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This literature review addressed wearable sensor systems to monitor motor symptoms

in individuals with Parkinson’s disease (PD) during activities of daily living (ADLs).

Specifically, progress in monitoring tremor, freezing of gait, dyskinesia, bradykinesia,

and hypokinesia was reviewed. Twenty-seven studies were found that met the criteria

of measuring symptoms in a home or home-like setting, with some studies examining

multiple motor disorders. Accelerometers, gyroscopes, and electromyography sensors

were included, with some studies using more than one type of sensor. Five studies

measured tremor, five studies examined bradykinesia or hypokinesia, thirteen studies

included devices to measure dyskinesia or motor fluctuations, and ten studies measured

akinesia or freezing of gait. Current sensor technology can detect the presence and

severity of each of these symptoms; however, most systems require sensors on multiple

body parts, which is challenging for remote or ecologically valid observation. Different

symptoms are detected by different sensor placement, suggesting that the goal of

detecting all symptoms with a reduced set of sensors may not be achievable. For the

goal of monitoring motor symptoms during ADLs in a home setting, the measurement

system should be simple to use, unobtrusive to the wearer and easy for an individual with

PD to put on and take off. Machine learning algorithms such as neural networks appear

to be the most promising way to detect symptoms using a small number of sensors.

More work should be done validating the systems during unscripted and unconstrained

ADLs rather than in scripted motions.

Keywords: Parkinson’s disease, activities of daily living, sensors, tremor, bradykinesia, hypokinesia, dyskinesia,

freezing of gait

INTRODUCTION

Parkinson’s disease (PD) is a common neurodegenerative disease that affects over 1 million people
in North America (1). The prevalence increases dramatically with age, with approximately 3% of
people over the age of 65 and 10% percent of people over the age of 80 affected (1). Information
about individuals with PD has been largely limited to signs and symptoms reported and observed
in clinical settings, and findings from laboratory-based research studies. While important to
furthering our understanding of the disease, these vantages are often unable to address the
complex manner in which the disease affects activities of daily living (ADLs) for the individuals
affected or their caregiver(s). To better understand the complex interaction between the individual,
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their symptoms, the progression of the disease, medication and
the activities that occupy their day, observations are needed
from within the individual’s natural environment. These types of
observations require wearable sensors that are easy to put on and
take off; do not interfere with the tasks being performed; require
little to no maintenance and calibration once in the field; and are
sensitive to a variety of relevant signs and symptoms.

The presentation of PD is remarkably heterogeneous between
individuals (2). The four cardinalmotor features of PD are resting
tremor, rigidity, akinesia (or bradykinesia and hypokinesia),
and postural instability (3). It is important to have a working
definition and understanding of the presentation of these terms
in place prior to examining possible instrumentation.

Motor Symptoms of Parkinson’s Disease
Resting tremor typically onsets unilaterally in the distal aspect
of the extremities and occurs at a frequency between 4
and 6Hz. As the name suggests, resting tremor disappears
with action and during sleep (3). Rigidity refers to increased
resistance present throughout the range of passive movement
of a limb (3). Akinesia refers to the absence of movement
and includes the well-known phenomenon freezing of gait
(FOG). Bradykinesia and hypokinesia refer to slow and small
movement, respectively. Postural instability is a notable decline
or loss of the ability to maintain an upright posture, which
leads to impaired balance and falls. One challenge that has
long faced clinicians and scientists studying this population
is quantification and unbiased tracking of these primary
symptoms, especially during the performance of meaningful
activity.

Clinical Assessment of Parkinson’s
Disease (PD) Symptoms
Disease severity is primarily assessed using subjective clinical
rating scales, most commonly the Unified Parkinson’s Disease
Rating Scale (UPDRS). In 2007, the Movement Disorder
Society published a revised version known as the Movement
Disorders Society’s Unified Parkinson’s Disease Rating Scale
(MDS-UPDRS). Both versions use a 0–4 scale in each of several
subsections to rate different aspects of PD symptoms (3–5). The
revised version addressed the lack of consistency among the 0–4
scales in the various subsections and the low emphasis on non-
motor aspects of PD. The MDS-UPDRS has four components:
Part I—“Non-motor experiences of daily living”; Part II—“Motor
experiences of daily living”; Part III—“Motor examination”; and
Part IV—“Motor complications”. ADLs are assessed in Part II
via a series of self- or caregiver-reported questions regarding
task performance during eating, dressing, hobbies, hygiene, and
walking and balance. The motor component (section Results) is
completed by a trained rater who assesses individual components
of motor function. Section Discussion assesses time spent with
dyskinesia, functional impact of dyskinesia, time spent in the
“off” state, and functional impact of fluctuations (5). Despite the
subjective nature of these assessments, the UPDRS and MDS-
UPDRS are regarded as the gold standards of assessment for
individuals with PD (4).

Treatment
The most common treatment for PD is levodopa (L-dopa)
therapy (1). However, motor fluctuations (systematic increases
in symptom severity as the effect of the medication wanes)
occur in approximately 50 percent of patients within 5 years
of beginning pharmacological treatment and approximately 70
percent of patients after 15 years (1). This is often debilitating
to the affected individual to the extent that daily activities and
schedules are set around the fluctuations. Motor fluctuations
include “on” and “off” states, where the “on” state refers to when
symptoms are better controlled, and the “off” state refers to the
reappearance or increase of symptoms and decreased mobility.
Additionally, the long-term use of L-dopa therapy commonly
results in levodopa-induced dyskinesia during the “on” state.
Dyskinesias are defined as involuntary abnormal movements (1).
Assessment of dyskinesias via self-report can be problematic
because patients are frequently unaware of the presentation and
extent of their dyskinesias (6). There are also additional scales
used to assess dyskinesias which are not specific to PD. The most
widely used scales are the Abnormal Involuntary Movements
Scale (AIMS) and the modified AIMS (m-AIMS) (6). A patient-
friendly mechanism to observe and monitor dyskinesia, motor
fluctuations and other symptoms could serve to drastically
improve the long-term care of individuals with PD.

Wearable Instrumentation
Modern wearable sensors offer the opportunity to improve the
objectivity and relevance of the assessment and treatment of
individuals with PD by quantifying symptom presentation in
settings that are uncontrolled, unscripted and unsupervised.
Of particular interest is the possibility of measurement and
evaluation during the performance of activities of daily living at
home or in the community. Such data could promote a deeper
understanding of issues such as how symptom severity affects
performance of ADLs, when “on” and “off” periods of motor
fluctuations occur, how this relates to falls, and to what extent
symptoms affect activity level. Ideally, a wearable monitoring
system should be (i) sensitive to change, (ii) accurate, (iii) able to
relay data to a remote location, (iv) lowmaintenance, (v) durable,
and (vi) equipped with methodologies to extract information
that is clinically relevant from the raw data without being overly
cumbersome and intrusive (7). The Movement Disorders Society
Task Force on Technology also recently suggested wearable
technologies should be developed as open platforms, integrated
with medical records, and potentially integrated in treatment
delivery systems in order to translate these technologies into
better care and management for PD patients (8).

Research investigating home-based monitoring of individuals
with PD is currently being conducted and recent participants
have reported the computer equipment and sensors were easy
to operate. The majority complied with wearing the sensors at
home throughout their entire study, suggesting future studies of
home-based interventions with continuous activity monitoring
using wearable sensors are feasible in the PD population (9, 10).

Sensors that are unobtrusive enough for the participant to
wear throughout the day allow for the measurement of mobility
including total daily activity level and functional mobility
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measures of turning and postural transitions. This type of long-
term monitoring allows for analysis of movement quality as well
as quantity, which has previously only been possible via self-
report. Recently there has been a trend in using wearable sensors
to measure mobility in individuals with PD at home [for review
see (11)]. Detection of movements during functional mobility
tasks appears accurate, and free-living assessment using wearable
sensors is able to discriminate pathology better than testing in the
laboratory (11).

