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Early features of Parkinson’s disease (PD) include both motor and cognitive changes,

suggesting shared common pathways. A common motor dysfunction is postural

instability, a known predictor of falls, which have a major impact on quality of life.

Understanding mechanisms of postural dynamics in PD and specifically how they relate

to cognitive changes is essential for developing effective interventions. The aims of

this study were to examine the changes that occur in postural metrics over time and

explore the relationship between postural and cognitive dysfunction. The study group

consisted of 35 people (66 ± 8years, 12 female, UPDRS III: 22.5 ± 9.6) diagnosed

with PD who were recruited as part of the Incidence of Cognitive Impairment in Cohorts

with Longitudinal Evaluation—PD Gait (ICICLE-GAIT) study. Postural and cognitive

assessments were performed at 18, 36, and 54 months after enrolment. Participants

stood still for 120 s, eyes open and arms by their side. Postural dynamics were measured

using metrics derived from a single tri-axial accelerometer (Axivity AX3, York, UK) on

the lower back. Accelerometry metrics included jerk (derivative of acceleration), root

mean square, frequency, and ellipsis (acceleration area). Cognition was evaluated by

neuropsychological tests including the Montreal Cognitive Assessment (MoCA) and digit

span. There was a significant decrease in accelerometry parameters, greater in the

anteroposterior direction, and a decline in cognitive function over time. Accelerometry

metrics were positively correlated with lower cognitive function and increased geriatric

depression score and negatively associated with a qualitative measure of balance

confidence. In conclusion, people with PD showed reduced postural dynamics that may

represent a postural safety strategy. Associations with cognitive function and depression,

both symptoms that may pre-empt motor symptoms, suggest shared neural pathways.

Further studies, involving neuroimaging, may determine how these postural parameters

relate to underlying neural and clinical correlates.
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INTRODUCTION

Parkinson’s disease (PD) is a common progressive

neurodegenerative disease with a UK incidence of 84 per
100,000 in adults over 50 years (1). Clinical characterizations

include both motor and non-motor manifestations, indicative of

a multisystem neurodegenerative disease (2). Common motor
symptoms include resting tremor, bradykinesia, rigidity, and
postural instability (3). Postural instability is clinically important
as it is a predictor of falls, which impact on quality of life (4).
Falls may result in injury, leading to possible loss of functional
independence, institutionalization and a poor quality of life
(5, 6). Previous studies indicate that 38–68% of people with PD
are subject to falls, 25% of which have two or more falls every 6
months (7–10).

Postural instability is classically defined as the inability to
maintain the center of mass within its base of support. Clinically,
the retropulsion (pull) test is applied to assess postural instability
(11). Postural sway is an indicator of postural instability and a
measure of the sensorimotor control loop that regulates standing
balance (12). Postural sway is greater in fallers than non-fallers,
therefore is an important clinical marker (13). The traditional
method of recording postural sway involves tracking the center
of pressure using a force platform (14). More recently, body-
worn sensors (e.g., accelerometers, gyroscopes, magnetometers,
insole pressure sensors) have been developed which permit
measurements to be made outside a laboratory setting (12).
Strong correlations have been found between accelerometer
parameters (postural dynamics) and force-platform derived
center of pressure data, thereby validating the accelerometer as
a method for assessing postural sway (15, 16). Accelerometry
metrics during the first 30 s of standing have been reported to be
discriminative of PD (17).

Mild cognitive impairment (MCI) is a non-motor feature
present in over 20% of patients at initial diagnosis (18). Cognitive
function deteriorates with disease progression, with a >2-fold
increase in MCI reported over 3 years (19). Cognitive decline
in PD is associated with dysfunction of both dopaminergic
and cholinergic pathways as well as increased Lewy bodies and
possible vascular pathology (20, 21). Performing a cognitive task
while standing has been reported to increase postural parameters
and by implication, postural instability in people with PD (22–
24) compared to healthy older adults. This suggests a “posture
second” prioritization, associated with decreased attentional
resources available. With cognitive decline, one might anticipate
increased postural instability and correlation between cognitive
function and postural parameters. Studies have reported a
relationship between cognitive changes and postural instability
(25, 26) in addition to an association with fall risk (27, 28). This
may reflect common shared pathways or adverse events affecting
multiple networks. Another common non-motor symptom in
PD is depression which has been observed in, on average, 40%
of people with PD (29). In PD, Lewy bodies have been found in
many subcortical nuclei including the locus coeruleus (30). The
locus coeruleus is associated with arousal and also muscle tone
critical for postural stability. Patients with depression have been
reported to have greater changes in the locus coeruleus compared

