
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general, and the diagnosis of HSP in particular. The results
of the present study show that the TRP method, used as
the first step in clinical diagnostic laboratories, was able to
provide information of real clinical significance in about 30–
40% patients tested, and it emerged as a relatively inexpensive
option (<200 euros per sample). Deeper phenotyping of patients
in the clinic, integrated with more rapid use of functional
validation (in vitro or in silico), should be mandatory, whether
one prefers to use exome sequencing or, instead, larger TRPs,
investigating beyond the coding exons. The development of new
and more precise sequencing tools combined with universal data
sharing, such as multinational initiatives as in GENESIS2.0 (55),
and stringent bioinformatics criteria, could also be helpful for
annotating variants, especially those classified as VUS. In the
era of medical genomics and precision medicine, which has
brought the first randomized clinical trials in HSP (56) and
a deeper approach in modern neurorehabilitation (57), high
levels of genetic heterogeneity should no longer prolong the
time to diagnosis and preclude access to new treatment and care
opportunities.
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Figure S1 | Histogram listing mutated genes and the numbers of cases harboring

each mutation, starting from the least frequently mutated genes (n = 1) to the

most commonly mutated one, SPAST (n = 8).

Figure S2 | Histogram listing genes with variants of unknown significance and the

numbers of cases harboring each one, starting from the least frequently mutated

(n = 1) to the most commonly mutated ones (SPG11,n = 11; SACS and AP5Z1,

each, n = 9; LYST, n = 8).

Table S1 | List of genes associated with hereditary spastic paraplegia and

included in the targeted resequencing gene panel.

Table S2 | Main clinical features in patients molecularly undefined.
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