The most common wearable sensors used to assess symptoms
and motor complications of PD are accelerometers and angular
rate gyroscopes (12). Accelerometersmeasure the accelerations of
objects along sensor-fixed reference axes (12), while gyroscopes
measure angular velocity around sensor-fixed reference axes
(13). Sometimes accelerometers and gyroscopes are paired in
an inertial measurement unit (IMU) (14); this combination of
sensors can be fused to provide a stable estimate of sensor
orientation (15, 16), as well as both linear and angular motion
information. Additionally, surface electromyography (SEMG)
uses electrodes on the skin to measure the electrical activity
of muscle contraction. However, SEMG has mostly been used
for short-term studies due to challenges with sensor placement
repeatability. Only recently have products allowing long-term
SEMGmonitoring been introduced (17, 18).

Algorithms for Identifying Movement
Disturbances
Because wearable sensors produce large quantities of data that are
not amenable to human interpretation, movement disturbances
are usually studied through application of machine learning
algorithms. Examples of machine learning techniques used in PD
symptom classification include decision trees, neural networks
(NNs), support vector machines (SVMs), linear discriminant
analysis (LDA), Bayesian networks, and hidden Markov models
(HMMs). Each of these methods, described briefly below, uses
different methods for processing data and building up rules to
detect signal features that correlate with the different categories
to be classified.

A decision tree is a flowchart-like algorithm with nodes that
represent a test on an attribute, branches that represent the
outcomes of each test, and leaves that represent the classification
(e.g., “tremor” or “freezing of gait”). The overall structure
represents a set of rules that are exhaustive andmutually exclusive
(19). One type of decision tree is called a Random Tree, which
uses random processes to form the tree. In addition, a Random
Forest algorithm can bemade from a collection of RandomTrees,
where the output is the mean prediction of the individual trees
(19).

Neural networks are used to classify data in a similar way to
the neurons in a brain. They typically have multiple layers which
perform different transformations on the inputs, and different
weights are given to the layers. Although NNs typically perform
well, a disadvantage to using NNs is that they are essentially
“black boxes,” and there are no clear rules for how the input is
turned into the output. Dynamic neural networks (DNNs) utilize

feedback between “neurons” and layers, so that the weights are
adjusted and they “learn” as they receive more data (20).

Support vector machines (SVMs) use non-linear boundaries
between classification outputs; they transform the data into
higher dimensions to find non-linear hyperplanes that divide
the feature space. Dynamic support vector machines (DSVMs)
incorporate discounted least squares (DLS), an error measure
criterion that places more weight to recent training data points
than distant training data points using dynamic parameters
(21) to account for how patterns change over time (22). Linear
discriminant analysis (LDA) uses linear combinations of features
to construct classifiers that separate the categories as much as
possible (23). Naïve Bayes is a form of probabilistic classifier,
based on the Bayes theorem of independence among variables
(19). Finally, a hidden Markov model is a dynamic learning
structure that estimates a sequence of proposed states (such
as normal, FOG, walking, tremor, etc.) from observed data,
by estimating a probabilistic model of transitions among states
and of observing certain measurements in each state. The state
sequence through which the model passes to get to the output is
hidden (22).

Each of the algorithms listed here has computational as well as
functional strengths and weaknesses. To date, no system has been
identified as the universally accepted and optimized algorithm for
analysis of human movement.

Summary of Prior Reviews
Previous review papers have summarized the use of wearable
technologies to monitor PD but have not addressed the number,
types, placement and data processing of sensors used to detect
and quantify motor symptoms in a home setting. For example,
Kubota et al. explored machine learning and how it might be
used to address the symptoms of PD (24). Maetzler et al. focused
on the comparison of individuals with PD to controls in clinical
environments (25). Similarly, Godinho et al. focused on devices
used to assess PD, but the studies reviewed did not take place
in a home setting and did not focus on symptom detection (26).
Del Din et al. reviewed studies in free-living settings, but focused
on single sensor-based devices (11), while Hobert et al. covered
ambulatory assessment in PD, but did not address symptom
detection or severity assessment (27). None of these reviews have
addressed the intersection of wearable technologies, machine
learning, in-homemonitoring, and symptom assessment in home
or home-like settings during the performance of ADLs.

Purpose of This Review
This paper summarizes and compares previously published
research focused on monitoring the symptoms of individuals
with PD in a home-like setting using wearable sensors,
with a focus on performance of ADLs and instrumental
activities of daily living (IADLs). ADLs require basic skills
and focus on self-care abilities such as bathing, using the
toilet, dressing/undressing, grooming, functional ambulation,
and eating (28). IADLs require more advanced skills and
consist of activities such as using the telephone, shopping, food
preparation, housekeeping, laundry, using transportation, using
medication, and handling finances (28). The included studies
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on symptom assessment during ADL and IADL performance
include a wide range of specific tasks as well as continuous
recording methods which gather data from all tasks undertaken
during the recording period. We specifically address the number
and types of sensors used, where the sensors were placed,
and the type of symptoms that were quantified. Progress in
monitoring tremor, freezing of gait, dyskinesias, bradykinesia,
and hypokinesia during ADLs and IADLs are reviewed.

MATERIALS AND METHODS

A literature search was performed through the electronic
databases PubMed/Medline and Google Scholar on multiple
occasions through September 2018 using the search terms
“Parkinson’s disease”, “sensor”, and “activities daily living” as
free text. The references from articles were scanned to identify
additional studies, as well as articles cited by them. The abstracts
of the articles found were read, and studies were included in the
review if they involved objective monitoring of motor symptoms
in patients with PD using wearable sensors, with a focus on
studies done in a home or home-like setting. Articles were
excluded if the methodology would only work in a laboratory
setting.

RESULTS

From the literature search, 27 studies were found that met the
criteria. Studies were found that measured tremor, bradykinesia,
hypokinesia, dyskinesia, akinesia, and freezing of gait, with some
studies containing more than one motor disorder (indicated with
an ∗ in Tables 1–4). The types of sensors used in the studies
included accelerometers, SEMG, and gyroscopes, with some
studies using a combination of sensors. Five studies measured
tremor, five measured bradykinesia or hypokinesia, 13 measured
dyskinesia or motor fluctuations, and ten measured akinesia or
freezing of gait. Tables 1–4 summarize the results.

Tables 1–4 are organized according to PD symptoms to
provide a convenient reference on how different symptoms of
PD can be measured with various sensor technologies. However,
each symptom can be addressed with multiple different sensors,
and a chosen sensor system can be used with different algorithms
to report on multiple symptoms. Therefore, to help the reader
determine which sensor or combination of sensors is most
appropriate for measuring multiple symptoms of interest, the
text of the results section is organized according to sensor type,
and summarizes the symptoms each sensor has successfully
measured.

Studies Using Gyroscopes
Gyroscopes were not commonly used alone to assess PD
symptoms in home-like settings. Only one paper was found that
used gyroscopes and the only motor symptoms quantified were
tremor and bradykinesia.

Salarian et al. used sensors consisting of uni-axial gyroscopes
just above the wrists to detect the presence of tremor, quantify
tremor amplitude and assess bradykinesia (32). The first part of
the study involved 17 typical ADL and IADL tasks that could

be completed in a hospital environment (e.g., sitting, walking,
writing, eating and drinking, brushing teeth, combing hair); a
second test collected data for 5 h continuously using 2 gyroscopes
(roll and pitch) on each forearm above the wrist. In both tests, the
estimated tremor amplitude from root mean square (RMS) of the
roll axis showed high correlation to the UPDRS tremor subscore,
and mobility of the hand (RMS angular velocity) correlated
with the UPDRS bradykinesia subscore. Range of rotation of the
hand (integration of angular velocity) correlated with the UPDRS
bradykinesia subscore only in the shorter ADL/IADL test. The
authors also suggested that the activity of the hand (percentage
of time in a window with movement >5◦/s) would be a good
estimator of hypokinesia.

Studies Using Accelerometers
Accelerometers were the most common instrumentation used
to assess PD symptoms with 26 total papers found that used
accelerometers. Of these 26 papers, 15 used accelerometers
in isolation. The symptoms addressed included tremor,
bradykinesia, hypokinesia, dyskinesia, motor fluctuations, and
freezing of gait.

Tremor
Hoff et al. (29) used three uni-axial wrist-mounted
accelerometers and two pairs of uni-axial body mounted
accelerometers (one pair mounted radially on the sternum,
the second pair mounted radially on the upper dominant
leg) to detect the presence and duration of tremor. Data were
continuously recorded over a 24-h period while the individual
was at home. During the 24-h continuous recording, it was
found that the duration and intensity of tremor correlated with
the UPDRS score for resting tremor.