to non-depressed patients (31). Several studies have reported
an association between depression and postural instability (32,
33). Changes in the locus coeruleus and noradrenergic system
may partly account for the association between posture and
depression. In PD, motor and non-motor features do not exist as
separate entities, but rather display interactions, which warrant
further investigation.

Information regarding the time-course of postural sway
in people with PD is limited as few longitudinal postural
studies have been undertaken. Understanding the progression
of postural sway may improve our understanding of underlying
mechanisms. Exploring the relationship between postural
dynamics and cognitive function will inform us of the interaction
between the motor and non-motor systems and the effect
of diminishing attentional resources on postural stability.
Examining the association between depression and postural
instability may illuminate the effect of shared pathways on
these motor and non-motor features. Clinically, understanding
mechanisms underlying postural instability is important given
the impact postural control has on falls, gait, and mobility.
The main aim of this longitudinal study was to explore how
postural dynamics change during quiet standing in people with
PD over 36 months. Postural dynamics were determined from
accelerometer recordings over the course of a 120 s standing
balance test. The hypothesis was that measures of postural
dynamics would increase over the 36 months period, indicating
increased postural instability. A further hypothesis was that the
greatest change in parameters would occur during the first 30 s
of the postural task. The second aim was to investigate the
relationship between postural instability and global cognition
and depression. The hypothesis was that there would be a
significant relationship between motor and non-motor features.

METHODS

Participants and Clinical Assessments
The study group consisted of 35 people recruited from the
Incidence of Cognitive Impairment in Cohorts with Longitudinal
Evaluation—Parkinson’s disease Gait study (ICICLE-PD GAIT)
study (34). The participants underwent a baseline assessment,
followed by cognitive and postural assessments at 18, 36,
and 54 months. Not all participants underwent a baseline
postural assessment; therefore, this study does not include
baseline measurements. Participants were assessed at the Clinical
Aging Research Unit, Newcastle University. The study was
approved by the Newcastle and North Tyneside research ethics
committee and conducted according to the declaration of
Helsinki. All participants signed an informed consent form prior
to testing.

The exclusion criteria included any neurological (other
than PD), orthopedic or cardiothoracic condition that may
adversely have affected the participant’s gait or safety. Additional
exclusion factors included cognitive impairment (Mini Mental
State Exam (MMSE) ≤24) and difficulties comprehending
English. Parkinson’s disease was diagnosed according to the UK
Parkinson’s Brain Bank criteria (35).
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At each assessment, demographic, clinical, and cognitive
information were collected. The Hoehn and Yahr scale was used
to measure the motor symptom severity in PD participants
(36). The Movement Disorder Society Unified Parkinson’s
Disease Rating Scale (MDS—UPDRS) Part III (37) assessed
motor function in PD (0-no motor symptoms, 132-severe
motor symptoms). Balance confidence was assessed using
the Activities Balance Self Confidence Scale (ABC), with a
score of 0 indicating no confidence and a score of 100
indicating complete confidence in balance when performing
various activities (38). Cognitive tests included the Montreal
Cognitive Assessment (MoCA) (39) for global cognition
(score range 0–30) with a score of 26–30 indicating normal
cognitive function and <26 suggesting cognitive impairment.
The Wechsler Forward Digit Span tested working memory
(40), the average number of digits a healthy adult can recall
being 7 ± 2 (41). The short Geriatric Depression Scale
(GDS) (42) was used as a measure of depressive symptoms
(score range 0–15). A score of 0–4 is considered normal, 5–8
indicates mild depression and a score of 12–15 indicates severe
depression.

