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Introduction: Eslicarbazepine acetate (ESL) is an antiepileptic drug approved as

monotherapy or add-on for the treatment of epilepsy with seizures of focal onset. ESL

owns a good profile in terms of efficacy and tolerability, but its effects on EEG activity and

connectivity are unknown. The purpose of this study was to investigate EEG activity and

connectivity changes after ESL treatment in persons with focal epilepsy (PFE).

Material and Methods: We performed a multicentre, longitudinal, retrospective,

quantitative EEG study on a population of 22 PFE, and a group of 40 controls.

We investigated the ESL-related changes of EEG power spectral activity and global

connectivity [phase locking value (PLV), amplitude envelope correlation (AEC) and

amplitude envelope correlation of orthogonalized signals (Ortho-AEC)] for standard

frequency bands (delta to gamma). Seizure frequency was evaluated to assess ESL

efficacy in our cohort.

Results: ESL significantly enhanced both global power spectral density and connectivity

for all frequency bands, similarly for all connectivity measures. When compared to the

control group, Post-ESL power was significantly higher in theta and gamma band.

Pre-ESL connectivity values were significantly lower than control for all frequency bands.

Post-ESL connectivity increased and the gap between the two groups was no longer

significant. ESL induced a 52.7 ± 41.1% reduction of seizure frequency, with 55% of

clinical responders (reduction of seizures ≥50%).

Discussion: ESL therapy induces significant enhancement of brain activity and

connectivity. Post-ESL connectivity profile of epilepsy patients was similar to the one

of healthy controls.
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INTRODUCTION

Eslicarbazepine (ESL) is an antiepileptic drug (AED) approved for the treatment of epilepsy with
seizures of focal origin (1). ESL is more effective than placebo as add-on therapy (2), is effective and
safe in monotherapy in patients with uncontrolled partial-onset seizures (3–5) and has better side
effects profile when compared to carbamazepine and oxcarbazepine (6).
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The molecular mechanism on which ESL relies to express
its therapeutic action is mainly related to the inactivation of
voltage-gated sodium channels, similarly to oxcarbazepine, and
carbamazepine (7). This mechanism is very specific, as ESL
does not bind the receptors for benzodiazepine, GABA and
glutamate (8). Differences between ESL and oxcarbazepine and
carbamazepine depend on a variety of factors, but largely on the
pharmacokinetic profile (7).

Very little is known on the effects of this medication
on the brain cortex as a system. AEDs have an effect on
brain networks and although the literature is poor of studies
explicitly addressing this topic, there is plenty of evidence
that antiepileptic medications influence cortical rhythms and
networks as measured by EEG (9–14).

EEG is a sensitive and reliable tool to substantiate cortical
function. In particular, each frequency band power (alpha,
beta, theta, delta, gamma) owns a functional significance. In
epilepsy patients, the study of rapid rhythms can help in better
understanding positive AED effects of cognition, attention,
perception and language networks. On the opposite, the study
of slow frequency bands allows to detect effects on memory,
drowsiness and cortical plasticity [for a review see Assenza
et al. (15)]. In a recent study our group demonstrated that ESL
is an AED with a very good efficacy against seizures with a
positive impact on sleepiness, depressive symptoms and quality
of life (16).

Here we have performed a multicentric, longitudinal study
to investigate the impact of ESL on cortical activity and
connectivity, as explored by quantitative EEG, in a population of
persons with seizures with focal onset (PFE).

MATERIALS AND METHODS

Patients and Study Design
Twenty-two PFE (ILAE definition, mean age=46 ± 16.7 (SD);
46% females) and a control group of forty healthy subjects
(mean age = 50.6 ± 19.04; 45% female, p > 0.200 consistently)
were enrolled at the epilepsy clinic of Department of Human
Neurosciences enrolled of Policlinco Umberto I Universitary
Hospital of Rome and of Campus Bio-Medico University
of Rome. The study was approved by the ethic committee
of Policlinco Umberto I Ethic Board—Rome—and Campus
Biomedico University Ethic Board—Rome-. All patients signed
a written informed consent. All procedures were performed
in agreement with the 1964 Helsinki declaration and its later
amendments.