Bradykinesia, Hypokinesia, Dyskinesia and Motor

Fluctuations
Dunnewold et al. (33) used pairs of uni-axial accelerometers
mounted perpendicular to each other radially on the sternum,
upper leg (most affected side), and wrist (most affected
side) during 24-h of continuously recorded movements. For
bradykinesia, the mean arm acceleration and the mean leg
acceleration in the upright position showed a modest inverse
relation with the UPDRS motor score of the most affected
side. For hypokinesia, the arm and trunk mean immobility
periods (MIP), periods without acceleration above a threshold,
lengthened with increasing ipsilateral UPDRS motor scores, but
the change was not significant (33).

Samà et al. (36) used a single waist-worn triaxial accelerometer
to detect presence and severity of bradykinesia. Individuals
with PD performed a set of scripted ADL tasks at home
(such as walking around their home, carrying a glass of water,
and a freezing-of-gait provocation test) both before and after
taking their prescribed antiparkinsonian medication. For the
bradykinesia detection method, first strides were identified
through a support vector machine (SVM) model which is based
on signal power in frequency bands. Then motion fluency (signal
power in the 0–10Hz band) for strides in each walking bout
was compared to a patient-dependent threshold. Motion fluency
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TABLE 1 | Studies on tremor.

Study Location Sensors Protocol Metrics Algorithm Results

Hoff

et al. (29)

Part 1:

Lab

Part 1: 3 uni-axial

accelerometers on one

wrist

Part 1: seated posture;

measured at rest and

while performing motor

tasks

Part 1: amplitude,

dominant frequency,

duration, bandwidth

Part 1: FTFT, detect tremor

if longer than minimal

duration (1.5 s) of dominant

frequency, with limited

bandwidth (1.0Hz), and

greater than minimal

amplitude (0.01 g)

Part 1: Tremor vs. no tremor

compared to specialists:

SENS > 82%; SPEC > 93%

Part 2:

Home

Part 2:

same as Pt 1; also 2

pairs uni-axial

accelerometers (sternum

and upper dominant leg)

Part 2:

Measured for 24-h

while keeping diary

Part 2:

same as Pt 1; also

duration of posture,

duration of tremor,

mean amplitude of

tremor

Part 2:

same as Pt 1; also

determine standing vs.

sitting based on

gravitational vector

Part 2:

Duration of tremor moderately

correlated with UPDRS score for

resting tremor (ρ = 0.66

standing, 0.77 sitting)

Intensity of tremor correlated

with resting tremor (ρ = 0.70

standing, 0.75 sitting)

*Roy

et al. (30)

Simulated

home

SEMG and tri-axial

accelerometer over wrist

extensors and tibialis

anterior

4 h moving freely while

videotaped

Energy, lag of first peak

in autocorrelation of

signal, ratio of height of

first peak to height of

peak at origin

DNN Tremor vs. no tremor compared

to specialists: SENS > 88%,

SPEC > 91%

Severity level of tremor on

UPDRS compared to specialists:

SENS > 95%, SPEC > 97%

*Cole

et al. (31)

Simulated

home

SEMG and tri-axial

accelerometer over wrist

extensor of dominant arm

4h moving freely while

videotaped

Energy, lag of first peak

in autocorrelation of

signal, ratio of height of

first peak to height of

peak at origin

DNN Tremor vs. no tremor compared

to specialists: SENS = 93%,

SPEC = 95%

*Cole

et al. (22)

Simulated

home

SEMG and tri-axial

accelerometer over

symptomatic wrist

extensor and

symptomatic tibialis

anterior

3–4 h moving freely

while videotaped

Energy, lag of first peak

in autocorrelation of

signal, ratio of height of

first peak to height of

peak at origin

DNN, DSVM, and HMM for

tremor detection; Bayesian

maximum likelihood

classifier for tremor severity

classification

Tremor vs. no tremor compared

to specialists:

DNN: GER 6.2%, LER 0.28%

DSVM: GER 7.2%, LER 0.41%

HMM: GER 6.1%, LER 0.45%

UPDRS tremor severity

classification compared to

specialists: SENS > 95%,

SPEC > 95%

*Salarian

et al. (32)

Hospital Part 1:

3 uni-axial gyroscopes

near wrist

Part 1:

45min of 17 ADL while

videotaped (DBS on

and DBS off)

Dominant pole

frequency and

amplitude

Part 1:

IIR filter with 3 s windows

and autoregressive model.

Tremor detected if

frequency between 3.5 and

7.5Hz and

amplitude > 0.92. Tremor

amplitude estimated from

RMS angular velocity.

Part 1:

Tremor vs. no tremor compared

to specialists: SENS = 99.5%,

SPEC = 94.2%

Estimated tremor amplitude from

roll axis showed high correlation

(r = 0.87) to the UPDRS tremor

subscore

Part 2:

2 uni-axial gyroscopes

(roll and pitch) near wrist

Part 2:

3–5 h moving freely

Part 2:

Est. tremor amplitude: insensitive

to window duration (r > 0.7 for

window sizes 5–45min)

FTFT, fast time frequency transfer; ρ, Spearman rank correlation; DNN, dynamic neural network; DSVM, dynamic support vector machine; HMM, hidden Markov model; GER, global

error rate; LER, local error rate; DBS, deep brain stimulation; IIR, infinite impulse response; RMS, root mean square; r, Pearson correlation; SENS, sensitivity; SPEC, specificity; *, study

addressing multiple motor disorders.

values were also used in an epsilon support vector regression (ǫ-
SVR) model to detect severity of bradykinesia based on UPDRS
scores. Bradykinesia vs. no bradykinesia was detected (compared
to a specialist) with very high sensitivity and specificity, and low
error was found between the bradykinesia severity estimation
compared to the UPDRS-III item 24 (body bradykinesia and
hypokinesia) (36).

Accelerometry was also used for detecting motor fluctuations
and dyskinesias. Klapper et al. (34) used five tri-axial
accelerometers (on the dorsum of each arm just proximal
to the wrist, on each leg just proximal to the lateral aspect
of the ankle, and on the hip attached to the patient’s belt) to
detect bradykinesia, hypokinesia, and dyskinesias while the
individuals went about their typical daily functions in the main
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TABLE 2 | Studies on bradykinesia and/or hypokinesia.

Study Location Sensors Protocol Metrics Algorithm Results

Dunnewold

et al. (33)

Home Pairs of uni-axial

accelerometers on

sternum, upper leg,

and wrist

24-h continuous

recording

Bradykinesia:

magnitude of

acceleration for arm

and leg; Hypokinesia:

MIP (period with

acceleration below a

threshold) for hand

and trunk

Discriminant analysis

to determine

thresholds, Multiple

regression analysis

for objective

measures and

UPDRS scores

Bradykinesia: mean arm

and leg accelerations

showed inverse relation

with ipsilateral UPDRS

motor score (R2 = 0.1,

R2 = 0.45)

Hypokinesia: arm MIP

and trunk MIP

lengthened with

increasing ipsilateral

UPDRS motor scores

*Klapper

et al. (34)

Main room of

a day

program for

PD

Tri-axial accelerometers

near the wrists, ankles,

and hip

2 subjects recorded for

about 320min each

while videotaped

Absolute value of

derivative of

magnitude of

acceleration and

position and

magnitude correlation

between sensors

Classification trees

and neural networks

Bradykinesia/

hypokinesia vs. no

bradykinesia/

hypokinesia compared to

neurologist:

Neural network with

c-index of 88.0–92.1%

Classification tree with

accuracies of

74.8–85.3%

*Patel

et al. (35)

Lab Tri-axial accelerometers

on upper arms,

forearms, supper

thighs, and shins

Standardized clinical

motor tasks (alternating

hand movements,

finger to nose, and heel

tapping) while

videotaped

Intensity (RMS),

auto-covariance,

dominant frequency,

correlation features,

and entropy

Clustering evaluation

index to select

features and linear

discriminant classifier

to predict

performance of

features

Best features for

predicting clinical scores

of bradykinesia on

UPDRS were

approximate entropy and

intensity (RMS of

acceleration)