Standing Balance Test
The standing balance test was carried out an hour after
medication intake. Participants stood in an upright position
with their feet positioned within a predefined area (400mm
wide × 600mm long), with their hands by their side (43) and
looking straight ahead for 120 s. There were no foot placement
restrictions and the participants wore their shoes during the test.
The recording began 3 s after the participant had understood the
instructions of the tests.

Equipment
A tri-axial accelerometer-based monitor (Axivity AX3, York,
UK) on the lower back (L5) recorded acceleration at a sampling
rate of 100Hz (17). The accuracy of the accelerometer clock was
±20 parts per million, the resolution was 0.976mg, the weight
of the accelerometer was 9 g with dimensions of 6.0 × 21.5 ×

31.5mm. The Axivity AX3 accelerometer has been validated for
recording high resolution movement (44). The accelerometer
was attached to the skin with a hydrogel adhesive and Hypafix
bandage.

Data Processing
The data processing and analysis have previously been described
by Del Din et al. (17). In summary, the data were downloaded
to a computer and analyzed by customized MATLAB (R2015a,
Mathworks, Natick, MA, USA.) algorithms. Analyses included
rotation of the data into anteroposterior (AP), mediolateral (ML),
and vertical accelerations using the Moe-Nilssen transformation
(45). The following features were then extracted:

a) Jerk (m2.s−5): the rate of change of acceleration (46).
Jerk was calculated for AP and ML and combined axes.

b) Root mean square [RMS (m.s−2)]: a measure of amplitude
(46).
RMS was calculated for AP and ML and combined axes.

c) Frequency (Hz): 95% of power of the acceleration power
spectrum below frequency.
Frequency was estimated for AP and ML axes (46).

d) Ellipsis (m2.s−4): the area comprising 95% of the AP and ML
acceleration trajectories (14).

The four features were selected based on previous studies
by Mancini et al. (16) who showed these to be sensitive to
disease progression and disease discrimination. Additionally,
these features can discriminate between different postural tasks
in healthy older adults (47).

All accelerometer features were then determined for the
following three phases of standing; the first 30 s, the first 60 s and
the entire 120 s.

Statistical Analysis
The data were analyzed using SPSS software (v21; IBM, Chicago,
IL, USA). Outliers >2 standard deviations from the mean
were removed from the datasets. Linear mixed-effects models
were applied to determine the main effects of time-points (18,
36, 54 months), axes (AP, ML, combined) and phase (30, 60,
120 s) and their interaction effects on accelerometry parameters
(p < 0.05). The RANDOM subcommand was used to model
the covariance between the three axes and between the three
phases. Sidak corrections for multiple comparisons were applied.
The Friedmann test was applied to non-parametric Levodopa
equivalent daily dose (LEDD), Hoehn and Yahr, MDS-UPDRS
III, ABC, MoCA, digit span and GDS scores. The Wilcoxon
signed-rank test compared different time-points. Spearman’s
rank correlation was used to examine cross-sectional associations
between postural parameters and the ABC, MoCA, and
GDS scores. Pearson’s product-moment correlation coefficient
determined associations between changes in postural parameters
and cognitive parameters between time-points. Themagnitude of
effect of the correlation coefficients was defined by the following:
r < 0.10: negligible; 0.10 ≤ r < 0.30: weak; 0.30 ≤ r < 0.50:
moderate; r ≥ 0.50: strong (48).

RESULTS

Demographic and Clinical Data
Table 1 lists demographic and clinical information at baseline,
18, 36, and 54 months. There was a greater number of males
in the cohort. Although, all participants satisfied the inclusion
criterion of MMSE>24, the MoCA at Baseline ranged from 20
to 30 with 10 participants having MoCA scores ≤24. There was
a significant effect of time for LEDD, Hoehn, and Yahr stage
and MDS-UPDRS III [X2

(3)
= 78.0, p < 0.001; X2

(3)
= 18.1, p <

0.001; X2
(3)

