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Balance during stance is regulated by active control mechanisms that continuously

estimate body motion, via a “sensory integration” mechanism, and generate corrective

actions, via a “sensory-to-motor transformation” mechanism. The balance control

system can be modeled as a closed-loop feedback control system for which appropriate

system identification methods are available to separately quantify the sensory integration

and sensory-to-motor components of the system. A detailed, functionally meaningful

characterization of balance control mechanisms has potential to improve clinical

assessment and to provide useful tools for answering clinical research questions.

However, many researchers and clinicians do not have the background to develop

systems and methods appropriate for performing identification of balance control

mechanisms. The purpose of this report is to provide detailed information on how

to perform what we refer to as “central sensorimotor integration” (CSMI) tests on

a commercially available balance test device (SMART EquiTest CRS, Natus Medical

Inc, Seattle WA) and then to appropriately analyze and interpret results obtained from

these tests. We describe methods to (1) generate pseudorandom stimuli that apply

cyclically-repeated rotations of the stance surface and/or visual surround (2) measure and

calibrate center-of-mass (CoM) body sway, (3) calculate frequency response functions

(FRFs) that quantify the dynamic characteristics of stimulus-evoked CoM sway, (4)

estimate balance control parameters that quantify sensory integration by measuring

the relative contribution of different sensory systems to balance control (i.e., sensory

weights), and (5) estimate balance control parameters that quantify sensory-to-motor

transformation properties (i.e., feedback time delay and neural controller stiffness and

damping parameters). Additionally, we present CSMI test results from 40 subjects (age

range 21–59 years) with normal sensory function, 2 subjects with results illustrating

deviations from normal balance function, and we summarize results from previous

studies in subjects with vestibular deficits. A bootstrap analysis was used to characterize
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confidence limits on parameters from CSMI tests and to determine how test duration

affected the confidence with which parameters can be measured. Finally, example results

are presented that illustrate how various sensory and central balance deficits are revealed

by CSMI testing.

Keywords: balance, balance control, orientation, sensory integration, sensorimotor, system identification, stance

INTRODUCTION

Human standing balance control is widely understood to be
organized as a closed-loop feedback-control system. In a closed
loop control system, different subsystems contribute to behavior
of the entire system. The various subsystems interact with one
another such that it can be problematic to attribute abnormal
behavior to a particular subsystem. For balance control, these
subsystems include (1) sensory systems (mainly proprioception,
vision, and vestibular) that encode body orientation, (2) a
sensory integration mechanism that combines sensory cues,
(3) a motor activation mechanism that generates joint torques
that correct for deviations from a desired orientation, and
(4) body and muscle/tendon mechanics. A full appreciation of
the feedback control nature of the system has motivated the
application of system identification methods that are appropriate
for measuring the dynamic properties of a closed-loop system
and characterizing subsystems involved in balance control.

Traditional assessment of standing balance monitors
spontaneous sway in different conditions that alter the available
sensory cues or change the difficulty of making effective control
actions [for review see (1)]. Commonly, stance is tested with
eyes open, eyes closed, on firm or compliant (foam) surfaces,
in different foot placement configurations (e.g., tandem, single
leg), or in conditions that are specifically designed to limit
the availability of proprioceptive or visual cues (e.g., sway-
referencing methods used on EquiTest sensory organization
tests, SOT) (2). Performance is monitored using pass/fail criteria
or instrumentation is used to record signals related to body sway
using, for example, force plate measures of center-of-pressure
(CoP) displacements, inertial measurement sensors, or motion
capture systems. For instrumented systems, the recorded signals
are processed to obtained measures of variability and magnitude
of the signals (3). Then the values of sway measures in specific
test conditions or changes in sway measures across different test
conditions give an indication of standing balance performance
in relation to normative measures and provide an indirect
indication about the integrity of sensory systems contributing to
balance.

There are, however, limitations to assessments based on
spontaneous sway measures because sensory and motor system
properties cannot be separately evaluated. For example, excessive
sway can be due to inadequate motor control (e.g., too little
corrective torque generated per unit of body sway) or due to
poor quality (low gain or high variability) of sensory systems
contributing to balance (4). Another example would be a fall on
an eyes closed SOT test condition with surface sway referencing.
A fall could occur if (1) subjects have reduced or absent vestibular

function, (2) central processing of vestibular information is
inadequate (e.g., faulty central integration of semicircular canal
and otolith signals), (3) the subject did not transition quickly
enough to full reliance on vestibular information for balance
from the sensory utilization configuration prior to the start of
sway referencing (where subjects use primarily proprioceptive
cues for balance control), or (4) the subject did not generate
enough corrective torque due to motor control deficiency.

Application of appropriate system identification methods can
overcome some of the limitations of balance assessment based
on spontaneous sway measures. To disambiguate the cause/effect
relationships between sensory processing, motor action, and
body sway in a closed-loop control system, an external balance
perturbation must be applied and then proper methods must
be used to evaluate the relationship between the external
perturbation and body sway or other measures (CoP, muscle
activations, joint torques) (5). To date, application of these
methods has remained primarily in research environments that
have specialized equipment needed to apply controlled balance
perturbations. Additionally, not all researchers are necessarily
familiar with the mathematical methods needed for system
identification. To increase access to these methods this report
gives a detailed description of a methodology that is becoming
more widely used (6–16). Additionally, the test equipment that
we used for data collected in this study is commercially available
(SMART EquiTest CRS, Natus Medical Inc., Seattle WA). This
device includes research module software that allows for the
delivery of custom balance perturbations that are needed for
application of the methods we describe.

This report describes the methods we have employed in
developing and implementing a test battery we refer to as
the central sensorimotor integration (CSMI) test. These aspects
include (1) modifications of an EquiTest device to obtain
calibrated measures of center-of-mass (CoM) body sway, (2)
description of our test protocol and the wide-bandwidth
stimulus used for balance perturbations, (3) description of the
frequency domain analysis methods used to obtain measures
of frequency response function (FRFs) that provide a non-
parametric representation of dynamic characteristics of the
balance control system, and (4) description of two versions of
a simple mathematical model of the balance control system.
For both models, parameters were adjusted using an optimal
estimation procedure to obtain a set of functionally meaningful
parameters that separately identify sensory integration andmotor
control mechanisms.

A primary goal of this report is to encourage wider application
of CSMI test methods to facilitate potential clinical applications
for improved diagnosis of balance disorders. To this end we (1)
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describe the methodology for the CSMI test with accompanying
normative data, (2) determine the reliability of parameter
estimates as a function of test duration, (3) compare parameters
obtained from two versions of balance control models, (4)
evaluate whether parameter estimates were significantly affected
using measures of CoM sway based on filtering of CoP compared
to a more direct measure, and (5) provide supplementary
material that includes computer programs to define stimuli and
analyze CSMI test results. Finally, we present example CSMI test
results from patient populations illustrating applications of these
methods to populations withmild traumatic brain injury (mTBI),
vestibular deficits, and other balance deficits.

MATERIALS AND METHODS

Participants
This report utilizes a subset of data from a broader investigation
into CSMI problems in patients with chronic mTBI (17).
Participants included 40 healthy individuals: 13 males, 27
females, age range 21–59 years, 33.7 ± 11.5 years, height 1.69
± 0.09m, weight 69.8 ± 15.8 kg (mean ± sd) with no known
musculoskeletal or neurological deficits. Data from one subject
with mTBI and one additional control subject with unexpected
balance behavior were also included to illustrate capabilities of
the CSMI test. Further, data from two previous investigations
were included to illustrate the effects of vestibular loss. This study
was carried out in accordance with a protocol approved by the
Joint Institutional Review Board Committee of Oregon Health
and Science University and Veterans Administration Portland
Health Care System. Additional results illustrating the effects of
vestibular deficits were from studies carried out in accordance
with a protocol approved by the Institutional Review Board
Committee of OregonHealth and Science University. All subjects
gave written informed consent prior to the start of experimental
procedures in accordance with the Declaration of Helsinki.

Equipment
Standing balance was tested on a modified SMART EquiTest
CRS device (Natus Medical Inc, Seattle WA) running software
version 8.6.0. This device has motorized drives that allow
forward/backward translations or toe up/toe down rotations of
the stance surface and sagittal plane rotations of the visual
surround. Subjects stand on dual force plates that record 3D
forces and moments. Maximum specified surface and visual
surround rotational velocities are 50◦/s and 15◦/s, respectively,
which are well above the largest velocites used in this study (2◦/s).
Maximum accelerations were not specified, but were found to be
sufficient to deliver stimuli used in this study.

The EquiTest CRS device includes a Research Module that
allows for creation of user-defined tests. We used the Research
Module to define a custom protocol that used sampled stimulus
waveforms created in Matlab (The Mathworks Inc., Natick MA,
USA) to generate continuous surface and/or visual surround
rotations that evoke anterior-posterior (AP) body sway in test
subjects (see Supplementary Materials for Matlab programs that
create our stimuli).

The EquiTest device was modified in two ways: (1), a floor
and wall-mounted external frame was placed near the EquiTest
that supported two “sway rod” devices (described below) that
were used to directly measure AP body displacements at hip
and shoulder levels, and (2), a plaid-patterned poster (112 cm
high × 106 cm wide) with pseudorandomly placed vertical and
horizontal black, white, and gray stripes lined the visual surround
to provide a rich visual stimulus to enhance responses to visual
stimuli (see Supplementary Figure 1).