For the epilepsy group the inclusion and exclusion criteria
were the following:
Inclusion:

- PFE > 18 years-old;
- two clinical EEG recordings occurring immediately before
(<30 days) ESL assumption and after at least 3 months of ESL
assumption;

- resting state EEG free of relevant artifact > 5min.

Exclusion:

- PFE taking neuroactive drugs other than antiepileptic drugs;

- antiepileptic medication titration in between the two EEG
recordings.

- Clinical seizures in the 24 h before EEGs

Healthy subjects were enrolled among the relatives of patients
investigated at the outpatient clinic, hospital personnel, and
volunteers and were interviewed by a neurologist to rule
out medical conditions potentially biasing the study. Patients
underwent standard clinical EEG recording before starting
eslicarbazepine acetate and after a 3 months period of follow-up.
Detailed clinical info is reported in Table S1.

EEG Recording and Analysis
Nineteen channel-EEG was acquired with a Micromed recorder
(Micromed, Mogliano Veneto, IT) between 11:00 and 13:00 a.m.
and between 16:00 and 18:00 p.m to minimize drowsiness.
The electrodes were placed according to the international 10–
20 system (Fp1, Fp2, F3, F4, C3, C4, P3, P4, F7, F8, T3, T4,
T5, T6, O1, O2, Fz, Cz, Pz). The reference was placed on
FPz and the ground on FCz. Impedance was kept below 5
kOhm for all electrodes. The sampling rate was set to 256Hz.
Eye blinks, eye movements and electrocardiogram (EKG) were
recorded using dedicated bipolar electrodes. The resting EEG
recording lasted 5min and was performed with patients with
closed eyes, seated on a comfortable armchair in a quiet room.
Patients were instructed as follows: “Free your mind, do not
think about anything and just relax.” Subjects were also asked
to keep their regular wake/sleep cycle before participation. Pre
ad Post medication EEGs were measured always using the same
apparatus.

EEG signals were analyzed using the EEGLab Toolbox (17),
the Brainstorm Toolbox (18) for Matlab (The Math Works Inc,
Natick, MA), and in home Matlab code. Both EEGLab and
Brainstorm are documented and freely available for download
online under the GNU general public license (https://sccn.ucsd.
edu/eeglab/ and http://neuroimage.usc.edu/brainstorm). EEG
pre-processing consisted of: (a) visual inspection for rejection
of possible electrographic seizures, interictal epileptic activity,
bad channels, (b) [1–70Hz] band-pass filter, (c) [50Hz] notch
filter, (d) Independent Component Analysis (ICA) (19) to remove
artifacts related to heartbeat and eye movements, (e) spline
interpolation of previously rejected bad channels, (f) re-reference
to average reference (20, 21).

Epochs containing interictal epileptic activity (spikes, spike
and wave complexes, spiky waves, bouffè of monomorphic
slow waves) were rejected. Those PFE with one EEG recording
containing more than 20% of interictal epileptic activity were
excluded (22).

Brain Network Analysis: Resting State Activity and

Connectivity
To assess the effect of ESL on brain networks we performed
measures of resting state brain activity and connectivity. As
measure of activity, we computed the Power Spectrum Density
(PSD) by standard FFT approach (Welch procedure: average of
non-overlapped windows with a duration of 2 s) for the following
frequency bands (delta: 2–4Hz; theta: 5–7Hz, alpha: 8–12, Hz,
beta1: 13–20Hz, beta2: 21–29Hz, gamma: 30–60Hz). To obtain
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a measure of global activity, we averaged PSD measures over all
channels.