= 41.0, p< 0.001, respectively]. H&Ywas significantly

greater at 18 months compared to baseline (Z = −2.5,
p = 0.012). LEDD increased significantly between successive
time-points (baseline to 18 months, Z = −5.1, p < 0.001; 18–
36 months, Z = −4.8, p < 0.001; 36–54 months, Z = −3.4,
p = 0.001). The MDS-UPDRS III score was significantly greater
at baseline compared to 18 months (Z = −4.7, p < 0.001), 36
months compared to 18 months (Z = −4.0, p < 0.001) and 54
months compared to baseline (Z = −4.8, p < 0.001). There was
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TABLE 1 | Demographic, cognitive, and clinical characteristics of participants at Baseline, 18, 36, and 54 months.

PARAMETER Baseline 18 months 36 months 54 months

Age (years)* 65.86 ± 8.27 67.42 ± 8.15 68.86 ± 8.16 70.40 ± 8.18

Sex (Male, Female) 23, 12 23, 12 23, 12 23, 12

Body Mass Index (kgm−2) 27.20 ± 3.87 27.41 ± 4.29 27.35 ± 4.49 27.04 ± 4.90

PD duration (years)* 0.45 ± 0.33 2.01 ± 0.35 3.45 ± 0.40 4.99 ± 0.52

LEDD* 142.8 ± 113.1 337.6 ± 202.5 438.2 ± 227.0 631.5 ± 251.2

Hoehn and Yahr stage* 1.71 ± 0.52 2.00 ± 0.48 2.03 ± 0.17 2.14 ± 0.35

UPDRS III* 22.46 ± 9.61 28.80 ± 7.15 35.97 ± 10.12 37.11 ± 10.99

ABC 87.72 ± 13.72 85.35 ± 15.66 82.82 ± 19.87 80.87 ± 20.38

MoCA* 26.23 ± 2.65 26.89 ± 2.80 26.77 ± 3.25 25.54 ± 3.56

Digit span 6.09 ± 1.20 6.00 ± 1.19 6.17 ± 1.16 5.89 ± 0.95

GDS 2.71 ± 2.47 2.23 ± 2.70 2.63 ± 2.55 3.11 ± 2.25

PD, Parkinson’s Disease; LEDD, Levodopa Equivalent Daily Dose; UPDRS III, Unified Parkinson’s Disease Rating Scale Section III; MoCA, Montreal Cognitive Assessment; Digit, Wechsler

Forward Digit Span; ABC, Activities Balance Self Confidence Scale; GDS, Geriatric Depression Scale.

*significant time effect (p < 0.05).

a significant time effect for MoCA [X2
(3)

= 9.9; p = 0.02], with

the score decreasing from 18 to 54 months (Z =−2.5, p= 0.013)
and from 36 to 54 months (Z =−2.9, p= 0.004).

Accelerometer Metrics
Outliers

The metrics of Jerk, RMS, frequency, and ellipsis were analyzed
for outliers using the threshold of two standard deviations above
or below the mean. Data from these outliers were considered
removed from further analysis. Jerk and frequency had the
greatest number of outliers across axes, phases, and time-points
(1.9%) compared to RMS (1.5%) and ellipsis (1.2%).

Postural Dynamics
a) Axis

The axis had a significant effect on jerk, RMS and frequency
(Table 2). Jerk and RMS were greater in the AP direction
compared to the ML direction (jerk p = 0.001, effect
size = 0.87, power = 65.9%; RMS p < 0.001, effect
size = 2.58, power = 100%) (Figure 1). Frequency was
however greater in the ML direction (p < 0.001, effect
size= 2.60, power= 100%).

b) Time
There was a significant effect of time for ellipsis, which
decreased from 18 to 54 months (p= 0.033, effect size= 0.27,
power= 45.3%) (Table 2) (Figure 1).