Optimal window length

6 s

*Salarian

et al. (32)

Hospital Part 1:

3 uni-axial gyroscopes

near wrist

Part 1:

45min of 17 ADL while

videotaped (DBS on

and DBS off)

Mobility of hand

(RMS of angular

velocity), range of

rotation of hand

(integration of angular

velocity), activity of

hand (percentage of

time in window with

movement)

Lowpass filter to

remove tremor,

considered only

periods with

instantaneous

amplitude >5◦/s as

periods of movement

Part 1:

significant correlation

between mobility

(r = 0.83) and range of

rotation of hand

(r = 0.70) from roll axis

with UPDRS bradykinesia

subscore

Part 2:

2 uni-axial gyroscopes

(roll and pitch) near

wrist

Part 2:

3–5 h moving freely

Part 2:

mobility showed highest

correlation with UPDRS

bradykinesia, insensitive

to window duration

(r > 0.74 for window

sizes 5–45min)

Samà

et al. (36)

Home Tri-axial accelerometer

on waist near iliac crest

10–30min of scripted

ADL before and after

antiparkinsonian

medication while

videotaped

Motion fluency

(energy in the

0–10Hz band) for

strides in each

walking bout

Gait detected from

SVM, then motion

fluency of strides

compared to

patient-dependent

threshold; Severity of

bradykinesia from

ǫ-SVR model

Bradykinesia vs. no

bradykinesia compared

to specialists:

SENS = 92.5%,

SPEC = 89.1%

High motion fluency

correlation with UPDRS

scores (r > 0.8)

Low average errors in

estimating bradykinesia

severity on UPDRS

(NRMSE = 14.75%)

MIP, mean immobility period; SVM, support vector machine; ǫ-SVR, epsilon support vector regression; NRMSE, normalized root mean squared error; SENS, sensitivity; SPEC, specificity;
*, study addressing multiple motor disorders.
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room of a day program for persons with PD (34). The authors
used classification trees and neural networks (NNs) to detect
bradykinetic/hypokinetic states vs. not bradykinetic/hypokinetic
states compared to dichotomized scores from the neurologist
who observed the participants for the duration of the
recording period. NNs performed better in detecting both
bradykinetic/hypokinetic states vs. not bradykinetic/hypokinetic
states and dyskinetic states vs. non-dyskinetic states (34). Patel
et al. (35) used tri-axial accelerometers on the upper arms,
forearms, upper thighs, and shins to predict clinical scores of
bradykinesia and dyskinesia on the UPDRS during standardized
clinical motor tasks such as finger tapping, alternating hand
movements, and heel tapping (35). Although their protocol
included clinical motor tasks rather than ADLs, this study was
included because the system would be able to be used in the
home. They found that the best features to predict bradykinesia
scores were approximate entropy and intensity, as well as
correlation and frequency features (35). Approximate entropy
was defined as a measure of signal complexity, where a lower
value has many repetitive patterns, and a high value indicates
a complex signal. Intensity was measured as the RMS value
of the accelerometer signal. Correlation features referred to
coordination between body segments on the left and right
side and proximal and distal segments, and features included
magnitude, delay, and similarity. Dyskinesia was examined by
choosing signals from lower extremity body segments during
tasks requiring fine motor control of the upper extremities (such
as alternating hand movements and finger tapping). Entropy
and intensity were again found to be the best features to predict
dyskinesia clinical scores (35).

Accelerometers were also used for detection of levodopa
medication state where “off” state was defined as the period of
time where hypokinesia, bradykinesia, and tremor occur, while
dyskinesias occur in the “on” state. Hoff et al. (37) used two
uni-axial accelerometers on the sternum (sagittal and coronal),
three uni-axial accelerometers on the wrist (sagittal, coronal, and
transverse), and two uni-axial accelerometers on the upper leg
just above the knee of the most affected side (sagittal and coronal)
during a 24-hour period (37). Mean acceleration of the arm,
mean immobility period, and mean tremor duration [detected
from the method in (29)] were compared to participants self-
assessed “on” state, “off” state, and presence of dyskinesias every
30min. Additionally, mean acceleration of the leg and mean
immobility period of the trunk were used for objective measures
of dyskinesias. Differences between the “on” and “off” states
were not statistically significant. Overall, they concluded their
method was not suitable for automated “on”/ “off” detection
in individual patients, and theorized that NNs would perform
better (37). However, they did find a high correlation between
dyskinesia objective measures and time spent with dyskinesias
from self-assessment (37).

Levodopa-induced dyskinesias (LID) during performance of
ADL tasks were also assessed via accelerometry (38). Hoff
et al. used four pairs of uni-axial (coronal and sagittal planes)
accelerometers (two on the upper leg, two on the wrist, two on
the trunk, and two on the upper arm of the most affected side)
to investigate movement characteristics of LID in two frequency
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TABLE 4 | Studies on akinesia and/or freezing of gait.

Study Location Sensors Protocol Metrics Algorithm Results

Morris

et al. (45)

Lab Uni-axial (vertical)

accelerometer on

lateral leg near ankle

Timed up and go test

while videotaped

Power spectrum of

vertical acceleration

signal

iFOG: FOG if ratio of

power in freeze band

(3–8Hz) to power in

locomotor band

(0.5–3Hz) greater than

threshold (2) for 10 s

windows

Correlation 0.78 for number

of FOG events (compared to

average of clinicians)

Correlation 0.93 for percent

time frozen (compared to

average of clinicians)

Moore

et al. (46)

Lab IMU on left leg just

superior to the ankle

Walking around

corridors, through

doorways, and around

obstacles (during “off”

state then periodically

repeated over a 90-min

period after taking

medication)

Power spectrum of

vertical leg acceleration

FOG identified when

normalized freeze index

(ratio of power in 3–8Hz

to power in 0.5–3Hz)

above a threshold for 6 s

sliding windows

FOG vs. no FOG compared

to specialist:

Using global threshold (2.3):

detected 78.3% of FOG

events with 20% FP rate

Using individual thresholds

(2.3–4.4): detected 89.1%

of FOG events with 10% FP

rate

Bächlin

et al. (47)

Lab Tri-axial accelerometers

just above the ankle,

just above the knee,

and lower back on a

belt

3 basic walking tasks

(straight walking, turns,

and ADL such as

carrying glass of water)

while videotaped

Energy in locomotor

band (0.5–3Hz), energy

in freeze band (3–8Hz),

and complete energy

(0.5–8Hz) from ankle

vertical accelerometer

If complete energy is

above power-threshold,

FI calculated (ratio of

energy in freeze band to

energy in locomotor

band) and FOG detected

when FI exceeds

freeze-threshold for 4 s

windows

FOG vs. no FOG compared

to physiotherapists:

Online detection using

global parameters

SENS = 73%,

SPEC = 81.6%

Using smooth vs. saccadic

group parameters

SENS = 85.9%,

SPEC = 90.4%

Using individual parameters

SENS = 88.6%,

SPEC = 92.8%

Cole

et al. (48)

Simulated

home

Tri-axial accelerometers

on forearm, thigh, and

shin; SEMG on shin

Unscripted and

unconstrained ADL

while videotaped

8 features from

accelerometers on

forearm and shin, 3

features from SEMG

Linear classifier (using

gravitational component

of acceleration) to detect

if upright, then if upright

>5 s, DNN to detect FOG

FOG vs. no FOG compared

to specialist: SENS = 83%,

SPEC = 97%

By ignoring FOG events

<1 s and >8 s away from

other FOG events:

SENS = 82%, SPEC = 99%

Tripoliti

et al. (19)

Lab Tri-axial accelerometers

near ankles, wrists;

IMUs on chest, and

waist

Scripted ADL

(approximately 18min,

repeated in “off” and

“on” states) while

videotaped

Entropy from all

sensors

Naïve Bayes, Random

Forests, Decision Trees,

and Random Tree

Detecting FOG vs. no FOG

compared to clinician:

Best result was Random

Forests with

SENS = 81.9%,

SPEC = 98.7%

Tay et al.