As for connectivity, we focused on the Phase Locking
Value (PLV). Phase Locking Value is a very popular measure
of non-directional frequency-specific synchronization reflecting
long-range integrations. It assesses the extent to which the
phase difference between two signals changes over time
and is a measure of cortical synchronization based on
phase covariance between signals. PLV owns a good time
resolution and provides insight on the synchronization of fast
changing electrophysiological dynamic. High PLV indicates
higher synchronization (23–27). We measured PLV for all
possible channel combinations and averaged to obtain a measure
of global connectivity. We focused on the same frequency bands
as for brain activity (namely, delta: 2–4Hz; theta: 5–7Hz, alpha:
8–12, Hz, beta1: 13–20Hz, beta2: 21–29Hz, gamma: 30–60Hz).

The low number of sensors and the detrimental effect of
volume conduction on estimation of EEG connectivity might
be an issue when assessing connectivity between sensors or
brain regions (28). Therefore, we also estimated as additional
measures of cortical connectivity. In particular we focused on
the Amplitude Envelope Correlation (AEC) and its variant
estimated on orthogonalized signals (Ortho-AEC) that regresses
out lag=0 synchrony and minimizes volume conduction
issues. To be noted, all connectivity measures estimated after
orthogonalization do not only remove the influence of volume
conduction, but also the true lag=0 connectivity. Both AEC
and Ortho-AEC capture different features of the connectivity
pattern as compared to PLV (29). In further details, AEC
measures the linear correlations between the amplitude of the
envelops of band-pass filtered signals, relies on the temporal
dynamics of relative slow power fluctuations and provides an
EEG connectivitymeasure resembling—at least on some extent—
connectivity patterns unveiled by fMRI analysis of BOLD signal
(30–33). Finally, to further get rid of the volume conduction
bias, we focused on global connectivity and on a within subject
pre-post medication paired comparison.

Clinical and Behavioral Assessment
ESL efficacy was measured on the percentage of seizures
reduction. We defined as responders those patients with seizure
reduction ≥50% and non-responders the remaining ones.

As EEG activity is very sensitive to sleepiness and cognitive
performance (19), we searched in patients’ files for the Epworth
Sleepiness Scale (ESS) and Stanford sleepiness scale to assess
sleepiness and the Beck Depression Inventory-II (BDI) scale to
assess depression (34, 35). Sleepiness and depression scores were
available for 12 out of 22 patients.

Statistical Analysis
Statistical analysis was performed using the IBM SPSS Statistics
(Ver. 24) and Matlab (Mathworks). Data distribution was
checked by means of Kolmogorov-Smirnov test. The effect of
ESL on global cortical power and connectivity within the epilepsy
group was tested with a repeated measure ANOVA with Band
(six levels: Delta, Theta, Alpha, Beta1, Beta2, Gamma) and Time
(two levels: Pre-ESL and Post-ESL) as within subject factors. In
order to compare the epilepsy group and the control group, we

FIGURE 1 | Power Spectral Density (PSD) Pre and Post eslicarbazepine

acetate and for the control group. PSD is expressed as average across

channels. Error bars represent standard error of the mean. PSD was globally

higher post-eslicarbazepine acetate than before.

applied a mixed model repeated measure ANOVA, with Band
(six levels: Delta, Theta, Alpha, Beta1, Beta2, Gamma) as within
subject factor and Group two levels: Control and Pre-ESL (or
Post-ESL) as between subjects factor. The Greenhouse-Geisser
correction was applied when needed. A paired t-test was used to
study changes of behavioral scale scores. The significance level
was set to alpha= 0.05.

RESULTS

Pre-post Comparison Within the Epilepsy
Group
EEG Activity
The repeated measure ANOVA showed a significant main effect
of the factor Time [F(1, 21) = 7.288, p= 0.013], suggesting a global
increase of connectivity after ESL. No significant Band by Time
interaction was found [F (3.081, 64.692) = 2.657, p= 0.054], ruling
out a specific ESL effect for selected frequency bands (Figure 1).
A significant main effect of the factor Band [F (2.598,54.551)

=1077.993, p < 0.001] was also found, suggesting an expected
difference in power across bands.