Interaction Effect of Phase and Time

The interaction effect of postural phase and time was significant
for RMS and ellipsis (Table 2). Pairwise comparisons showed
the RMS and ellipsis parameters for the initial 30 s to be
significantly lower at 36 months (RMS p = 0.005, effect
size = 0.52, power = 63.4%; ellipsis p = 0.032, effect size = 0.44,
power = 47.7%) and 54 months (RMS p = 0.001,effect
size = 0.52, power = 77.7%; ellipsis p = 0.001, effect size = 0.57,
power = 75.6%) compared to 18 months. Additionally, for the

TABLE 2 | Mixed linear model results for single and interaction effects of time (18,

36, and 54 months), axis (combined, mediolateral, anteroposterior) and phase (30,

60, 120 s) on gait accelerometry parameters.

Jerk RMS Frequency Ellipsis

Time NS NS NS F (2, 35) = 3.7,

p = 0.034

Axis F (2, 22) = 107.3,

p < 0.001

F (2, 57) = 286.9,

p < 0.001

F (1, 34) = 223.8,

p < 0.001

NA

Phase F(2, 65) =133.9,

p < 0.001

NS NS NS

Axis×time NS F (4, 591) = 8.6,

p < 0.001

NS NA

Phase×time NS F (4, 590) = 13.5,

p < 0.001

NS F (4, 141) = 10.00,

p < 0.001

Axis×phase×

time

F (12, 588) = 15.6,

p < 0.001

F (12, 602) =2.1,

p = 0.014

NS NA

Only findings with p < 0.05 are listed. RMS, Root Mean Square; NS, Not Significant; NA,

Not Applicable.

initial 60 s there was a decrease from 18 to 54 months for ellipsis
(p= 0.023, effect size= 0.41, power= 47.8%) (Figure 1).

Interaction Effect of Axis and Time

There was a significant interaction effect between axis and
time for RMS (Table 2). Pairwise comparisons for the RMS
parameter showed that, in the combined direction, 18 months
was significantly >36 months (p < 0.037, effect size = 0.41,
power = 44.1%) and 54 months (p = 0.017, effect size = 0.41,
power = 49.4%). Along the AP axis, RMS was greater at 18
months compared to 36 months (p = 0.022, effect size = 0.43,
power= 49.6%).

Interaction Effect of Axis, Phase, and Time

The interaction effect of axis, phase, and time was significant
for jerk and RMS (Table 2). The 120 s combined jerk parameter
was greater at 36 months compared to 18 months (p = 0.036
effect size = 0.24, power = 43.4%) and 36 months compared
to 54 months (p = 0.045 effect size = 0.22, power = 41.1%)
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FIGURE 1 | Changes in jerk (A–C), RMS (D–F), frequency (G,H), and ellipsis (I) at 18, 36, and 54 months. Thirty seconds postural phase; 60 s postural phase; 120 s

postural phase. AP, anteroposterior axis; ML, mediolateral axis; a-l—significant difference (p < 0.05) between two timepoints.

(Figure 1A). The RMS parameters along the combined axis
decreased significantly from 18 to 36 months for 30 s (p = 0.002
effect size = 0.44, power = 70.2%) and 60 s (p = 0.022
effect size = 0.35, power = 48.0%) (Figure 1D). These RMS
parameters also decreased from 18 to 54 months (30 s p <

0.001 effect size = 0.46, power = 83.9%, 60 s p = 0.018 effect
size = 0.32, power = 50.0%). Additionally, along the AP axis,
the 30 s RMS decreased from 18 to 36 months (p < 0.001 effect
size = 0.56, power = 86.9%) and 54 months (p < 0.001 effect
size= 0.53, power= 89.6%) (Figure 1E). However, for 60 s RMS
increased from 36 to 54 months (p = 0.011 effect size = 0.19,
power= 51.2%) (Figure 1E).

Association Between Postural Dynamics
and Balance Confidence, Cognitive
Function and Depression Measures
Table 3 lists cross-sectional correlations between postural
measures of jerk, RMS, and ellipsis in the AP direction and
ABC, MOCA, and GDS scores at 36 and 54 months. Few
correlations were observed for frequency. No relationship was
found at 18 months and only few associations for the first 30 and
60 s of standing. No correlations were present between postural
measures and the digit span scores.

a) Jerk
At 36 months, moderate negative correlations were found for
jerk with ABC, MoCA, and a weak positive correlation with

GDS. At 54months, there was amoderate correlation between
jerk and ABC and a weak negative correlation with MoCA.

b) RMS
At 36 months, a moderate negative correlation was observed
with ABC, a weak negative correlation between RMS and
MoCA andmoderate positive correlation with GDS. RMSwas
moderately negatively correlated with ABC at 54 months and
weakly correlated with GDS.

c) Ellipsis
Moderate negative correlations between ellipsis and ABC
at 36 and 54 months were found. There was a positive
correlation between ellipsis and GDS at 36 months.