(49)

Lab IMUs on ankles and

back of neck

Timed up and go test

and walking

Body posture from

accelerometers, swing

phase (peak in z-axis

gyroscope), toe off and

heel strike (troughs in

z-axis gyroscope), and

stride time

FOG defined when a

certain amount of time

passed (based on

average stride time) and

no forward movement

(based on angular

velocity threshold)

Didn’t capture enough FOG

events to make a

correlation, but results were

consistent with findings of

loss of stride length and

accelerated cadence at

onset of FOG

Mazilu

et al. (50)

Lab IMUs on wrists and

ankles

Walking tasks in “on”

state to provoke FOG

(turns, Figure 8,

cognitive dual tasks,

crowded hallways,

elevator) while

videotaped

Acceleration and

angular velocity

magnitudes (mean and

STD), power spectrum

of acceleration

Decision tree FOG vs. no FOG compared

to clinician using wrist:

Subject dependent hit

rate = 85%, and

SPEC = 80%

Subject independent hit

rate = 90%, SPEC = 66%

40% more FPs than ankle

and higher latency of 1.15 s

compared to 0.6 s for ankle

(Continued)
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TABLE 4 | Continued

Study Location Sensors Protocol Metrics Algorithm Results

Azevedo

Coste

et al. (51)

Lab IMU on shank Walking along a 10m

corridor during dual

tasks while videotaped

Stride length and

cadence (from

segmentation of gait

data into strides)

FOG detected if FOGC

(based on cadence and

stride length) is above a

threshold

FOGC: missed only 4 of 26

FOG events compared to

clinician

FI method (46): missed 9 of

26 FOG events compared

to clinician

Rodríguez-

Martín

et al. (52)

Home Tri-axial accelerometer

on waist

20min of scripted

activities (walking

around home,

doorways, walk

outside, and dual task)

before and after

medication (after also

did ADL with short and

fast movement) while

videotaped

55 features (such as

means, increment

between windows,

correlation between

axes, and spectral

information) from

acceleration data

SVM FOG vs. no FOG compared

to specialist:

Generic model

SENS = 74.7%,

SPEC = 79%

Personalized model

SENS = 80.1%,

SPEC = 88.1%

Prateek

et al. (53)

Lab IMU on heel 5 gait tasks (walking

backwards, stepping

over a block, Figure 8,

narrow path, and

in-place 180◦ turns)

Acceleration and

angular velocity signals,

foot speed from IMU

data

Filtered out gait patterns

that are not ZVEI or TREI

using accelerometer

signal

Distinguished ZVEI from

TREI detected above

using accelerometer and

gyroscope signals

Used a point-process

filtering module by

combining speed of foot

from foot-mounted IMU

with the detected TREI

via a conditional intensity

function to compute

pFOG

FOG vs. no FOG compared

to gait analysis experts:

81.03% detection accuracy

using a tuned

participant-specific

parameter

72.41% detection accuracy

using a fixed value

parameter

Three-fold decrease in

false-alarm rate compared

to FI method

iFOG, index of FOG; FI, freezing index; DNN, dynamic neural network; STD, standard deviation; FOGC, FOG criterion; SVM, support vector machine; SENS, sensitivity; SPEC, specificity;

FP, false positive; ZVEI, zero-velocity event intervals; TREI, trembling event intervals; pFOG, probability of FOG.

bands (1–4Hz and 4–8Hz) (38). Voluntary movements occur in
the 1–4Hz band, so the correlation was variable in that band
(38). Interestingly, correlation between the objective measures
and the m-AIMS score was better when using sensor data from
body segments not performing the ADL task (38). For example,
they found high correlation from the leg sensors during sitting
and standing tasks that require fine motor skills. Keijsers et al.
used the same data but with NNs to try to better differentiate
between voluntary movements and LID and to better predict
the severity of LID (39). They found low mean errors in
predicting the m-AIMS score, and the authors concluded that
NNs did a good job of distinguishing LID from voluntary
movements (39).

Keijsers et al. also used data from tri-axial accelerometers
on the upper arms (just below the shoulders), halfway up the
thigh, the wrist of the most dyskinetic side, and the top of the
sternum to detect the presence and severity of dyskinesia on the
m-AIMS scale in a home-like setting using NNs (40). Subjects
performed 2.5 h of approximately 35 scripted ADL and IADL
tasks while wearing the sensors and being videotaped (40). Tasks
included walking, putting on a coat, making coffee, preparing
lunch, and eating. The NN correctly classified whether there were

dyskinesias or no dyskinesias with high accuracy and had high
correlation with the m-AIMS score rated by physicians (40).

In an attempt to use fewer sensors for online monitoring,
Samà et al. used a single tri-axial accelerometer worn on a belt to
detect presence of dyskinesias while patients performed activities
in a laboratory (such as walking in a straight line, walking over an
inclined plane, carrying a heavy object, setting a table, and going
up and down stairs while videotaped) andwhile walking outdoors
for at least 15min with a trained observer (41). Dyskinesia was
detected by analyzing the spectrum of the accelerometer signals.
They found high accuracy in detecting dyskinetic events vs. non-
dyskinetic events as compared to the trained observer (41). In a
follow-up study, a single tri-axial accelerometer was attached to
the waist to detect “on”/“off” medication states (42). Data were
recorded for 3–5 h while the participants performed their normal
routine in their homes while accompanied by a trained rater.
They found high accuracy with an SVM compared to the trained
observer, and even greater results when only considering walking
segments with 10 or more strides (42).

Optimal detection of motor fluctuations were also examined
by Rodríguez-Molinero et al. (44) using a waist-worn triaxial
accelerometer. Participants wore the sensor for a variable number
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of daytime hours for 1–3 consecutive days while simultaneously
recording whether they were in an “on” or “off” state in a
diary every 30min. Based on the accelerometry readings, the
algorithm output either presence or absence of bradykinesia
plus presence or absence of dyskinesia every 10min based on a
similar methodology to the Hoff et al. study (37). They found
the algorithm output was accurate compared to the patient’s diary
(44).

Freezing of Gait
Accelerometers have been commonly used to address freezing of
gait. Morris et al. (45) used uni-axial (vertical) accelerometers
on the lateral aspect of the legs just superior to the ankles to
assess FOG episodes. Although this study did not include an
ADL or home component, it was included because it focused on
the comparison of objective measures of FOG from frequency
characteristics of acceleration and clinical measures of FOG.
Patients were assessed in the “off” state during performance of
timed up-and-go (TUG) tasks, and the frequency and duration
of FOG episodes were rated by ten clinicians via video. An
index of freezing of gait (iFOG) was defined based on frequency
characteristics of the vertical accelerometer data [ratio of signal
power in the freeze band (3–8Hz) to signal power in the
locomotor band (0.5–3Hz)]. FOG was detected if the iFOG was
above a threshold for 10 s windows. Strong agreement was found
between their algorithm and the mean of the scores from the ten
clinicians (45).

Bächlin et al. focused on minimizing the complexity of the
algorithm for use in online detection of FOG (47). A tri-axial
accelerometer just superior to the ankle was used for online
detection during three basic walking tasks including straight
walking, turns, and during ADL tasks such as carrying a glass
of water (47). Using a global threshold set to identify FOG
vs. no FOG in real-time, they found acceptable sensitivity and
specificity compared to video analysis by physiotherapists (47).
They found even greater results when separating subjects into
two walking style groups (smooth and saccadic) based on their
freeze-threshold values. Finally, the optimal performance was
found using individual thresholds for each subject.

Rodríguez-Martín et al. used a single waist-worn tri-axial
accelerometer to detect FOG at home during scripted activities
before and after taking medication (52). In addition, following
medication a false positive protocol activity was performed
which included short and fast movements similar in frequency
content to FOG. FOG vs. no-FOG was classified using an SVM
model compared to video rating by an experienced clinician,
and acceptable results were found using a generic model. Better
results were found using patient-specific models (52).

Accelerometry Combined With Surface
Electromyography
There were 4 papers found that used accelerometers in
combination with surface electromyography (SEMG) to provide
a more complete view of the recorded movements and the related
muscle activity. Of these 4 papers, 3 used the hybrid sensors to
detect tremor and dyskinesia and 1 used the sensors to detect
freezing of gait.