Stimulus Generation and Test Conditions
Subjects were tested in 8 test conditions that included 4 test types
(surface-tilt with eyes closed, surface tilt with eyes open viewing
a fixed visual surround, visual surround tilt with eyes open with
stance on a level surface, and combined surface-tilt and visual-tilt
with eyes open) with each test type performed at 2 amplitudes (2
and 4◦ peak-to-peak). Tests were presented in randomized order.

The surface and visual tilt stimuli were based on a
pseudorandom maximal length ternary number sequence
consisting of 80 numbers with +1, 0, or −1 values [generated
using a 4-stage shift register with feedback; (18)]. The number
sequence was transformed into a time series waveform by
substituting each number in the sequence with a set of 25 time
samples of equal value to create a waveform consisting of 2,000
samples for one stimulus cycle corresponding to a cycle period
of 20 s for 100/s sampling. This time series was mathematically
integrated and the integrated waveform was scaled to have peak-
to-peak values of 2 and 4◦. Additionally, the starting point in the
number sequence was selected so that the integrated waveform
had a non-zero mean such that about 80% of the integrated
waveform had positive values giving stimuli that were biased to
favor toe-down surface rotations and forward visual surround
tilts since subjects can tolerate greater forward than backward
sway without loosing balance.

A Fourier transform of the stimulus waveform demonstrates
that a waveform created by a maximal length ternary sequence
has the property that stimulus energy is only present at
the fundamental frequency (fundamental frequency in Hz is
1/cycle duration = 0.05Hz) and odd harmonic multiples of
the fundamental frequency. Additionally, the magnitude of
frequency spectral components of the waveform based directly on
a maximal length ternary number sequence is approximately flat
out to a frequency of about 2Hz= 1/(2∗25 samples per sequence
number/100 samples/s) and then diminishes. Since we use the
mathematically integrated waveform to control the angular tilt
position of the surface or visual surround, the magnitude of
spectral components of the integrated stimulus declines in
proportion to inverse frequency [see Figure 3 in (19) to see power
spectrum representation of a stimulus nearly identical to our
stimulus].

Twelve single-cycle waveforms were concatenated to give
a final stimulus waveform with a total duration of 246 s that
included 2 s no-movement segments at the beginning and 4 s at
the end. The stimulus waveform was low-pass filtered at 4.5Hz to
reduced higher frequency components that the EquiTest device
could not faithfully deliver. The sample rate for stimulus delivery
and data collection was 100/s, the maximum rate allowed by the
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FIGURE 1 | Balance control model block diagram. Visual, vestibular, and proprioception systems provide accurate measures of body orientation relative to the visual

scene, earth vertical, and the stance surface, respectively. A weighted combination of these sensory sources provides an internal orientation estimate. This orientation

estimate is supplemented with information regarding the mathematical integral of overall corrective ankle torque, Tc, via a positive “Torque Feedback” loop. The signs

on the summations within the “Sensory Integration” subsystem indicate whether the sensory information provides negative feedback control (from visual, vestibular,

and proprioceptive systems) or positive feedback control (from torque sensors). The sensory information is used to generate time-delayed corrective torque via a

“Neural Controller” and corrective torque from the neural controller is supplemented by torque due to passive muscle/tendon mechanics. The overall corrective ankle

torque causes a single-segment inverted pendulum body to change orientation. Laplace transform representations of the dynamic properties of various components

are shown.

EquiTest research module software. The stimuli were created in
Matlab and were saved as ASCII text files that were imported by
the EquiTest Research Module software to define experimental
tests.

Subjects feet were placed on the stance surface with ankles
aligned with the surface rotation axis and at height-dependent
stance widths according to EquiTest instructions for performing
the clinical SOT. Subjects wore ear protection to mask room and
motor sounds.

Following a calibration trial (see below), a warmup test was
performed to familiarize subjects with the balance perturbations.
The warmup trial was a 4◦ surface-tilt test that was performed
eyes open for the first 120 s and then eyes closed for the
remainder of the trial. Then the 8 different tests were performed
in randomized order with 3min breaks given after every 3 trials.

Sway Measurements
Body sway measurements were obtained from measures of
whole body CoP displacements from the surface force plates
and from measurements of AP body displacements at hip and
shoulder level made using a custom “sway rod” system. Each

sway rod system consisted of a potentiometer (Midori model CP-
2UTN, Midori America Corporation, Irvine CA) attached to an
earth-fixed frame located behind and to the subject’s left. The
potentiometer rotation axis was vertically aligned. The locations
of the potentiometers were adjustable in height and in AP depth
on the frame and were placed at hip and shoulder heights. A thin
61 cm length aluminum shaft was flexibly attached to the frame-
mounted potentiometers to allow free vertical plane rotation of
the sway rods without causing potentiometer rotation. The sway
rod shafts extended behind the subject with the distal end of
the sway rod resting in hip and shoulder hooks mounted on
the subject’s back at midline. The hip hook was approximately
at the hip joint level and the shoulder hook was just below
shoulder joint height. Sway rod height above the stance surface
and length of the sway rod from the potentiometer to the hook
were measured for both hip and shoulder sway rods for use in
off-line calculation of body displacements. To facilitate accurate
AP placement of the sway rod potentiometer on the frame, each
potentiometer module included electronics that lit an LED to
signal when the sway rod was parallel to the subject’s frontal
plane when the subject was standing upright. In this position,
the potentiometer registered zero volts. As subjects swayed
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forward or backward, the sway rod shaft could slide freely in its
hook and rotate the potentiometer producing a voltage change
proportional to the potentiometer rotation angle and related,
by trigonometry, to AP body displacement at hook levels. The
potentiometer electronics module included a scaling amplifier
with scaling set to 1 Volt/3 degrees. The potentiometer signals
were recorded on auxiliary channels in the EquiTest system that
could accept +/−10V signals that were digitized by a 12-bit
A/D converter. Additional description of the sway rod system is
included in Supplementary Figure 1.

The EquiTest Research Module records various force plate
signals, signals encoding surface rotation and translation, and
visual surround rotation. Of relevance to the current study are
AP CoP displacement, vertical force measures used to measure
subject weight, surface rotation angle, visual surround rotation
angle, and sway rod potentiometer angles. The EquiTest software
encodes data in a proprietary binary format with access to the
data provided by exporting test results to ASCII files (from
EquiTest software version 8.6.0) or Unicode files (from software
version 9.3). One file is created for each test trial.

Estimation of CoM Sway
CoM From Sway Rod Measures
A calibration trial was performed to obtain data used to
derive coefficients of an equation that relates hip and shoulder
potentiometer signals to a subject’s CoM AP displacements
and CoM AP rotation angles over the time course of each
experimental test. The principle that allows this derivation is
that the CoP displacement is equal to the body’s horizontal
projection of CoM displacement in the case of a static, unmoving
body. We approximate this static case by asking the subject to
move very slowly in the AP direction over the 120 s duration
of a calibration trial while recording the CoP and potentiometer
signals. The calibration trial was performed with eyes open on
a fixed surface while viewing a stationary visual surround. The
subject was directed to assume a variety of upper and lower body
orientations (e.g., keeping the body straight while swaying and
then with hips slightly flexed or extended while swaying slowly
forward and backward).

The potentiometer signals were processed using trigonometric
relations to calculate AP displacements at hip and shoulder levels
from the sway rod angles measured from the potentiometers:

xh (t) = Lh tan θh (t) (1)

xs (t) = Ls tan θs (t) (2)

where L is the length of the sway rod from the potentiometer to
the hook when subjects were in an upright stance position, θ (t)
is the sway rod angle over timemeasured by appropriately scaling
the voltage recorded by the potentiometer, x (t) is the calculated
AP displacement of the body, and h and s subscripts indicate hip
and shoulder.

A least squared error fit was made to estimate parameters
Ah, As, and B of an equation relating AP body displacement at
hip and shoulder levels to the measured AP CoP displacement,
xcop (t), to minimize the squared difference between xcop and

xcop_fit defined as:

xcop_fit (t) = Ah · xh (t) + As · xs (t) + B (3)

On subsequent experimental tests, the Ah, As, and B parameters
derived from the calibration test, was applied to hip and shoulder
displacements recorded on experimental tests (xh_ exp (t) and
xs_ exp (t)) to obtain a CoM displacement time series xcom (t) =
Ah · xh_exp (t) + As · xs_ exp (t) + B.

The CoM displacement time series was then used to calculate
the CoM tilt angle with respect to vertical using the equation:

θcom (t) = sin−1

(

xcom (t)

h

)

(4)

where h is the CoM height above the ankle joint. The CoM
height estimate was obtained following (20) using measures
of leg length (medial malleolus to femoral condyles), thigh
length (femoral condyles to greater trochanter), and HAT length
(head, arms, trunk segment measured from greater trochanter
to glenohumeral joint). Additionally, these body segment length
measures along with a body mass measure (obtained from
vertical forces measured by the EquiTest device) provided an
estimate of the body moment of inertial, J (units: kg m2), of the
legs, thighs, and HAT segments about the ankle joint axis. Along
with J, subject mass m, (in kg) and h (in m) were parameters
needed in the balance control model that was used to calculate
sensory integration and neural control parameters representing
each subject’s balance performance characteristics.