Correlation Between Change in Postural
Dynamics and Change in Balance
Confidence, Cognitive Function, and
Depression Measures
Correlations between changes in postural parameters for 120 s
in the combined direction and ABC, MoCA, and GDS scores
are presented in Table 4 and Figure 2. There were no significant
correlations from 18 to 36 months between postural parameters
and the ABC, MoCA, and GDS scores. The decline in jerk
from 36 to 54 months showed a moderate negative correlation
with the change in MoCA (Figure 3A) and a moderate positive
correlation with change in GDS scale (Figure 3B).
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DISCUSSION

In this longitudinal study, we aimed to investigate how postural
dynamics change during quiet standing in people with PD
over 36 months. Additionally, we investigated the relationship
between postural dynamics with balance confidence, global
cognition and depression score. We hypothesized that postural
dynamics of jerk, RMS, and ellipsis would increase, suggesting
increased postural instability, with disease progression. However,
our novel findings reported mainly a decline in jerk, RMS,
and ellipsis with disease progression. Although most change
over time for RMS, frequency and ellipsis was observed for
the first 30 s of standing, we found that for jerk, significant
changes were present only for the entire 120 s duration. We
observed significant relationships between postural parameters
with balance confidence, global cognition, and depression score
suggesting shared neural pathways.

The decrease in RMS is in partial agreement with Mancini
et al. (16). Although Mancini et al. (16) reported an increase
over 6–9 months in postural parameters in five individuals
not receiving dopaminergic medication, eight subjects on
dopaminergic medication displayed trends toward decreased
RMS (49). Another study, also reported decreased sway
(measured with platform mounted potentiometer) in eight
patients with moderate PD (Hoehn and Yahr III–IV) on
dopaminergic medication, compared to healthy older adults (50).
Interpretation of changes in postural dynamics in people with PD
involves not only consideration of changes due to progression
of pathology but also concomitant age-related neurodegenerative
changes. Duarte and Sternad (51) reported older adults show
reduced amplitude of postural sway during prolonged standing
compared to younger adults (51). However, in a cross-sectional
study, Park et al. (52) reported increased postural accelerometry
parameters in older adults, apart from frequency and jerk in
the ML direction, which decreased (52). It is unclear to what
extent longitudinal changes in RMS in people with PD are
the consequence of age-related changes rather than due to
progression of PD.

TABLE 3 | Spearman’s correlation coefficient for mean postural parameters of

jerk, RMS, and ellipsis in the AP direction across 120 s with clinical characteristics

at 36 and 54 months.

Jerk RMS Ellipsis

rho (p) rho (p) rho (p)

36 MONTHS

ABC −0.336 (0.024) −0.462 (0.003) −0.434(0.006)

MoCA −0.392 (0.010) −0.291 (0.050) −0.278 (0.058)

GDS 0.287 (0.047) 0.380 (0.015) 0.433 (0.006)

54 MONTHS

ABC −0.441 (0.004) −0.412 (0.009) −0.455 (0.004)

MoCA –0.261(0.065) –0.113 (0.266) –0.197 (0.135)

GDS 0.129 (0.230) 0.233 (0.096) 0.215 (0.115)

ABC, Activities Balance Confidence Scale; MoCA, Montreal Cognitive Assessment; GDS,

Geriatric Depression Scale. Moderate Correlations (0.5<rho>0.3) in bold.