Roy et al. used four hybrid sensors consisting of SEMG
and triaxial accelerometers above both wrist extensor muscles
and both tibialis anterior muscles in the shin (30) for 4 h of
recording in an apartment-like setting performing unscripted
and unconstrained activities. Tremor and dyskinesias were
detected using separate DNNs, designed to learn how features
of the movement change over time. The fully developed DNNs
were able to detect presence and absence of tremor and dyskinesia
from the upper body sensors and identify the clinical severity
level compared to video analysis by specialists (30).

While Roy et al. used four sensors, Cole et al. used a single
hybrid SEMG and a tri-axial accelerometer sensor attached near
the origin of the wrist extensor muscle of the dominant arm to
detect tremor (31). Data were recorded during 4 h of unscripted
and unconstrained simulated daily activities, such as washing
dishes, setting the table, and making a bed, in an apartment-
like environment. Using DNNs, they were able to detect tremor
vs. no tremor compared to the annotated video (31). They also
successfully trained DNNs to detect dyskinesia (31). Building
on this work, Cole et al. used two hybrid SEMG and triaxial
accelerometer sensors, one on the origin of the wrist extensor
muscle of the more symptomatic arm and one on the tibialis
anterior muscle of the shin of the more symptomatic leg to detect
tremor and compared the performance of different machine
learning algorithms. Tremor was detected using three different
dynamic machine learning structures: hidden Markov models
(HMMs), dynamic neural networks (DNNs), and dynamic
support vector machines (DSVMs) (22). The researchers also
estimated tremor severity level on the UPDRS using a Bayesian
maximum likelihood classifier on high-pass energy from the
accelerometer signal. The researchers found a slight advantage
to using the DNN algorithm to detect tremor vs. no tremor,
although all methods were similarly effective. All algorithms
performed well in estimating the tremor severity level also, with
a slight advantage to using the DNN algorithm (22).

Cole et al. also used a set of combined sensors to detect FOG
(48). Tri-axial accelerometers were placed on one forearm, thigh,
and shin and an SEMG sensor was placed on the shin of patients
and control subjects during unscripted and unconstrained ADLs
in an apartment-like setting. If the subject was detected to be
upright for five or more consecutive seconds, a DNN was applied
to detect whether FOG occurred. The DNN was trained and
tested on different datasets, andwas found to have high sensitivity
and specificity for detecting FOG vs. no FOG compared to
specialists’ ratings (48). Since false positives could be costly in
a real system (e.g., by leading patients to undergo unnecessary
treatment), they ignored FOG detections that were<1 s in length
or isolated more than 8 s away from others, and improved their
specificity and sensitivity (48).

Accelerometers and Gyroscopes (Inertial
Measurement Units)
Combining tri-axial accelerometers and gyroscopes into inertial
measurement units (IMUs) is another common type of
instrumentation, which exploits information in both linear and
angular motion, and in both velocity and acceleration. There
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were 7 papers found that used accelerometers in combination
with gyroscopes to provide a more complete view of the recorded
movements. Of these 7 papers, 1 used the sensors to detect
dyskinesia and 6 used the sensors to detect freezing of gait.

Pulliam et al. used IMUs on the wrists, thighs, and ankles of
patients during scripted ADL tasks (such as drinking, dressing,
buttoning a coat, combing hair, and cutting food) to examine the
accuracy in predicting the total m-AIMS score using the sensor
array (43). Linear regression models were trained to output m-
AIMS severity scores, and they found high correlation between
the average clinician total m-AIMS score and the model score for
the 6-sensor array (43). They also tested configurations with just
2 sensors, to make the system more realistic for a home setting
and still found acceptable results, suggesting reasonable accuracy
using only two sensors (43).

Moore et al. used IMUs attached to the left leg just superior
to the ankle to detect FOG during walking (46). The researchers
defined a freeze index (FI) as the ratio of power in the freeze
band (3–8Hz) to power in the locomotor band (0.5–3Hz)
from the vertical accelerometer signal for 6-s sliding windows.
The locomotor band was determined based on the frequency
characteristics of the gait of the 11 subjects. FOG was identified
when the FI was above a threshold. Using a global threshold, they
were able to detect FOG events compared to specialists, with even
greater results after establishing individual thresholds (46).

Tripoliti et al. used a combination of four stand-alone tri-
axial accelerometers on the legs (near ankles) and wrists and
two IMUs on the chest and waist to detect FOG during
commonly performed tasks (19). Freezing events were identified
by computing signal entropy within a 1-s sliding window. The
researchers used the entropy estimates in four classification
algorithms: Naïve Bayes, Random Forests, Decision Trees, and
Random Tree. Best results were found using all sensors and the
Random Forests algorithm (19).

Tay et al. used IMU’s attached to the ankles and back
to demonstrate feasibility of detecting FOG based on gait
parameters (49). Accelerometer signals were used to monitor
body posture during standardized tasks such as the timed up and
go, 10m walk, and free non-timed walk. Gyroscope signals were
used to detect transitions from swing to stance phase on both
legs (49). Freezing was defined when a certain amount of time
passed, and no forward movement was detected. Average stride
time and threshold levels were constantly updated to adapt to the
patient’s gait and helped determine the acceptable timing to wait
for the next gait phase (49). Too few FOG events were captured
to examine correlations between subjective and calculated events,
but results were consistent with findings of loss of stride length
and accelerated cadence at the onset of freezing. Similarly,
Azevedo Coste et al. (51) detected FOG using gait parameters
such as stride length and cadence based on the hypothesis
that before freezing, cadence should increase and stride length
should decrease. They created a complementary index freezing
of gait criterion (FOGC) using continuous evaluation of cadence
and stride length (51). Gait data from walking along a 10
meter corridor during several dual tasks was segmented using
gyroscope data from an IMU on the shank in the sagittal plane,
with the FOGC threshold adjusted for each patient (51). They

were able to detect FOG events that were missed when using the
standard freezing index (FI) method of Moore (46), however, the
authors did note the drawback that the FOGC can only detect
freezing during the gait cycle (51).

Mazilu et al. (50) compared FOG detection through wrist and
ankle-worn sensors, because wrist placement is more likely than
other locations to be accepted by elderly users. Using decision
trees, the best wrist location (non-dominant wrist) had a similar
hit rate compared to the best ankle location (dominant leg), but
it had 40%more falsely detected events and a higher latency (50).
The authors found that the best features to use for detection were
participant specific (50). They also found that performing actions
and gestures with the wrist increased false positives. However,
they suggested that high false positive rates may not be critical
for intervention applications because having fewer missed events
is favorable to high precision because of the risk of falls with FOG.

Finally, Prateek et al. (53) developed a method using
an IMU strapped to the heel region of the foot based on
clinical observations that FOG patterns include trembling in the
lower extremities and no movement of the limbs and trunk.
Individuals with PD were tested while performing five gait tasks
designed to trigger FOG (53). The first part of the algorithm
filtered out events that were not considered zero-velocity event
intervals (ZVEI) or trembling event intervals (TREI) using
the accelerometer signal. The second part of the algorithm
distinguished ZVEI from TREI using the gyroscope signal.
Lastly, they used a point-process filtering module to compute
the probability of FOG (pFOG) for the TREI events using
information about the speed of the foot from the foot-mounted
IMU (53). They compared their algorithm to a previous method
and showed either an improvement or equivalent performance
in detecting different types of FOG using a participant-specific
tunable parameter. Use of a fixed value based on the average
across all FOG participants showed better accuracy than the
previously established FImethod and amore than 3-fold decrease
in false positives (53).

DISCUSSION

Monitoring of motor symptoms during activities of daily living
(ADLs) in a home setting requires a system that is easily
donned and doffed, unobtrusive and unrestrictive, contains
as few separate sensor units as possible, allows for remote
access to the data and can be updated and managed remotely
allowing for a low-level of technical expertise by the end
user. For individuals with PD, in-home monitors must also
be designed to address motor symptoms specific to this
population. In this review, sensors for measuring the presence,
amplitude, duration, and intensity of each of the primary
motor symptoms identified for individuals with PD has been
examined and individual sensors or combination of sensors
and processing algorithm(s) have been identified as more and
less sensitive and specific. However, no single study was able
to capture all the motor disturbances common in PD utilizing
a sensor array. Future research should work toward a sensor
system that will allow for remote clinical management of an
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individual’s PD symptoms, progression, and possible disease
related complications such as medication fluctuations and motor
freezing.