CoM From Filtered CoP
While the direct measurements of hip and shoulder
displacements provide a relatively simple method for measuring
CoM displacement using the methods described above, an
even simpler method, based on lowpass filtering of CoP, may
provide sufficiently accurate CoM displacement measures. An
approximate relationship between CoP and CoM displacement
is given by Winter et al. (21):

xcop (t) = xcom (t) −
J

W · h
· ẍcom (t) (5)

Where ẍcom is CoM acceleration, J is body moment of inertia
about the ankle joint, and W is body weight excluding the feet.
At any given frequency of body motion, xcom and −ẍcom are in
phase with one another so xcop will also be in phase with xcom.
Furthermore, the amplitude of ẍcom increases as the square of
the frequency of xcom and thus makes an increasing contribution
to xcop as frequency increases. Because the CSMI methods for
quantifying balance control are focused on frequencies below
about 1.5Hz, it may be possible to apply a lowpass filter to
the recorded CoP to greatly diminish the CoM acceleration
contribution to CoP and obtain a CoM displacement measure
(22).

We explored the use of a lowpass filtered CoP to estimate
CoM displacement and characterized the extent to which use
of this simpler CoM measure affected results in comparison
to use of CoM from our sway rod measurement method. We
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defined filter coefficients of a 1st order Butterworth filter and
applied it using the Matlab “filtfilt” function to provide phaseless
2nd order filtering of the CoP data for each trial in each test
condition for each subject. The cutoff frequency was varied in
0.005Hz increments from 0.25 to 0.65Hz, the mean squared
error (MSE) between the filtered CoP and the CoM from sway
rod measures, and the cutoff frequency with the lowest MSE
was identified. These best MSE cutoff frequencies were compared
across subjects and test conditions. Then a single average best
frequency across all subjects and test conditions was calculated
and used to process CoP data to obtained CoM displacement,
and then CoM sway angles. The CoM data from sway rod and
filtered CoP were analyzed as described in the following sections
with results compared to determine the extent to which a simpler
CoM sway measure could provide comparable results.

Stimulus/Response Analysis
A frequency domain analysis, following the methods of Pintelon
and Schoukens (23), was applied to the recorded stimulus
tilt angle and the estimated CoM body sway angle of each
experimental test to calculate a frequency response function
(FRF). An FRF provides a non-parametric description of the
dynamic characteristics of the balance control system. The first
cycle is ignored to avoid transient responses. Then an FRF is
calculated by taking the discrete Fourier transform (using Matlab
fft function) of each of the last 11 cycles of the stimulus and CoM
sway response time series when the response is assumed to have
attained steady state behavior. The assumption of steady state
behavior is supported by previous results using similar stimuli
that did not reveal evidence for adaptation or habituation over
successive cycles on a given trial (6). The experimental FRF, He,
calculation is:

He

(

jωk

)

=
∑M

i=1 X
i
com

(

jωk

)

∑M
i=1 X

i
stim

(

jωk

)
(6)

where Xi
com

(

jωk

)

and Xi
stim

(

jωk

)

are the Fourier transforms
of CoM sway response and the stimulus of the ith cycle of
a total of M = 11 cycles, j is the imaginary number

√
−1,

and ωk is radian frequency at the kth frequency. Note that a
stimulus created by a maximal length ternary sequence has the
unusual property that stimulus energy is only present at the
fundamental frequency (fundamental frequency in Hz is 1/cycle
duration—in this case 0.05Hz) and odd harmonic multiples of
the fundamental frequency. Therefore, all even harmonics of
Xi
com

(

jωk

)

and Xi
stim

(

jωk

)

were removed prior to the above FRF
calculation.

The variability of frequency components of FRFs generally
increases with increasing frequency because both the relative
responsiveness to the stimulus and the energy of our stimulus
declines with increasing frequency. Averaging across stimulus
cycles was used to reduce the variability of FRFs, and to
further reduce variability, an increasing number of adjacent
spectral components were averaged across frequency giving a
final distribution of 12 FRF values at frequencies ranging from
0.05 to 1.75Hz that were approximately equally spaced on a
logarithmic frequency scale. The final set of 12 frequencies were

at 0.05, 0.1, 0.15, 0.2, 0.3, 0.4, 0.55, 0.7, 0.9, 1.1, 1.35, 1.75Hz.
Higher frequencies were not included since the stimulus energy
diminishes rapidly at higher frequencies and body sway behavior
becomes increasingly influenced by multi-segment body motions
(24) that are not represented by the balance control model used
to parameterize the FRFs (see below),

An FRF is a set of complex numbers that vary with frequency
but is commonly represented as a gain function,

∣

∣He

(

jωk

)∣

∣, and
phase function, 6 He

(

jωk

)

, given by:

|He(jωk)| =
√

H
(

jωk

)

· conj
(

H
(

jωk

))

(7)

6 He

(

jωk

)

= tan−1 Im
(

He

(

jωk

))

Re
(

He

(

jωk

)) (8)

where conj is the complex conjugate operator, Im and Re are
imaginary and real parts of the complex values of He

(

jωk

)

, and
the subscript e refers to the experimental FRF.

Our frequency domain analysis also calculated a coherence
function:

γ 2 (ωk ) =

∣

∣

∣

∑M
i=1 X

i
com

(

jωk

)

· conj
(

Xi
stim

(

jωk

))

∣

∣

∣

2

(

∑M
i=1

∣

∣Xi
stim

(

jωk

)∣

∣

2
)

·
(

∑M
i=1

∣

∣Xi
com

(

jωk

)∣

∣

2
) (9)

where |∗| indicates calculation of the magnitude of the complex
numbers representing the Fourier components of the stimulus
and response spectra, and conj is the complex conjugate
operation. Coherence function values range from 0 to 1 with
higher values indicating larger signal-to-noise conditions in the
analysis relating the response to the stimulus. Note that when
periodic stimuli are used for system identification, coherence
function values only provide an indication of signal-to-noise
conditions and do not indicate the presence of non-linearities in
the system (23).

Balance Control Model
We represented the balance control as a feedback control
system as shown in block diagram form in Figure 1. The
model represents a system regulated by a continuous, linear,
time-invariant control mechanism. Previous work found no
evidence for non-linear control mechanisms regulating balance
in response to sustained, steady-state stimuli (25). The Figure 1
model has five major components that include (1) body
mechanics of an inverted pendulum, (2) sensory integration
provided by a weighted summation of orientation information
from proprioceptive, visual, and vestibular systems, (3) time
delayed neural controller that transforms the weighted sensory
information into corrective ankle torque, (4) a torque positive
feedback component that contributes to control by feeding back
information related to the time integral of the corrective torque
applied at the ankles, and (5) a passive component that generates
ankle torque as a function ankle angle and/or angular velocity
with no time delay (26). As others have demonstrated (27,
28), it is problematic to obtain reliable estimates of parameters
associated with the passive component since other neural
controller parameters have a very similar influence over the
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shape of FRFs predicted by this model. We also found it difficult
to obtain reliable estimates of passive parameters. Therefore,
we do not present results that include estimates of the passive
component contribution, but the passive component is given
in the model equations given below to illustrate its potential
influence on FRFs.

The model, Hm, can be expressed as a differential equation
in the Laplace domain that predicts the CoM response, Xcom (s),
for a given surface stimulus, Xsurf (s), visual stimulus, Xvis (s), or
combined surface plus visual stimuli. The Laplace equations for
surface, visual, or combined stimuli are:

Hsurf (s) =
Xcom (s)

Xsurf (s)

=
Wprop · NC · TD · B+ P · B

1− TF · NC · TD+ P · B+ NC · TD · B
(10)

Hvis (s) =
Xcom (s)

Xvis (s)

=
Wvis · NC · TD · B

1− TF · NC · TD+ P · B+ NC · TD · B
(11)

Hsurf+vis (s) =
Xcom (s)

Xsurf+vis (s)

=
(

Wprop +Wvis

)

· NC · TD · B+ P · B
1− TF · NC · TD+ P · B+ NC · TD · B

(12)

where s is the Laplace variable, NC = Kp + Kd · s is
the neural controller (a proportional-derivative, PD, neural
controller), TD = e−Td·s is the time delay component, B
is a linearized equation representing inverted pendulum body
mechanics given by 1

(J·s2−mgh)
with m equal to body mass

minus mass of the feet and g the gravity constant, TF is the
torque feedback component given by Kt

s , and P (s) is the passive
component. Simple forms of P can include only a simple stiffness
factor, P = Kpas or a combination of stiffness and damping
P = Kpas + Bpas · s.

The torque feedback mechanism assumes that the balance
control system has available to it a measure of corrective ankle
torque derived from sensory sources. This torque signal is
processed to eliminate higher frequency components and is
added (positive feedback) to the sensory error signals derived
from the other sensory systems. The combined sensory error
signal is, in turn, processed to generate additional ankle torque
(29). Functionally, torque feedback influences low frequency
sway behavior such that the body moves toward an orientation
where corrective torque is minimal (typically the upright
orientation, but also can be toward orientation aligned with the
gravito-inertial vector in an accelerating environment such as an
accelerating train).

An alternative neural control structure used a neural
controller with an integration factor NC = Kp + Kd · s+ Ki/s (a
proportional-integral-derivative, PID, neural controller) rather
than PD control with torque feedback (6, 13, 15). A model
with PD control plus torque feedback has a similar, but not
identical, ability to account for features of experimental FRFs as
a model with PID control and no torque feedback. Because both
neural control structures have been used to describe experimental

results, it is of interest to understand whether the estimate of
parameters shared between the two models depends on which of
these two neural control structures are used in the model.