The longitudinal decline in RMS and ellipsis from 18 to
54 months was most prominent for the first 30 s of standing.
Del Din et al. (17) have reported that this period was most
discriminative between people with PD and healthy older adults
(17), suggesting that the initial period requires the greatest
sensorimotor integration to achieve balance and ismost impacted
by PD. Theories to explain postural instability in PD include
changes in intermittent and continuous control systems (53),
impaired proprioception (54), and alteration in awareness of
vertical body position relative to the global axes (55). The
initial standing period may highlight more the intermittent and
continuous control mechanisms needed to adjust the center
of mass position to restore stability. Changes in the body
position awarenessmay have amore prominent effect on postural
dynamics with increasing standing duration. Dysfunction of
sense of body positioning may result in a greater error in return
of center of mass to the position optimal for equilibrium and
necessitate faster adjustments (greater jerk) to achieve stability.
The increase in jerk over 120 s from 18 to 36 months may be
the result of faster corrections due to greater error in positioning
of center of mass. The subsequent decrease in jerk over 120 s
from to 54 months may reflect the complex interaction of disease
progression and dopaminergic treatment on postural control
mechanisms. There was approximately a 2-fold increase in LEDD
from 36 to 54 months compared to 18 to 36 months, which could
account for the decrease in 120 s jerk.

There was a significant effect of direction, with the AP
direction showing greater change than ML, with a decrease in
RMS value from 18 to 54 months. This finding is supported
by a study that reported decreased AP sway during standing
in people with PD compared to controls (50). A recent study
analyzing postural data from a similar cohort of individuals with
PD observed increased regularity of postural dynamics from 18
to 54 months along the AP axis suggesting possible modification
of motor control along this axis (56). The reduction in AP
postural dynamics may result from greater instability in the AP
direction, associated with decreased knee flexion and greater
difficulty initiating ankle dorsiflexion to maintain balance (57).

TABLE 4 | Pearson’s correlation coefficient for change in mean postural dynamic

parameters of 120 s jerk, 30 s RMS, and 30 s ellipsis with change in clinical

characteristics.

Time-points Jerk RMS Ellipsis

r (p) r (p) r (p)

18–36 MONTHS

ABC −0.043 (0.406) 0.145 (0.222) 0.092 (0.308)

MoCA −0.152 (0.192) −0.052 (0.390) −0.018 (0.923)

GDS 0.092 (0.299) −0.140 (0.227) −0.250 (0.080)

36–54 MONTHS

ABC −0.204 (0.120) 0.088 (0.318) −0.064 (0.361)

MoCA –0.422 (0.006) 0.157 (0.200) 0.156 (0.193)

GDS 0.484 (0.005) −0.246 (0.123) −0.172 (0.201)

ABC, Activities Balance confidence Scale; MoCA, Montreal Cognitive Assessment; GDS,

Geriatric Depression Scale. Moderate Correlations (0.5<rho>0.3) in bold.
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FIGURE 2 | Scatter plots showing the correlation at 36 months between postural parameters and cognitive measures for 120 s phase. (A) Mean root mean square

against ABC. (B) Mean jerk against MoCA. (C) Mean ellipsis against GDS. ABC, Activities Balance Self Confidence; MoCA, Montreal Cognitive Assessment; GDS,

Geriatric Depression Scale.

FIGURE 3 | Scatter plots showing the correlation between changes in 120 s jerk from 36 to 54 months and (A) changes in MoCA score from 36 to 54 months; (B)

changes in GDS from 36 to 54 months. MoCA, Montreal Cognitive Assessment; GDS, Geriatric Depression Scale.

Specifically, greater instability has been observed in backward
sway when people had normal foot width (57). Axial stiffness
increases with PD progression and patients frequently develop
a stooped posture (camptocormia) which may also affect AP
trunk dynamics (58). However, camptocormia usually presents
after 7–8 years of diagnosis, so this is not likely to be a major
consideration in our study. The decreased RMS in the AP
direction may represent a compensation strategy to maintain
stability by keeping movements of the trunk within a smaller,
safer range along the AP axis.