EEG Connectivity
The repeated measure ANOVA revealed a significant main effect
of the factor Time [F (1, 21) = 4.359, p= 0.049] related to a global
increase of connectivity after ESL (Figure 2). No significant
Band by Time interaction was found [F (2.702, 56.736) = 0.196,
p = 0.881], ruling out a specific ESL effect for selected frequency
bands. A significant Band main effect [F (2.088, 43.843) = 6.101,
p = 0.004] confirmed the expected connectivity modulation
over frequency bands. Similar results were found on different
measures of brain connectivity. For AEC a significant factor Time
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FIGURE 2 | Connectivity Pre and Post eslicarbazepine acetate and for the control group. Left panel shows PLV, right panel shows AEC, and AEC computed on

orthogonalized data. Connectivity was higher post-eslicarbazepine acetate than before. Pre-ESL connectivity values were significantly lower than control for all

frequency bands. Post-ESL connectivity increased and the gap between the two groups was no longer significant. A similar pattern was observed for all connectivity

measures under investigation. *denotes p < 0.05; **denotes p < 0.001.

[F (1, 21) = 5.277, p = 0.032], together with lack of Band by Time
interaction, suggested a global higher connectivity level Post-
ESL as compared to Pre-ESL. A similar trend, although without
reaching statistical significance, was revealed by the analysis of
the orthogonalized version of AEC [Factor Time: F(1, 21) = 2.527,
p= 0.127] (Figure 2).

Comparison Between Epilepsy and Control
Groups
EEG Activity
The comparison between Pre-ESL and controls revealed
no significant difference between groups [Factor Group: F

(1,60) = 0.695, p > 0.200], but a significant Band by Group
interaction [F(5,300) = 3.298, p = 0.006]. The post-hoc tests,
however, did not reveal any significant difference after Bonferroni
correction. The comparison between Post-ESL and controls
also revealed a significant Band by Group interaction [F

(5,300) = 4.979, p < 0.001] related to a significantly higher
Post-ESL power for Theta and Gamma bands (Bonferroni-
corrected post-hoc comparisons p = 0.018 and p = 0.06
respectively).

EEG Connectivity
The Comparison of PLV values between Pre-ESL and Controls
revealed a significant factorGroup [F (1, 60) =15.565, p< 001] and
no interaction, suggesting that PLV connectivity was significantly
higher in the controls as compared to epilepsy patients before
ESL administration. Notably, no significant Group difference nor
interactions were found when comparing Controls vs. Post-ESL

[main factor p = 0.129, interaction factor p > 0.200], suggesting
that ESL reduced the gap between the epilepsy group and controls
for all frequency bands (Figure 2).

The same profile was confirmed for the other two measures of
brain connectivity, namely AEC, and its orthogonalized version.
Indeed, in all cases the comparison between Controls and
Pre-ESL revealed a significant Group factor and no significant
interactions [AEC: Factor Group F (1, 60) = 22.815, p < 0.001,
Group by Band interaction p > 0.200; Orthogonalized AEC:
Factor Group F (1, 60) = 10.281, p = 0.002, Group by Band
interaction p> 0.200], whereas the comparison between Controls
and Post-ESL did not reveal any significant Factor Group or
Group by Band interaction [AEC: Factor Group F (1, 60) =3.875,
p= 0.054, Group by Band interaction p> 0.200; Orthogonalized
AEC: Factor Group F (1, 60) =3.351, p = 0.064, Group by Band
interaction p > 0.200] (Figure 2).

Clinical and Behavioral Assessment
Twelve patients responded to ESL (54.6%; 6 seizure free) after
an average period of treatment of 83.1 ± 19.6 days. None of
our patients increased the seizure frequency. The mean seizure
reduction was 53.2± 42.6% (mean± standard deviation; median
50%, ranges 0–100%). In the subgroup of patients with available
behavioral data, after ESL, sleepiness assessment showed an
improvement of ESS (ESS Pre-ESL 6.3 ± 3.1; ESS Post ESL 3.88
± 2.7; p < 0.001) and an unchanged SSS (p = 0.08). Depression
values were also ameliorated after ESL (BDI, p = 0.006) with
respect to the Pre.
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DISCUSSION

In the present study we demonstrated that ESL treatment induces
cortical EEG activity and connectivity changes in a population of
PFE.