By substituting s = jω into the above equations, model
predicted FRFs can be calculated for a given set of parameter
values at the same set of k frequencies as the experimental
FRFs. Model parameters can be adjusted to optimally match the
experimentally determined FRFs, thereby providing a parametric
representation of the non-parametric experimental FRFs.

Model Parameter Estimation
For each subject’s FRF for each of the 8 test conditions,
model parameters were estimated by adjusting the parameters to
minimize an error function. This minimization was performed
using the Matlab “fmincon” function from the Optimization
toolbox. This function requires definition of an error function
that calculates a value with each call to the error function. Our
error function was:

E =
∑N

k=1

∣

∣Hm

(

jωk

)

−He

(

jωk

)∣

∣

∣

∣Hm

(

jωk

)∣

∣

(13)

where N = 12 was the number of frequency components in
the FRFs and the subscripts e and m indicate the experimental
and model-predicted FRF, respectively. The “fmincon” function
adjusts parameters beginning with initial values to minimize the
error using search criteria constraints that limit the parameters to
specified ranges. The optimization procedure is not guaranteed to
find a parameter set associated with a global minimum error. To
overcome this, the optimization can be repeated multiple times
beginning with different initial values. This is necessary when
fitting more complex models (28). For the simple model applied
in this study, we have found reliable convergence to the same
parameter values independent of initial values. In practice and
for results presented in this report, five repeated optimizations
were performed and parameters associated with the lowest error
were selected to represent the best fit.

On tests with very low signal-to-noise as indicated by low
coherence values, the identified parameter set can be invalid
in that the parameters define a system that is unstable. For
example, the neural control stiffness parameter Kp must be
greater than mgh (with g the gravity constant) for the system
to be stable. Therefore, the Kp lower constraint is set to mgh. If
the optimization finds a Kp value equal to mgh, the identified
parameter set is obviously invalid.

For the 2 test conditions that simultaneously presented
surface-tilt and visual-tilt stimuli, experimental FRFs were
calculated separately relating the individual stimuli to the
recorded CoM sway, model parameter estimates were obtained
for each experimental FRF, and the model parameters were
averaged to give a final set of parameters characterizing system
properties.

Model Quality
The ability of the model and identified parameters to account
for the stimulus-evoked body sway was assessed by a variance
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accounted for (VAF) measure:

VAF = 100 ·
(

1−
∑N

i=1

(

θcom (ti) − θsim (ti)
)2

∑N
i=1 θsim (ti)

2

)

(14)

where θcom is the experimental CoM body sway averaged across
the last 11 stimulus cycles, θsim is the corresponding mean CoM
body sway obtained from simulations of the Figure 1 model
using Matlab Simulink (version 8.6). VAF values were calculated
for each subject and on each of the 8 test conditions using the
identified parameters. VAF values for both the PID and PD plus
torque feedback models were calculated.

Bootstrap Analysis
A bootstrap analysis was used (1) to characterize the distribution
and range of parameter values associated with normal
sensorimotor control and (2) to investigate the extent to
which the accuracy and reliability of parameter estimates are
influenced by reducing the number of stimulus/response cycles
included in the analysis.

For each subject and each test condition the Fourier
transformed stimulus/response data of M cycles were randomly
selected (with replacement) from the 11 available cycles of
experimental data. An FRF was calculated from these M cycles of
data andmodel parameters were obtained. This random selection
and fitting process was repeated 10,000 times and parameter sets
from each of these analyses were saved for subsequent analysis.
Five different bootstrap selections were made with different
numbers of sampled cycles with M = 3, 6, 9, 11, 15, and 20.
Thus, for each subject and each test condition we obtained 10,000
parameter sets at each of the 5 different cycle counts.

Then a second bootstrap was performed by randomly
sampling (with replacement) parameters sets from the 10,000
parameters sets of the 40 subjects from the previously saved
bootstrap samples for each of the 5 different cycle counts. This
yielded for each model parameter a set of 10,000 samples for the
5 different cycle counts that were then statistically summarized
by calculating mean and median values, and 90 and 95 percentile
confidence ranges.

RESULTS

Calibration Procedure
Data from a 2min calibration test were used to estimate linear
regression coefficients needed to transform measures of AP body
displacements at hip and shoulder levels to measures of CoM
displacement (Equation 3). An example of data from a calibration
trial showing hip and shoulder level displacements (Equations
1, 2), the regression fit of these displacements to the AP CoP,
and the fit error are provided in Figure 2. Because the subject
begins the trial in an upright position, the value of the first data
point in the potentiometer signal is subtracted from remainder
of the points so that the calculated AP displacement represent
deviations from the upright position. The regression fit accounts
well for slowly varying CoP changes that are indicative of the
displacement of the CoM as a function of sway-rod measured
hip and shoulder displacements but not the rapid oscillations

of CoP that reflect the torque corrections used by the subject
to maintain the displaced CoM position. The fit error shows no
obvious bias and only small rapid oscillations about a constant
offset value accounted for by the B term in Equation 3. These
small oscillations are indicative of the transient corrective torques
generated to maintain the slowly moving CoM displacements.
The particular values of the Ah and As regression coefficients
depend on subject body mass distributions and the specific
heights of the sway rods and B depends on foot placement on
the surface. Across all 40 subjects, the values of the Equation
3 coefficients were Ah = 0.581 ± 0.056 (Mean ± SD) and
As = 0.345± 0.035. The value of B is not relevant to FRF analysis
since B only affects the mean value CoM displacement which is
not used in the FRF analysis.

Example Stimulus-Evoked Sway Analysis
For each subject, the calibration coefficients for that subject
are applied to the hip and shoulder displacement data on each
stimulus trial to calculated AP CoM displacement, and then,
using the estimate of the subject’s CoM height above the ankle
joint axis, Equation 4 was applied to calculate the AP CoM sway
angle. An example of CoM sway data from a single subject and
the corresponding 12-cycle surface-tilt stimulus that evoked this
sway is shown in Figure 3A. There is cycle-to-cycle variability
that partially obscures the relationship between the stimulus
and CoM response. Averaging of CoM across the last 11 cycles
clarifies the stimulus-response relationship and shows that the
subject’s CoM sway angle tends to track the surface tilt angle
(Figure 3B) and often the sway is greater than the stimulus.
For reference, if a subject was able to fully compensate for
the balance perturbation caused by the rotating surface, CoM
sway would not deviate from upright and the sway trace in
Figures 3A,B would be flat. The focus of this paper is on the
frequency domain analysis of sway responses, but time domain

FIGURE 2 | Calibration example. The test subject is instructed to sway slowly

forward and backward while recording anterior-posterior (AP)

center-of-pressure (CoP) displacement, and body displacements at hip, xh(t),

and shoulder, xs(t), levels. A least squared error fit of a linear combination of

hip and shoulder displacements to CoP provides coefficients for use in

measuring center-of-mass (CoM) displacement on subsequent tests.
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FIGURE 3 | Example single-subject data and data analysis of center-of-mass (CoM) sway evoked by a surface-tilt stimulus with 2◦ peak-to-peak amplitude during

eyes closed stance. Twelve cycles of the surface-tilt stimulus and the corresponding evoked CoM sway are shown (A). Averaging across the last 11 cycles of the

stimulus and sway response reveal the close correspondence between stimulus and response (B). A frequency response function represented by gain and phase

functions [mean values ±95% confidence limits; see (30)] characterize the balance control dynamics of this individual on this particular test with a coherence function

providing information on signal-to-noise quality (C). The solid lines through the frequency response data are based on model parameter estimates. Model-predicted

CoM sway based on identified parameters is shown in (A,B) with a variance accounted for (VAF) measure showing that the model accounts for most of the

experimental stimulus evoked sway. Comparison of the actual and ideal stimulus (ideal is offset from the actual for comparison) in (B) demonstrates the accurate

delivery of the desired stimulus.

analyses are also performed in the analysis programs included in
the Supplemental Material.

An FRF derived by application of Equation 6 to the CoM sway
data is shown in Figure 3C along with the associated coherence
function derived using Equation 9. The FRF is represented by
gain and phase functions (Equations 7, 8) with each gain value
indicating the ratio of CoM sway amplitude to the stimulus
amplitude at individual frequencies and the phase indicating
the relative timing between the stimulus and response. If the
test subject had been a rigid mannequin whose feet were glued
to the tilting surface, the mannequin’s body would remain

perpendicular to the surface throughout testing. The FRF analysis
of the mannequin’s CoM response would show gains of unity
and phases of zero across all frequency components of the
surface-tilt stimulus and the coherence function values would
be unity (assuming no measurement noise in recording of body
sway and surface tilt) indicating perfect correlation between
stimulus and response. Actual human FRFs differ from the ideal
mannequin behavior in several ways. CoM response gains vary
with frequency. Typically gains are highest at mid-frequencies
(∼0.1–0.8Hz) with values often greater than one, indicating
subject sway amplitude is greater than the stimulus amplitude,
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and decrease for both lower and higher frequencies. Phase values
cross zero at ∼0.1Hz and typically show phase leads at low
frequencies and increasing phase lags at higher frequencies.
Coherence values are less than one and tend to decrease with
increasing frequency consistent with overall reduced signal-to-
noise as sway response magnitude relative to stimulus declines
with increasing frequency.