We observed negative correlations between postural dynamics
with the ABC scale. Greater confidence in standing and a lower
fear of falling were associated with lower postural parameters.
Reduction in postural dynamics may result from increased lower
limb rigidity. Carpenter et al. (59) have reported co-contraction
of leg muscles with consequential increased ankle stiffness in
people with PD compared to age-matched controls (59). Older
adults have also been observed to have increased muscle co-
activation compared to young adults with the subgroup of fallers
having greater postural sway. Increased co-activation of lower
limb agonists and antagonists will result in a more rigid structure,
although less reactive to external perturbations. We did not
find significant change with disease progression for postural
parameters along theML axis. One study reported increased RMS
in the ML direction in people with PD compared to healthy older
adults, therefore the RMS value might be expected to increase as
the disease progressed (60). However, the observation that there

is no longitudinal change may be the result of the interaction of
opposing age-related and PD effects on the control of postural
dynamics.

We found moderate negative correlations between MoCA
and postural dynamics at the 36 months time point with lower
cognition associated with increased jerk. Kelly et al. (61) have
reported similar findings between lower global cognition and
increased postural instability (61). Correlation between postural
measures and cognitive tests have also been reported by Nocera
et al. (62). Dysfunctions in dopamine networks may to some
extent account for this association as impairment in executive
function and attention is mediated partially by dopaminergic
frontostriatal networks (63). No relationship between postural
and cognitive measures was observed at 54 months, which may
be due to progression of the pathology, emergence of additional
clinical features and effect of medication. Levodopa has been
suggested to improve some balance measures but worsen others
(64) and in the advanced stages of PD increases postural sway
(65). Although both jerk and MoCA decreased on average from
36 to 54 months, we found a moderate negative correlation in
the difference between the two time-points for these parameters.
The mean change in the MoCA score was 1.23 and reduced
the MoCA score at 54 months to 25.54, which is considered
clinically to indicate possible cognitive impairment. Our finding
suggests there individuals with an increase in postural parameters
decrease their cognitive function. This is surprising as mild
cognitive impairment is associated with postural instability (66)
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and increased rates of cognitive decline have been reported
in individuals with postural instability and gait disturbance
phenotype (67). Possible different effects of disease progression
and aging on postural dynamics and cognitive function may
explain the results. Further investigation is however needed.

There were moderate positive correlations between GDS score
and postural dynamics. The changes in GDS were however small,
and even at 54months the GDS at 3.11 was below the threshold of
5 which has been reported to indicate mild depression. Previous
studies have reported a relationship between depression and gait
parameters, which was stronger on dopaminergic medication
(68, 69). A review of depression in PD reported contradictory
findings regarding postural correlates of depression in PD (29).
The association between GDS score and postural instability may
be related to the physical constraint on activity imposed by
postural instability because of the increased falls risk. However,
as depression frequently precedes the motor symptoms, the
association is more likely to be due to changes in shared neural
circuitry (70).

Limitations
The main limiting factor is that we tested patients in the ON
medication state. Postural dynamics will differ in the OFF state
compared to the ON state, with motor impairment reported to
be greater in the OFF state.

Our standing balance test involved participants self-selecting
their foot position. This may from 18 to 54 months consequential
decrease in postural dynamics. By contrast, many postural studies
adopt a standardized foot position, which restricts patients
changing their base of support. However, the purpose of our
postural analysis was to examine individual postural dynamics
by allowing participants to wear their own comfortable footwear
and place their feet in a position they considered would provide
them with maximum stability.

CONCLUSION

Postural dynamics decrease over a period of 36 months in people
with PD. This may be due to people reducing their postural
sway in order to restrict their center of pressure excursions
to a smaller “safe” area, as postural instability increases with

disease progression. Underlying mechanisms may include co-
contraction of agonist and antagonist muscles resulting in
increased rigidity. Limiting postural movements may however
result in the individual becoming less able to respond to
external perturbations and therefore becoming more prone

to falls. Postural dynamics are associated at 36 months after
diagnosis, with global cognition and depression, emphasizing
the interaction between motor and non-motor features, which
may reflect shared neural correlates as the locus coeruleus. This
study demonstrates the multisystem nature of PD and the need
to examine different features as part of a whole unified system.
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