The power increase within the epilepsy group was broadband,
from delta to gamma. A broadband cortical activity enhancement
can depend upon an increased number of neurons firing together
or the same group of neurons firing more synchronously (36).
The joint increase of activity and connectivity might support a
better and stronger engagement of large cortical regions in resting
state networks. It is well-known that the epileptic focus modifies
the connectivity of the affected cortex with its physiologically-
connected regions so that patients with epilepsy show lower
global connectivity than controls, with connectivity levels pairing
more severe epilepsy conditions (37). We confirmed that patients
exhibits lower connectivity levels as compared to controls but–
importantly- we also demonstrated that after a 3 months course
of eslicarbazepine there was a significant connectivity increase,
up to a level very close to that of healthy subjects.

As we observed a selective power increase in theta and gamma
band when comparing Post-ESL vs. healthy controls, we could
also speculate that ESL exerts a specific action on each frequency
band. Although this finding might be a false positive as Pre-ESL
theta and gamma activity was slightly higher in epilepsy patients
than healthy (Figure 1), we should note that gamma oscillations
facilitate synchronization and information transfer, are a positive
indicator of brain function and are often associated to clinical
improvement (38). Theta (and delta) oscillations can indicate
drowsiness (but in our cohort there was no clinical sleepiness
increase), augmented cognitive load and network reshaping
through long-lasting brain plasticity (36, 39, 40). Finally, the
increase of alpha and beta oscillations might improve the cortical
resilience to epileptic activity. Alpha oscillations are prominently
engaged in visual and attention networks and play an inhibitory
role (41–45). Beta activity is largely a residential rhythm of the
pyramidal and extra-pyramidal motor network and is considered
the player of information gating involved in the maintenance of
the status quo of neuronal networks (46, 47).

This study was not designed to compare multiple antiepileptic
medications, however we would like to underline that ESL has
a similar tolerability profile to recent AED such as levetiracetam
(onlymild impact on cognition and EEG) and behaves potentially
better than carbamazepine and topiramate, which selectively
increase delta and theta bands, reduce faster cortical rhythms and
more often result in cognitive impairment (11, 13).

Very recently the study of brain connectivity and networks
has led to a new conceptualization of focal epilepsy, showing
that it is neither involving the entire brain nor a single
cortical spot, rather specific brain networks (48). Epileptic
activity drives a certain degree of plastic reorganization of brain
networks (49). The healthy connections across multiple areas
become impaired and patients show increased connectivity of
the networks close to the epileptic focus (local networks) and
decreased connectivity of long-range networks (37). This re-
organization can be clinically relevant, as it can improve the

accuracy of the diagnosis (50), help the presurgical planning
(51), and represent a marker of the efficacy of epilepsy
surgery, as clinical outcome correlates with the degree of
restoration of network architecture (52). Rather than be simple
proxy of the underlying pathology, network reorganization is
therefore a key aspect, that makes focal epilepsy a network
disorder. Here we demonstrated a consistent change of cortical
connectivity unveiled by three different measures and support
the concept of focal epilepsy as a disorder affecting the cortical
networks (19).

Future studies should rely on a sample size sufficiently large
to allow the characterization of the topographical distribution
of the effects in relation to the location of the epileptic
focus and to other determinant variables, such as: etiology,
disease duration, age (54). This experiment was not directly
designed for a clinical application and the results found
on group level cannot be applied at single subject level in
a clinical setting. Nonetheless, our study demonstrated that
simple measures extracted from EEG recording performed in
a clinical setting can unveil remarkable effects of medication
and, once replicated on larger and better controlled cohorts,
might be considered for possible future clinical applications.
Such approach could be of translational interest as it might be
hypothesized to pursue specific and positive changes of brain
activity and connectivity with pharmacological and non-invasive
brain stimulation treatments (53, 55, 56).

In conclusion, in this proof-of-principle study we
demonstrated that ESL treatment produced an increase in
global cortical power and connectivity and encourage the study
of quantitative EEG as a potential tool for assessing epilepsy and
the effects of antiepileptic medications.
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