Also shown in Figure 3C is the optimization fit to the
experimental FRF obtained by adjusting model parameters
to minimize the Equation 13 error criterion. The model
accounts well for the experimental FRF and provides a set
of parameters that characterize the dynamic properties of the
balance control system for each individual subject in each test
condition.

Effect of Stimulus Duration on Parameter
Estimates
Shorter test durations are desirable in clinical applications, but
too short a test duration likely will compromise the accuracy
of parameter estimates and increase their variance. A bootstrap
analysis was used to investigate the tradeoff between test
duration and accuracy of parameter estimation. The results of
the analysis for the sensory weight parameter on the 8 test
conditions are provided in Figure 4. For each test condition
there are five vertical bars showing 95th (thin bar) and 90th
(thick bar) percentile confidence limits, and mean and median
values corresponding to the five bootstrap analyses that included
3, 6, 9, 11, 15, and 20 cycles of data (arranged in left to
right order). The percentile bars show that the distributions
generally become narrower with increasing cycle counts but the
narrowing diminishes with increasing cycle counts. The mean
and median parameter values were greatest at the lowest cycle
count suggesting bias in the parameter estimate at the lowest
cycle count and indicating that 3 cycles are not sufficient to
accurately estimate parameter values. The bias was largest for
the visual stimulus conditions (5 and 6), which are also the
conditions where the sensory weights were lowest and coherence
values were lowest (see below) indicating low signal-to-noise in
response to visual stimuli. Trends in narrowing distributions and
reduced bias with increasing cycles counts were similar for the
other model parameters.

Our conclusion is that for most test conditions, 6 stimulus
cycles are adequate for the purpose of obtaining accurate
parameter estimates. This judgment is based on the observation
that, for most test conditions, 6 cycles were sufficient to achieve
a stable variance of the parameter distribution and mean and
median values showed minimal changes when cycle counts were
further increased (Figure 4). However, an exception applied
to the visual test conditions where the responsiveness to the
stimulus and signal-to-noise were low. For these low response
conditions, 11 cycles should be considered as a lower limit of
test cycles. Additionally, our conclusions specifically apply to the
2 and 4◦ stimulus amplitudes we used. It is evident in Figure 2

that the parameter bias was greater and parameter distributions
became wider for all 2◦ compared to 4◦ stimulus amplitudes
suggesting that studies that use even lower stimulus amplitudes

FIGURE 4 | Results from a bootstrap analysis used to investigate how test

duration affects the distribution of the sensory weight parameter in the eight

test conditions. The five vertical bars for each test condition represent the 90th

percentile (thick green bar) and 95th percentile (thin blue bar) range of the

parameter when results were derived from tests that included either 3, 6, 9, 11,

15, and 20 stimulus-response cycles (arranged left to right for each condition).

Mean (red o) and median (black +) values of each distribution are shown.

will likely need to use a greater number of stimulus cycles to avoid
bias and reduce variability of parameter measures.

Identified Balance Model Parameters
Parameters of the balance control model that included torque
feedback were obtained for each of the 40 subjects on each of
the 8 test conditions (Table 1). Only one subject’s parameters
on 1 test condition were incompatible with stability and were
not include in summary statistics. Specifically, on the 2◦ visual
stimulus condition the neural controller stiffness parameter Kp

for this subject converged to the lower bound of mgh set for
this parameter. The Kp value must be greater than mgh, the
gravity stiffness constant, for the system to be stable. The FRF
data on this individual test showed very low and variable gains
and phases consistent with the low measured coherence values
(mean= 0.087).

Parameters andmean coherence values for all subjects on each
test condition are shown in Figure 5. The figure includes boxplots
that show median parameter values for each test condition and
summarize the parameters distributions. The figure also shows
parameter values of individual subjects.

The sensory weight measures showed consistent changes
across test amplitude. In each of the 4 test types, the sensory
weights on 4◦ trials were, on average, lower than on 2◦ trials
of corresponding test types. This was the case for all but
one individual in 1 test type. Because the model assumed
that a sensory weight represents the relative contribution of a
particular sensory system to overall balance control, a decrease
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TABLE 1 | Parameters derived using balance control model with PD neural control plus torque feedback.

Condition Parameter Mean (SD) 5%tile 25%tile 50%tile 75%tile 95%tile

1 Wprop 0.509 (0.079) 0.367 0.461 0.512 0.557 0.676

Kp/mgh 1.51 (0.133) 1.31 1.42 1.50 1.56 1.79

Kd/mgh 0.517 (0.067) 0.421 0.465 0.521 0.565 0.627

Kf × 10,000 1.27 (0.46) 0.64 0.92 1.21 1.51 2.11

Td 0.144 (0.015) 0.119 0.133 0.143 0.157 0.168

2 Wprop 0.396 (0.070) 0.298 0.351 0.390 0.442 0.534

Kp/mgh 1.61 (0.144) 1.37 1.52 1.59 1.70 1.90

Kd/mgh 0.542 (0.085) 0.406 0.473 0.554 0.598 0.670

Kf × 10,000 1.17 (0.50) 0.48 0.77 1.13 1.52 2.21

Td 0.120 (0.013) 0.098 0.111 0.117 0.128 0.145

3 Wprop 0.299 (0.057) 0.209 0.265 0.294 0.327 0.426

Kp/mgh 1.61 (0.272) 1.34 1.41 1.56 1.71 2.51

Kd/mgh 0.523 (0.072) 0.397 0.476 0.521 0.570 0.640

Kf × 10,000 1.23 (0.56) 0.52 0.76 1.11 1.56 2.45

Td 0.126 (0.023) 0.091 0.110 0.126 0.139 0.164

4 Wprop 0.207 (0.046) 0.137 0.168 0.204 0.238 0.297

Kp/mgh 1.74 (0.341) 1.41 1.53 1.64 1.84 2.53

Kd/mgh 0.543 (0.095) 0.334 0.475 0.548 0.612 0.705

Kf × 10,000 1.35 (0.79) 0.32 0.68 1.29 1.83 3.06

Td 0.092 (0.021) 0.056 0.076 0.094 0.104 0.129

5 Wvis 0.117 (0.050) 0.051 0.086 0.107 0.135 0.216

Kp/mgh 1.24 (0.103) 1.12 1.19 1.22 1.28 1.53

Kd/mgh 0.496 (0.045) 0.412 0.467 0.501 0.524 0.596

Kf × 10,000 0.802 (0.894) 0.000 0.010 0.062 0.116 0.167

Td 0.210 (0.025) 0.173 0.187 0.212 0.229 0.256

6 Wvis 0.055 (0.026) 0.025 0.038 0.048 0.069 0.121

Kp/mgh 1,24 (0.113) 1.11 1.17 1.23 1.30 1.51

Kd/mgh 0.494 (0.066) 0.397 0.444 0.496 0.526 0.606

Kf × 10,000 0.88 (1.32) 0.00 0.11 0.47 1.06 5.11

Td 0.202 (0.029) 0.146 0.178 0.211 0.226 0.240

7 Wprop+Wvis 0.556 (0.071) 0.435 0.511 0.553 0.590 0.689

Kp/mgh 1.50 (0.137) 1.30 1.40 1.49 1.56 1.81

Kd/mgh 0.482 (0.077) 0.354 0.423 0.468 0.546 0.610

Kf × 10,000 1.19 (0.43) 0.46 0.92 1.17 1.38 1.98

Td 0.132 (0.021) 0.090 0.122 0.133 0.148 0.160

8 Wprop+Wvis 0.431 (0.064) 0.345 0.377 0.424 0.497 0.531

Kp/mgh 1.55 (0.120) 1.39 1.45 1.52 1.62 1.82

Kd/mgh 0.492 (0.085) 0.342 0.435 0.486 0.563 0.623

Kf × 10,000 1.05 (0.47) 0.34 0.73 1.00 1.47 1.92

Td 0.104 (0.018) 0.072 0.093 0.104 0.121 0.127

Mean, standard deviation (SD) and distribution percentile values are based on 40 subjects except for Condition five where one subject’s parameters were excluded. Units on Kp, Kd ,

Kf , and Td are Nm/rad, Nms/rad, rad/(Nms), and s, respectively. Kp and Kd values for each subject were normalized by the subject’s mgh (mass × gravity × center of mass height;

units Nm/rad) value.

in one weight must be associated with an increase in the
contribution of a different sensory system. Specifically, for
eyes closed surface-tilt tests (conditions 1 and 2 where only
proprioception and vestibular cues contribute to balance),Wprop

is the identified parameter and then the vestibular contribution
is given by Wvest = 1−Wprop. Vision also contributes to balance
on conditions 3 and 4 so the combined contribution of visual
and vestibular to balance is given by Wvis + Wvest = 1−Wprop.

The identified sensory weight in the visual stimulus conditions
(conditions 5 and 6) is Wvis so the combined contribution
of vestibular and proprioception is Wvest + Wprop = 1−Wvis.
Finally, in combined surface and visual stimulus conditions
(conditions 7 and 8), the identified sensory weight is the
combined visual and proprioceptive contribution Wvis +
Wprop, so the vestibular contribution is Wvest = 1−(Wvis +
Wprop).
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FIGURE 5 | Mean coherence and identified parameter values for the 8 test conditions from 40 subjects whose stimulus-response behavior was modeled using a

proportional-derivative neural controller plus torque feedback are shown in (A). Subject data points from 2 and 4◦ stimulus-amplitude tests for the 4 test types are

connected by lines with black lines and points indicating smaller parameter values on the 4◦ tests compared to the 2◦ tests and red lines indicating larger parameter

values on the 4◦ tests. Boxplots next to the individual points show median values (center horizontal line), lower and upper 25th and 75th percentile values (lower and

upper edges of the box), approximate 95% confidence limits on the median values (notches on the box), error bars (spanning smallest to largest individual values that

are not considered to be outliers), and outlying data points (+’s). (B) shows values of the normalized integration control factor derived from model fits using a

proportional-integral-derivative neural controller. Parameters from the single subject whose model fit for test condition five was not compatible with stability are not

included.