The selection of an ideal sensor or sensor system for
quantification of ADLs and IADLs is complex. For example,
just the question of optimal anatomical location and number of
sensors presents a unique challenge in a population of individuals
with heterogeneous symptom presentation, unilateral motor
symptom onset and motor fluctuations. The reviewed studies
indicate that, depending on the specific motor symptom that
is being assessed, sensor placement can vary significantly. For
example, individuals with PD may only have a tremor present
on one side of the body, thus necessitating a sensor on the
tremor-dominated limb. However, brady- and hypokinesia are
best detected in the limb that is actively involved in the given
ADL task and dyskinesias detection is best done with sensors
attached to regions of the body not utilized during the task.
Finally, freezing of gait (FOG) is best detected with sensors on the
dominant leg. These conflicting and confounding factors increase
the difficulty in finding or developing a sensor array that can
optimally address all relevantmotor symptoms in a fashion useful
for field-based data collection.

One means of maximizing the usefulness of the collected
data from any one sensor or group of sensors is to process the
data using adaptive algorithms that address the complexity and
improve the accuracy of symptom detection. Neural networks
or dynamic neural networks allow for processing of the data
within the context of either prior collected data or data from
the individuals themselves. A dynamic neural network is a more
complex processing technique that could be used to improve
the performance of a system with fewer sensors by capturing
non-linear and complex relationships between features. Dynamic
neural networks “learn” as the data are collected and therefore
become more accurate and informative as the study progresses.
Based on the reviewed papers, DNNs appear to provide
optimized accuracy across tremor, bradykinesia, hypokinesia,
and dyskinesia. DNNs showed superior performance in detection
of tremor and dyskinesia as compared to DSVMs and HMMs
(22) and NNs showed superior performance in detection of
bradykinesia/hypokinesia vs. no bradykinesia/hypokinesia and
dyskinesia vs. no dyskinesia as compared to classification trees
(34). DNNs were also able to be trained in detection and
assessment of freezing of gait (48).

An important consideration in the selection of both sensors
and adaptive algorithms is the identification of false positive
signals. Two studies brought up seemingly contradictory ideas
about risk management in selecting the thresholds for FOG
detection. One argued that false positive detections should be
carefully avoided because these could influence patient care
(48); whereas the other argued that false positives were largely
acceptable because they lower the false negative rate and
therefore improve the performance of a real-time intervention
(50). These ideas are both valid, and the discrepancy lies in
the context. The main risk of allowing false positives is in the
diagnosis phase: individuals might be mistakenly classified as
having FOG when they do not truly have FOG or having FOG
of greater severity than they truly have. This mistake would

lead to severe errors in healthcare such as treatment when
none is needed or more aggressive treatment than needed. The
main benefit of allowing false positives (or more precisely, of
minimizing false negatives) is in the intervention phase: an
individual experiencing FOG might be left “frozen” if the FOG
is not detected (a false negative), yielding poor performance of
the intervention. But applying an intervention when no FOG
occurs is likely to be no worse than a mild annoyance. These
examples illustrate the importance of considering the reasons
for a detector and consequences of each type of failure when
determining thresholds for any symptom detection. Use and
optimization of DNNs would allow for clinicians to consider the
use of the monitoring system and “train” the algorithms in the
appropriate manner.

Determination of the optimal sensor type was largely based on
the type of symptom being evaluated. However, accelerometers
appear to be successful in the detection of tremor (29),
bradykinesia/hypokinesia (33, 34, 36), dyskinesia (34, 38–41),
motor complications (42, 44), and freezing of gait (45, 47, 52).
The use of IMUs improved the detection accuracy for freezing
of gait (19, 51, 53). Unfortunately, the optimal placement of the
specific sensors varied greatly based upon the motor symptom
being detected. It is also worth noting that in all cases the location
of the sensor must allow for free and untethered use of the limb
during the performance of ADL/IADL tasks.

Most tremor detection and quantification systems used
accelerometer frequency features sensitive to the characteristics
of resting tremor. Using just accelerometers, sensitivity above
80% and specificity above 90% was found (29). Combining
accelerometer features with SEMG features and the use of neural
networks increased sensitivity (30, 31). However, SEMG sensors
are not ideal for long-term monitoring of symptoms at home.
For best results, the electrode needs to be precisely placed over
the muscle being measured, which individuals with PD may not
be able to do on their own and the electrode may lose electrical
contact throughout the course of the day. Future studies should
consider the use of IMUs, which combine accelerometers and
gyroscopes, for detecting tremor. This technique has been used
repeatedly in laboratory-based studies with an eye toward in-
home use (54, 55). It is likely that a small tremor detection
system utilizing only accelerometers and/or gyroscopes could
be implemented on the wrists, possibly in the form of a smart
watch, and achieve excellent results using neural networks during
unscripted and unconstrained activities in the home.

The most successful detection of bradykinesia and
hypokinesia used accelerometers coupled with machine learning
techniques to analyze the data. Studies that used threshold-based
methods showed only modest correlations with UPDRS scores
for bradykinesia (32, 33). Using neural networks or support
vector regression models, the presence of bradykinesia was
detected at rates above 88%, with the best results from neural
networks (34, 36). Bradykinesia during gait can be detected using
a single tri-axial accelerometer on the waist (36); however, during
ADLs best results were found using sensors attached to body
parts involved in the task (33). This dichotomy is unfortunate
because it suggests bradykinesia may require multiple sensors;
this inconvenience may severely limit its utility in practice. New
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approaches may be needed to retain high classification accuracy
while minimizing the number of sensors required. Hypokinesia
was best classified using metrics such as immobility periods
(33) and low activity measures (32). Therefore, the promising
single-sensor methods that utilize gait measurements would
likely not be useful for hypokinesia, and sensors attached to body
parts involved in the tasks being performed throughout the day
may be needed.

Detecting dyskinesia during ADLs is particularly challenging
because voluntary movement occurs in the same frequency
band as dyskinetic movement. It appears that dyskinesia is best
detected using sensors attached to body parts not involved in
the task. The best results were found using accelerometers in
multiple locations (both upper arms, both upper legs, sternum,
and wrist of more affected side) and neural networks to
analyze the data (40). Again, these multiple sensor locations
are problematic for in-home monitoring of symptoms, though
for short-term assessments they may be practical. Fortunately,
similar results were also found using neural networks with a
single sensor (tri-axial accelerometer and SEMG) on the wrist
(31). The comparison suggests that machine learning algorithms
capable of exploiting more features from fewer signals may
be a critical enabler for balancing classification accuracy with
user convenience. Such algorithms may be able to improve the
generality of the promising gait-focused results found with a
single waist-mounted tri-axial accelerometer (41). Perhaps there
are features that could identify dyskinesia while the patient is at
rest, or perhaps a middle ground of waist and wrist sensors could
combine for that purpose. Wrist and waist sensors are thought to
be the most acceptable sensor locations for the elderly.

Wearable sensors could be very useful in the detection of PD
related presentations such as motor fluctuations and “on”/“off”
states. To accomplish detection related goals in heterogeneous
populations such as those with PD, most detection algorithms
need to use an individual-specific detection threshold for each
patient. This type of detection-related analysis is contingent
upon training and calibrating the system to each individual and
each sensor, which is a major practical challenge to any clinical
deployment of this approach. The use of accelerometers on the
sternum, wrist, and leg to compare bradykinesia, hypokinesia,
and tremor symptoms did not lead to effective discrimination
of “on” and “off” states (37). Promising results were found
during walking using a waist-mounted tri-axial accelerometer
(“off” vs. “on” with >90% sensitivity and specificity) (42, 44),
but the gait-specific nature of the approach leads to limited
applicability. To date, no sensor array has been able to detect
and track on-off motor fluctuations in individuals with PD to
a clinically meaningful extent. This failure may be due to the
extreme heterogeneity of symptom presentation of individuals
with PD, or perhaps the optimal configuration of sensors and
algorithms has not yet been found.