The time delay parameter was consistently smaller on 4◦ vs. 2◦

amplitude tests on 3 of the 4 test types (surface-tilt eyes open and
closed, and combined surface+ visual tilt stimuli). On these same
3 test types, the time delays were notably smaller (mean= 0.120 s
across the 3 test types) than on the visual stimulus conditions
(mean= 0.206 s).

The neural controller parameters Kp and Kd shown in
Figure 5 were normalized by dividing by mgh to account for the
high correlation of these neural controller parameters with body
mechanics parameters (Figure 6A). The high correlation was
expected since larger subjects must generate a larger corrective
torque to compensate for the larger balance disturbance caused
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FIGURE 6 | Correlation of neural controller and torque feedback parameters

with mgh (body mass excluding feet x gravity constant × center of mass

height above ankle joints). Individual values are shown for 40 subjects from the

surface-tilt, eyes closed, 2◦ tests. In (A), the Kp and Kd parameters are from

the model with proportional-derivative control plus torque feedback and Ki is

from the model with proportional-integral-derivative control. (B) shows a

negative correlation between the torque feedback parameter Kt and mgh.

by gravity with mgh being the disturbance torque due to gravity.
Similarly, the damping parameter Kd was also highly correlated
with mgh. The normalized Kp values were generally larger for
the 3 test types that include surface-tilt simulation (mean = 1.58
across conditions 1–4, 7, 8) than on the visual stimulus conditions
(mean= 1.24 across conditions 5, 6). Both normalized Kp and Kd

values were slightly larger on the 4◦ tests than the 2◦ tests for the
3 test types that include surface-tilt stimulation.

Notably there were several outlying values of normalized Kp

on the surface-tilt eyes open tests (conditions 3 and 4). There was
no indication that these outlying values were due to poor quality
parameter estimates or that these subjects had abnormal balance
control systems. A possible explanation is that a few subjects
under these test conditions used a strategy that maintained
a stiffer balance control system by using co-contraction to
increase a passive contribution to overall corrective torque

FIGURE 7 | Correlation and Bland-Altman plots comparing model fit mean

square error (MSE) and parameters from the model with PD

(proportional-derivative control) plus torque feedback with parameters from a

PID (proportional-integral-derivative) model. Comparisons are shown for

results from 40 subjects on the surface-tilt, eyes closed, 2◦ amplitude test.

production. Because our model did not separately represent a
passive component, the model fit attributed the increased overall
stiffness to a higher value of Kp. Consistent with this explanation,
the shortest time delay parameters identified on test conditions
3 and 4 were associated with the same subjects who had the
largest normalized Kp values. This is consistent because torque
generated by passive stiffness acts without time delay whereas,
the sensorimotor contribution to torque generation has a finite
time delay. Therefore, time delay values from subjects who
made greater use of co-contraction would be expected to have
shorter values since there was only one time-delay parameter
in the model that represents an overall effective time delay.
Additionally, the generally shorter time delay values on 4◦ vs. 2◦

tests across all test conditions could also be attributed a greater
contribution of passive torque. However, other explanations are
also plausible, such as there being different time delays associated
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with the different sensory contributions to balance. For example,
if the time delay of the vestibular contribution to balance was
shorter than other sensory systems, then an up-weighting of the
vestibular contribution at the higher stimulus amplitude could
also cause an apparent overall reduction in time delay.

The torque feedback parameter, Kt , modifies the contribution
of the neural controller to the generation of corrective torque.
Because of the association of torque feedback with overall torque
generation, one might expect that Kt would also scale with
increasing mgh. Kt did show a weak correlation with mgh,
however it was a negative correlation (Figure 6B). The reason
for this becomes evident if the frequency dependent relationship
between sensory error and overall corrective torque generation
is considered. Specifically, torque feedback only affects the
magnitude of torque generation at frequencies below about
0.1Hz such that larger values of Kt result in a greater reduction
in torque. If Kp and Kd are increased without changing Kt ,
the relative influence of Kt increases and there is relatively less
corrective torque generated below 0.1Hz. This effect can be
countered if Kt is decreased when Kp and Kd are increased. The
net effect is that dynamic characteristics of the balance control
system can remain invariant across subjects with different values
ofmgh if Kt is lower in subjects with largermgh.

An alternative version of the balance control model
with a PID neural controller rather than a PD controller
with torque feedback also provided a good representation
of the balance control system (parameters summarized in
Supplementary Table 1). The estimates of parameters that are
common to the two models were very similar and the overall
MSE was nearly identical. Parameters common to the two
model versions are compared in Figure 7 by showing correlation
plots (left column) and Bland-Altman plots (right column).
These parameter comparisons include sensory weights, neural
controller parameters Kp and Kd, and time delay for the two
model versions for the eyes closed 2◦ surface-tilt condition.
Although correlations were uniformly high, the Bland Altman
plots reveal small biases between parameter measures from
the two different models. Across all test conditions the mean
differences between parameters from the model with PID control
and the model with PD plus torque feedback were 0.0025,
0.059, 0.0085, and 0.0034 for sensory weight, normalized Kp,
normalized Kd, and time delay, respectively, corresponding to
percent differences of 0.77, 3.8, 1.7, and 2.4%. Positive differences
and percentages indicate that the parameters from PID model
were greater than from the PD plus torque feedback model.
Unlike the Kt parameter, the integral control parameter Ki of
the PID controller does scale with mgh (Figure 6A). Figure 6A
plots the normalized Ki values of the 40 subjects for test
condition 1.

Table 2 summarizes the VAF measures from the 8 test
conditions and the 2 model configurations (PID and PD
plus torque feedback). Both model configurations were equally
effective in accounting for the experimental evoked sway.
The VAF values were notably smaller on the visual stimulus
conditions compared to all other conditions consistent with low
sensitivity to visual stimulation (i.e., low Wvis values) and low
coherence.

TABLE 2 | Variance accounted for (VAF) measures expressed as percentages

obtained from comparisons of experimental and model simulated responses to

balance perturbations in the 8 test conditions.

Test condition VAF PD + torque

feedback model

VAF PID model

1: Surf Stim 2◦, Eyes Closed 95.1 (2.9) 94.9 (3.6)

2: Surf Stim 4◦, Eyes Closed 94.7 (3.2) 95.1 (4.3)

3: Surf Stim 2◦, Eyes Open 94.2 (5.6) 92.4 (11.0)

4: Surf Stim 4◦, Eyes Open 94.0 (5.8) 89.2 (14.1)

5: Vis Stim 2◦, Eyes Open 73.2 (22.3) 74.9 (23.2)

6: Vis Stim 4◦, Eyes Open 75.1 (19.9) 76.3 (20.9)

7: Surf+Vis Stim 2◦, Eyes Open 97.3 (1.3) 96.2 (2.6)

8: Surf+Vis Stim 4◦, Eyes Open 96.2 (2.3) 96.7 (2.2)

Mean and standard deviation (SD) values are based on 40 subjects except for Condition

five where one subject’s parameters were not consistent with a stable system and were

excluded.

Results From Lowpass Filter Estimates of
CoM
Lowpass filtering of the recorded CoP provided a measure
of CoM displacement that corresponded closely to sway rod
measures of CoM displacement (Figure 8A). Across all subjects
and tests, the cutoff frequency that provided the best fit to sway
rod CoM was tightly distributed with mean 0.469Hz ± 0.0261
SD (Figure 8B). This mean cutoff frequency was used to filter
CoP across all tests. Then this lowpass filter derived CoM sway
was used to calculate FRFs and the parameters were estimated
for the model using PD plus torque feedback. There was a
close correspondence between model parameters derived using
CoM sway rod measures and lowpass filtering (Figures 8C,D).
Across all test conditions, the mean difference between model
parameters from sway rod CoM vs. lowpass CoM was −0.015,
−0.048, −0.0062, 0.005, and −7.9 × 10−6 for sensory weight,
normalized Kp, normalized Kd, time delay, and Kt , respectively,
corresponding to percent differences of −4.7, −3.2, −1.2,
3.5, and −7.3%. Negative differences and percentages indicate
that the parameters from sway rod CoM results were greater
than from lowpass CoM. Descriptive statistics of parameters
derived using CoM from lowpass filtered CoP are given in the
Supplemental Table S2.

Examples From Subjects With Balance
Deficits
The methods related to those described in this paper have been
used to investigate how various disorders affect balance control.
Here we present some examples from previous and ongoing
studies that illustrate how application of CSMI testing can be
used to better understand how balance control is influenced by
specific deficits and to characterize mechanisms that compensate
(or not) for deficits. The examples include results from subjects
with bilateral vestibular loss, unilateral vestibular loss, and mTBI.
An addition example demonstrates the ability of CSMI tests to
identify normal balance function in an individual apparently
intent on disrupting the test procedure.
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FIGURE 8 | Results associated with phaseless lowpass filtering of center-of-pressure (CoP) to estimate center-of-mass (CoM) displacement. (A) Example traces of

CoP and CoM displacement measures from EquiTest recordings, sway rod estimates, and phaseless lowpass filtering. (B) Distribution of cutoff frequencies that

minimized errors between CoM derived from phaseless lowpass filtering and sway rod estimates. (C) Comparison of sensory weights based on sway rod and lowpass

filtered CoP measures of CoM from 40 subjects on the 4 test conditions with 2◦ amplitudes. Gray dashed line shows 1:1 slope. Significance values on all comparisons

in (C) are p < 0.001. (D) Bland Altman plots comparing the sensory weight measures shown in (C).

Proprioceptive sensory weights from 4 subjects with severe
bilateral vestibular loss tested with eyes closed using a
pseudorandom surface-tilt stimulus (peak-to-peak amplitudes
ranging from 0.5 to 4◦) that evoked AP sway are shown in
Figure 9A and are compared to mean results from 8 subjects
with normal sensory function from the same study (6). The
results confirm the expectation that orientation information
from proprioception and the vestibular system are the primary
contributors to balance control when visual cues are not available.
The vestibular loss subjects compensate for the loss by becoming
100% reliant of proprioceptive information as indicated by
the identified proprioceptive weights equal to unity across
all stimulus amplitudes. With increasing stimulus amplitude,
subjects with normal vestibular function decrease their reliance
on proprioceptive information as indicated by the decrease
in proprioceptive weights. The model-based interpretation of
this decreasing reliance on proprioception is that subjects are
increasing their reliance on vestibular cues (Wvest = 1−Wprop)
with increasing stimulus amplitude. The inability of vestibular
loss subjects to modify their proprioceptive sensory weight
with increasing stimulus amplitude confirms the model-based

interpretation of the sensory integration constraint that the sum
of the sensory weights of systems contributing to balance control
equals unity, and confirms the ability of the CSMI methods
to identify sensory weights. Additional confirmation of sensory
integration assumptions has been obtained from experiments
the independently perturbed the vestibular system using galvanic
vestibular stimuli during eyes-closed surface-tilt stimuli (7).

Mean proprioceptive sensory weights as a function of stimulus
amplitude from 11 subjects with well-compensated complete
unilateral vestibular loss in comparison to results from age
matched controls are shown in Figure 9B (11). Tests were
performed eyes closed using a surface-tilt stimulus that evoked
medial-lateral body sway. Head movements evoked by CSMI
tests are of rather small magnitude compared to the range
over which vestibular receptors can encode head motion. One
might assume that subjects with unilateral vestibular loss could
fully compensate for their loss by relying on accurate vestibular
information from their functioning ear and, therefore, would
give CSMI test results that are indistinguishable from controls.
However, this was not the case since unilateral vestibular loss
subjects showed a consistent bias toward increased reliance
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FIGURE 9 | Example results from previous studies showing sensory weight

measures in subjects with bilateral vestibular loss (A) and well compensated

unilateral vestibular loss (B) in comparison to subjects with normal vestibular

function. Bilateral vestibular loss results from Peterka (6) and unilateral loss

results from Peterka (11).

of proprioceptive cues. In particular, at the lowest stimulus
amplitude the unilateral vestibular loss subjects resembled
bilateral loss subjects in their essentially 100% reliance on
proprioception. However, larger stimulus amplitudes could
distinguish between unilateral and bilateral loss subjects since
unilateral loss subjects were able to utilize their remaining
vestibular function, although results from individual subjects
showed wide variations in this ability.

Our ongoing study of mTBI subjects with chronic balance
complaints has identified deficits primarily in the sensory-to-
motor mechanism of balance control (i.e., neural controller) in
a few subjects. An example from one mTBI subject is shown
in Figure 10 together with a control subject whose identified
proprioceptive sensory weight on an example test (eyes open,
2◦ surface-tilt; condition 3) was the same as the mTBI subject
(both had Wprop = 0.42 which were near the high end of the
range for control subjects in condition 3). The FRFs of the
mTBI and control subject were quite different with the mTBI
subject having ∼2 times larger gains in the low frequency region
below∼0.15Hz, and greater phase lags at low to mid frequencies

(Figure 10A). The solid lines show that the model fits accounted
well for the experimental FRF data.

The mTBI subject’s increased sensitivity to the surface-tilt
stimulus in comparison to the control subject was obviously
not attributed to differences in sensory weights since the mTBI
subject and control subject were selected to have the same sensory
weight. The higher sensitivity in the mTBI subject was largely
due to low neural controller stiffness (normalized Kp = 1.18—a
value below that of all control subjects). While this value was only
13% lower than the normalized stiffness of the control subject
(normalizedKp = 1.36), a low stiffness control has an exaggerated
influence on overall response sensitivity due to the feedback
nature of the balance control system. Specifically, the equations
that define dynamic characteristics of the balance control system
predict that the peak mid-frequency FRF gain is approximately:

Peak Gain = Wprop

Kp

mgh

Kp

mgh
− 1

(15)

Substituting the values for the mTBI subject and the control
subject into this equation give peak gain values of 2.8 and
1.6, respectively, which correspond well to the peak FRF gains
shown in Figure 10A. The 1.75 times greater sensitivity of the
mTBI subject to the stimulus is largely attributed to the mTBI
subject’s reduced stiffness, but a second factor also contributed
to the increasing divergence between the mTBI and control
subject’s FRF gain values at the lowest frequencies. Specifically,
the mTBI subject’s torque feedback factor (Kt = 2.7 × 10−5)
was 3.8 times smaller than that of the control subject, and was
smaller than all but one Kt value of the 40 control subjects in
this study in test condition 3. The torque feedback mechanism
contributes to balance control by moving the body toward
an upright position (even if the surface is tilted) to reduce
the overall magnitude of corrective torque generation. But this
torque feedback mechanism has an influence on sway behavior
only at frequencies below about 0.1Hz and it is the mechanism
that accounts for the low frequency decline in FRF gains. If Kt

is very small, the subject’s low frequency sway response to the
tilting surface is determined by Equation 15. The combination
of low stiffness, relatively high sensory weight, and greatly
reduced torque feedback left this mTBI subject with overall poor
balance control—the functional consequences of which were
evident in the sway responses to the stimulus (Figure 10B). The
control subject’s sway was similar in magnitude to the surface-
tilt stimulus, but the mTBI subject’s sway was much larger with
peak sway amplitudes very close to the limits of stance stability.
In fact, only the first 5 cycles are shown because the mTBI subject
fell later in the test.

A final example shown in Figure 11 is from a nominal control
subject whose body sway showed very large oscillatory motions
throughout all trials. But note that the large sway oscillations are
not correlated with the stimulus. Thus, the CSMI analysis was not
greatly affected by the large sway and was able to calculate FRFs
from the stimulus/response data (but with reduced coherence).
Parameter estimates were consistent with parameters from other
control subjects. Although we cannot rule out some organic
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FIGURE 10 | Example results from a subject with chronic balance complaints following mild traumatic brain injury (mTBI) in comparison to a control subject. Model fits

(solid lines) to the frequency response function data in (A) identified equal sensory weight measures of Wprop = 0.42 for both subjects. The divergence between the

mTBI and control results are accounted for by the mTBI subject having a lower value of the neural controller proportional gain parameter, Kp, and lower value of the

torque feedback parameter, Kt. The functional consequences of these differences are that the surface-tilt stimulus evoked much larger sway in the mTBI subject (B).

dysfunction causing this highly usual sway pattern, a plausible
interpretation, based on the normal parameter measures, is that
this subject was purposely interfering with the testing procedure.
This subject’s results were not included with the other control
subjects.

DISCUSSION

This report provides detailed information on how to implement
and interpret results from a CSMI test of balance control.
Test results from 40 subjects provided sufficient information
to establish preliminary normative values for parameters that
characterize the normal performance of sensory integration and
sensory-to-motor mechanisms contributing to balance control
under a variety of test conditions. The CSMI test relies on
a model-based approach to interpret body sway responses to
sustained rotations of the stance surface and/or visual surround.
Many practical decisions were made to successfully implement
CSMI testing, but the decisions imposed limitations that are
discussed below.

Considerations and Limitations
Simplification of Body Mechanics
The CSMI analysis relates CoM body sway angle to a rotational
stimulus that evokes that sway with the body mechanics
represented by a one-segment inverted pendulum while, in
reality, the body is a multi-segment system. Although methods
exist to experimentally identify dynamic properties of multi-
segment body systems (14, 31–33), the complexity of the

identified system escalates rapidly with each added segment. If
a model-based approach is used to estimate system parameters,
reliability of parameter measures can suffer, and the proliferation
of parameters makes the interpretation of results more complex
(28).

Despite the complexity of multi-segment body motions,
physics dictates that CoMmust remain within the base of support
for stability during sustained stance. Therefore, an analysis that
focuses on CoM motion is justified. Additionally, upper and
lower body segments tend to move in phase with one another at
frequencies below about 1Hz, further justifying the relevance of
a one-segment body representation and focus on CoM motion
if perturbing stimuli remain below about 1.5Hz. However, if
measurements of body motion are made at different segmental
levels (e.g., measures of lower and upper body motion), FRFs can
still be calculated relating the stimulus to body segment motion
with interpretations made that mainly consider features of the
FRFs, such as peak gains (13), thus bypassing a model-based
interpretation.