Detecting FOG has proven difficult using only accelerometer
frequency content because FOG episodes look very similar to
standing still. Additionally, FOG is a symptom of PD that is not
readily reproducible in the laboratory setting and often not fully
understood by the individual experiencing the symptom. The
standard method has been to place accelerometers on the ankles

and to detect FOG based on a freeze index threshold (45, 46)
plus a power threshold based on signal power in freeze and
locomotor bands (47). However, the best results were found using
individual thresholds, and individualized calibration is not ideal
for wide use of a device as the measurement and implementation
of participant specific algorithms is time intensive and not
readily implementable in the clinical setting. Using a waist-
worn accelerometer and a support vector machine algorithm,
better detection accuracy was found compared to the frequency
threshold methods, however this result was also found using
patient-specific algorithms (52). Using more sensors such as a
hybrid accelerometer and SEMG on the shin (48), or multiple
accelerometer sensor locations (legs, wrists, chest, and waist) with
machine learning algorithms (19) did not greatly improve upon
results using sensors only on the ankles. The wrist location was
especially investigated as an alternative to the ankle location, due
to greater acceptance of a wrist sensor by the elderly, and using
machine learning techniques they found an acceptable hit rate
and specificity, but again by using individual parameters (50).
Another recent development has been the use of temporal gait
parameters to detect FOG (49). One study using a prototype
device with IMUs on the ankles and back of the neck to track the
transitions in the gait cycle showed that stride length decreased
and cadence increased at the onset of FOG, suggesting feasibility
of their method (49). Using this same principle, a complementary
index freezing of gait criterion (FOGC) was created, based on
continuous measurements of stride length and cadence from an
IMU on the shank (51). This method performed better than
the standard FI frequency method in detecting FOG events.
Another recent paper used clinical observations of heel trembling
and no forward movement to detect FOG based on trembling
events detected using heel mounted IMU signals combined with
information about the speed of the foot (53). They also observed
better performance than the standard FImethod both in accuracy
detecting FOG events and lower false positive rates (53). Perhaps
even better results could be found by combining frequency and
gait parameters in machine learning algorithms.

Moving In-home Monitoring Forward
The ability of wearable sensors to detect symptoms for both
patient assessment and real-time intervention is a promising
result to build on. However, this review also highlighted some
limitations of previous studies on wearable sensor systems in
PD. The number of sensors used for the best results (such
as sensors on the arms, legs, sternum, and wrist to detect
dyskinesias (40) would not be acceptable for long-term use in
a home setting. In addition, for symptoms such as dyskinesia,
“on”/“off” fluctuations, and freezing-of-gait, clinically significant
results have only been shown using individual-specific detection
thresholds, which are a serious barrier to practical deployment.
The need for substantial training sets is a known limitation
for machine learning algorithms, which is only exacerbated in
this context by the need for the trainers to be expert clinicians.
This cost might be acceptable if a concerted one-time effort
could develop a comprehensive training data set, but such effort
would be futile if the algorithms still require individual-specific
parameters that require training for each specific patient during
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specific ADL/IADL task performance. Finally, this literature
review shows that more work is needed to validate the systems
during unscripted and unconstrained activities of daily living
in the home rather than in laboratory settings. Only 12 of the
27 studies reviewed were done in a home or apartment-like
setting, despite that being the ideal setting to observe ADLs and
FOG. It is more challenging to perform home studies because
they require video annotation or observation by a clinician to
establish a standard assessment, but this is the only setting in
which the systems can be truly tested. Future implementation of
this type of sensor would require substantial input and buy-in
from clinicians who could perform in-home ADL/IADL testing
such as occupational therapists.

Unscripted movements performed in an uncontrolled
environment by individuals whose symptoms often vary
from hour-to-hour and day-to-day presents a challenge for
verifying test-retest reliability and validity of different assessment
tools. Both behavioral and symptom-related variations in
task performance can affect the data, potentially obscuring
objectively favorable psychometric properties. However,
in-home testing has much higher face validity than highly
structured and standardized laboratory testing, so the goal
of demonstrating reliability is a worthy one. To establish
concurrent validity, several of the reviewed papers compared
the measured movement characteristics with observations
from trained clinical raters based on either video annotation
(19, 22, 29–32, 34–36, 38–43, 45–48, 50–52) or clinical scales
like UPDRS (29, 30, 32, 33, 35, 36) or m-AIMS (30, 38–40, 43).
Overall, these tests showed good correlation between objective
measurements and clinical scores, especially when usingmachine
learning algorithms. However, it was also brought up that poor
correlation does not necessarily mean poor validity when
comparing objective and subjective measurements because the
sensors could be more sensitive to small changes in disease
state than a clinician, and the movements performed during
clinical exams are different from the movements performed
during daily activities. As an alternative approach, several
studies compared the measured movement characteristics
with subjective self-assessment by the individuals (37, 44),
but this approach is problematic because individuals are not
always aware of their symptoms and do not record their
state often enough for quantitative reporting. In addition,
FOG presents a special challenge because FOG scoring is
not standardized and experts show only moderate reliability
(both individually and as a group) in identifying the number
of FOG events in a given observation period (45). However,
the percent of time “frozen” has shown to be a much more
reliable measure; thus, the most reasonable standard at present
may be based on this metric, perhaps using two or more
observers who score the same videos (45). Future research
should focus on identifying clear criteria for FOG onset and
offset.

Test-retest reliability presents an even greater challenge. This
is a crucial property if wearable assessments are to be used
in ecologically valid environments. Yet, few of the studies
reviewed provided any analysis of test-retest reliability. Most
monitored motor symptoms during loosely-defined scripted

activities and offered little or no repeat testing of individual
participants. Many used a reasonable leave-one-out bootstrap
validation of their machine-learning algorithms, and many
reported performance using a conservative, non-subject-specific
training set. However, these precautions do not guarantee
the algorithms will perform as well in real life, especially
since most were trained only during specific tasks. The only
study to provide test-retest reliability data was Hoff et al.
(38), which showed high reproducibility for the correlation
of frequency characteristics in 1–4Hz and 4–8Hz bands with
m-AIMS score while sitting in a chair and abstaining from
voluntary movement (38). Though challenging, future studies
should consider performing test-retest comparisons and other
reliability characterization during both scripted and unscripted
activities, to ensure confidence in their results and applicability
in everyday scenarios. One of the ultimate goals of home-based
monitoring must be to define the minimal set of sensors that
can detect and describe the severity of all the common motor
symptoms of PD. The sensors should be as unobtrusive as
possible; approaches such as attaching them to watches and
belts that patients already wear should be an ongoing focus.
Since FOG occurs in the legs, best practices for attaching
sensors to the legs should be explored, with feedback from
patients. Approaches that require surface electromyography
require special attention due to the need for reproducible
electrode placement in a home setting by untrained personnel.
These issues of patient burden are of paramount importance if
long-term monitoring is to impact assessment and intervention
in PD. Development of algorithms that accomplish significant
degrees of self-training (such as DNNs) or that are successful
without individualized parameters would also be a critical step
forward.

Moving forward, IMUs appear to be the best technology
to monitor individuals with PD. They can be manufactured
at low cost and microcontrollers today are readily available
that can handle the increased computational load compared to
gyroscopes or accelerometers alone. The synchronized measure
of linear acceleration and angular velocity to provide a stable
estimate of sensor orientation as well as both linear and angular
motion information seems to be especially advantageous in
detecting complicated motor symptoms such as dyskinesias
and FOG.

CONCLUSIONS

Wearable movement and muscle activity sensors combined
with machine learning algorithms have the ability to classify
symptoms of PD during performance of ADLs and IADLs with
clinically valuable levels of sensitivity and specificity. Different
systems and algorithms can achieve the complementary goals
of patient classification (for assessment) and real-time symptom
detection (for intervention). However, the number and layout
of sensors and the need to tune individual-specific detection
thresholds currently limit the practical utility of these systems.
Furthermore, different symptoms currently demand different
sensors. Future research should focus on identifying a minimal

Frontiers in Neurology | www.frontiersin.org 16 December 2018 | Volume 9 | Article 1036

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Thorp et al. Monitoring PD During ADLs

set of wearables suitable for detecting a range of symptoms,
on algorithms that are robust to individual variations, and on
validation of the resulting systems in real home settings. IMU
sensors and neural network algorithms appear to be the most
promising tools moving forward.
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