Choice of Balance Control Model
We investigated two versions of the model shown in Figure 1.
One used a neural controller with PD properties and torque
feedback, and the other used a PID controller. An early study
employed PID control (34) and a later study using methods very
similar to the current study also choose PID control (6). However,
this later study demonstrated that the PID control model did
not account well for FRF data below about 0.05Hz because the
predicted phase of the model with PID control converges to zero
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FIGURE 11 | Example results from a subject with no known physiological

deficits but who showed large oscillatory sway patterns (A). The frequency

response function data and parameters identified from the model fit (B) are

compatible with normal balance control suggesting the possibility that the

subject was purposely trying to disrupt testing.

degrees at very low frequencies, while actual FRF data shows
low frequency phase leads. Thus, later studies favored a model
based on PD control with torque feedback that does predict low
frequency phase leads (7, 26). Additionally, the earlier models
that used torque feedback assumed first order lowpass filter
properties (i.e., a leaky integrator) for the torque feedback instead
of the current model that assumes pure integration. However, the
time constant of the leaky integrator was fairly long (about 8 s or
more) meaning that quite low frequency FRF data is needed to
obtain estimates of this time constant. Because the current study
used stimulus periods of 20 s, the lowest FRF frequency of 0.05Hz
was not low enough to accurately estimate the torque feedback
time constant, so a simpler pure integrator was used instead.

Neither version of the model included any parameter that
represents the passive/intrinsic mechanical contribution to
corrective torque generation due to muscle/tendon properties
[P(s) in Figure 1]. A previous study identified passive stiffness
and damping parameters that contributed 10–15% of the overall
corrective torque (6) consistent with a recent study showing a

relatively low contribution of passive properties under similar
conditions (35). The previous study by Peterka (6) used a
backboard to constrain the body to have one-segment inverted
pendulum mechanics and used wider bandwidth pseudorandom
stimuli. These test conditions forced a close correspondence
between the model and the actual body mechanics, possibly
facilitating reliable estimates of passive properties. In the current
study, we investigated applying model structures that included
passive stiffness and/or damping parameters but found that
we were not able to reliably estimate passive properties and
therefore chose to not include passive components in the final
models. In particular, in models that included passive and
active stiffness, the passive and active stiffness parameters could
vary widely across subjects, but the sum of passive plus active
stiffness parameters was typically equal to the value of the active
stiffness identified using a model without passive stiffness. A
recent sensitivity analysis of this type of model supports the
notion that there is considerable interaction among parameters,
making unique identification difficult among parameters, such
as passive and active stiffness, that have similar effects on the
FRFs (27). The addition of EMG recordings of leg muscles can
apparently enhance the capabilities of parameter identification
by making identification of passive parameters more reliable as
well as allowing for identification of additional parameters related
to muscle activation (36). However, for clinical applications,
the additional complexity of EMG recording may not be
justified unless there are specific patient populations were it
would be beneficial to distinguish between passive and active
contributions.

The effect of the choice to exclude a passive component is
that other parameters, mainly neural controller stiffness and
damping, and the time delay parameter, could be affected.
That is, a simple model of passive properties could include
a stiffness factor representing length-tension properties of
muscles and tendons, and a damping factor representing force-
velocity properties. Because these passive properties have very
similar dynamic characteristics as the active neural controller
parameters, except that the actively generated corrective torque
is delayed in time, it is likely that parameter identification
procedure would effectively include the passive contributions
in the neural controller parameters. Because there is no time
delay between muscle stretch and generation of passive torque,
a subject whose system had a relatively large contribution
from passive mechanical properties (possibly modulated by co-
contraction) would likely bias the overall time delay estimate
toward lower values. Indeed, a few subjects on eyes open
surface tilt test (conditions 3 and 4) had large, outlying stiffness
(Kp) values (Figure 5). These were the same subjects with
corresponding short time delays (Td) on these test conditions.

Although we were not able to reliably identify passive
muscle/tendon contributions, a recent study (13) using very
similar methods reported identifying passive stiffness and
damping values similar to those reported in Peterka (6).

Additional motivations for investigating the two model
versions were that the PID model continues to be used (13, 15)
and that the PID model may be entirely adequate for quantifying
and parameterizing balance control properties. Practical stimuli
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for clinical applications favor shorter tests. To maintain enough
cycles to allow for adequate across cycle averaging, the cycle
durations of the pseudorandom stimuli need to be shorter. The
shorter cycle durations limit the lowest frequencies of the FRFs,
and it is only at low frequencies where torque feedback provides
a better accounting for FRF data than PID control. The VAF
results (Table 2) indicate that both model versions can accurately
represent the available data.

Results shown in Figure 7 illustrate that parameters shared
by the two model versions (sensory weights, Kp, Kd, and Td)
gave very similar results. However, there were some differences
between parameters from the two model versions. The largest
difference was in normalized Kp where the Kp values from PID
model were on average 3.8% larger across all test conditions
than from the PD plus torque feedback model. Differences were
smaller in the other parameters but with values from the PID
model always being slightly larger.

The time delay parameter was consistently identified as having
a larger value in the visual stimulus conditions compared to
the surface stimulus conditions (Figure 6). This could reflect an
inadequacy of the Figure 1 model where only one time delay
parameter is included. Effectively this assumes that time delays
associated with the sensing and processing of proprioceptive,
vestibular, and visual systems are all the same. The longer overall
time delay identified with visual stimuli could be consistent with
there being a longer time delay in visual contribution to balance
control compared to other sensory systems.

Choice of Stimuli
For a clinical test, there is a tradeoff between test duration and
accuracy/bias of estimated parameters. Bootstrap analysis was
used to investigate this tradeoff using data available from the 40
participants to estimate the changes in parameter distributions
and mean and median values of parameters assuming tests had
included cycle averages ranging from 3 to 20 cycles (Figure 4).
Parameter distributions narrowed with increasing cycles with
results showing that results based on 3 cycle averages were
undesirable due to larger biases in parameters estimates. In most
test conditions, measures based on 6 cycle averages were likely
adequate for clinical application based on reduced bias and
shorter test times. However, tests based on an 11 cycle averages
are a better choice for the visual tests (conditions 5 and 6) where
sway responses were lower and signal-to-noise of the data were
lower (see coherence results in Figure 5A).

The 4 different test types were each performed at 2 different
stimulus amplitudes. The motivation for performed the same
type of test at 2 amplitudes was to have a basis for identifying
sensory re-weighting abnormalities as seen in previous results
from bilateral vestibular loss subjects (Figure 9A). Our choice of
2 and 4◦ peak-to-peak stimulus amplitudes was based on concern
over mechanical limitations of the EquiTest device that showed
gear backlash problems in the surface rotationmotor that affected
stimulus repeatability, with the repeatability being poorer at
lower stimulus amplitudes. In retrospect, a stimulus with an
amplitude smaller than 2◦ would have been a better choice since
a 2◦ stimulus can cause falls in subjects with abnormally low
neural controller stiffness and torque feedback (Figure 10). Other
similar recent studies have used lower amplitudes (0.5 and 1◦)

(13, 15, 19). Lower amplitudes have the additional potential
benefit that subjects may not even perceive that their balance
is being perturbed, and yet they respond reliably even to a 0.5◦

stimulus (6). However, longer stimulus durations should be used
to avoid measurement bias due to low signal-to-noise (Figure 4).

The desire to limit the total duration of clinical testing also
impacts the decision about which tests to include in a test battery.
Of the 4 test types we investigated, one might argue that little
additional information was gained by including both eyes-closed
surface stimulation and dual surface and visual stimulation since
parameters from these tests were quite similar. One might also
question the utility of visual stimulus tests since results were less
reliable compared to other tests. However, before deciding on a
final test battery, more results are needed from patients with a
broad range of pathologies to determine which tests are best able
to distinguish normal from abnormal balance function.

Simplified Measures of Body Sway for CSMI Analysis
We investigated the possible use of a simple method for
measuring AP CoM sway based on offline lowpass filtering of
CoP. Brenière (22) suggested that CoM could be recovered from
CoP by what amounts to appropriate symmetric (phaseless)
lowpass filtering. When 0.47Hz lowpass filter estimates of CoM
were used for FRF calculations and then for model parameter
estimation, there was good correspondence between parameters
obtained using sway rod and lowpass filtered CoM measures.
The close correspondence suggests that clinical tests can be based
on the lowpass filter method for measuring CoM. However,
differences were large enough that parameter norms should not
be considered to be fully equivalent to those using more direct
estimates of CoM motion. Nonetheless, implementation of the
lowpass filter method is easier to perform, potentially making it
a more practical tool for clinical use. This method reduces the
overall test duration and requires less expertise in setting up and
performing tests.

Also of note is that the EquiTest system provides CoM
displacement measures. As shown in Figure 8A, this measure
lags CoM sway rodmeasures and is larger in amplitude indicating
that it is derived by filtering the CoP using a conventional (not a
phaseless) filter with a cutoff frequency higher than our optimal
0.47Hz cutoff frequency. Thus, FRFs derived using the EquiTest
CoMmeasures would not provide comparable results.

Implementation
One goal of this study was to make available a detailed
explanation of the methods to performCSMI testing. To this end,
Matlab programs used to create stimuli, analyze data to obtain
FRFs, and identify model parameters that optimally account for
the FRF data are provided in the Supplementary Material.
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