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In developed countries, the second leading cause of death is stroke, which has

the ischemic stroke as the most common type. The preferred diagnosis procedure

involves the acquisition of multi-modal Magnetic Resonance Imaging. Besides detecting

and locating the stroke lesion, Magnetic Resonance Imaging captures blood flow

dynamics that guides the physician in evaluating the risks and benefits of the reperfusion

procedure. However, the decision process is an intricate task due to the variability

of lesion size, shape, and location, as well as the complexity of the underlying

cerebral hemodynamic process. Therefore, an automatic method that predicts the

stroke lesion outcome, at a 3-month follow-up, would provide an important support

to the physicians’ decision process. In this work, we propose an automatic deep

learning-based method for stroke lesion outcome prediction. Our main contribution

resides in the combination of multi-modal Magnetic Resonance Imaging maps with

non-imaging clinical meta-data: the thrombolysis in cerebral infarction scale, which

categorizes the success of recanalization, achieved through mechanical thrombectomy.

In our proposal, this clinical information is considered at two levels. First, at a population

level by embedding the clinical information in a custom loss function used during training

of our deep learning architecture. Second, at a patient-level through an extra input

channel of the neural network used at testing time for a given patient case. By merging

imaging with non-imaging clinical information, we aim to obtain a model aware of the

principal and collateral blood flow dynamics for cases where there is no perfusion beyond

the point of occlusion and for cases where the perfusion is complete after the occlusion

point.

Keywords: stroke, machine learning, deep learning, MRI, prediction

1. INTRODUCTION

Stroke ranks second as leading cause of death worldwide (1), with ischemic stroke being the most
common type (2). Ischemic stroke arises from an artery occlusion caused by local thrombolysis,
hemodynamic factors or embolic causes. Due to artery occlusion, the surrounding area suddenly
suffers a blood flow reduction, leading the cells to a transient state slightly above cell death.
The hypo-perfused area concerns the tissue at risk, also known as salvageable tissue, that can
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eventually reach a non-viable point of failure even after flow
restoration (3, 4). Therefore, stroke lesion can be characterized by
a core tissue, encompassed by brain dead tissue, and a penumbra
tissue corresponding to the salvageable tissue. The temporal
evolution of a stroke lesion can be characterized into four main
phases: hyper-acute (initial event), acute (6 h after event), sub-
acute (from 24 h) and chronic phase (from 2 weeks) (5).

Neuroimaging plays an essential role in the diagnosis and
treatment of stroke, where Computed Tomography (CT) and
Magnetic Resonance Imaging (MRI) are the preferred imaging
modalities. However, MRI provides a better detection and
assessment of potentially salvageable tissue, due to its multi-
spectral property (6). After diagnosing and evaluating the stroke
lesion through neuroimaging acquisitions, the clinicians need
to plan the treatment phase. Such phase encompasses either
mechanical thrombectomy or thrombolysis (7, 8) to revascularize
the hypo-perfused tissue, which is only viable for the sub-acute
phase. Therefore, in a short period of time, expert physicians
must carefully evaluate the associated risks and benefits of
the clinical intervention, namely the volume of hypo-perfused
tissue potentially salvageable vs. the risk of causing haemorrhage
or other complications (7, 9). If performed, the reperfusion
success is assessed via the standardized Thrombolysis in Cerebral
Infarction (TICI) scale (9).

Predicting stroke lesion outcome (i.e., at 3-month follow-
up), and the potential efficacy of the treatment according to the
nature of the lesion, has a great potential to guide the decision
making of physicians. An automatic stroke tissue outcome
prediction method would help the physician in such time-
critical decision-making process (10). In this paper, we propose
a novel end-to-end deep learning architecture that combines
imaging information with clinical meta-data, the TICI scale. Our
method incorporates clinical meta-data at two levels. First, at the
population level, which implicitly encodes expected correlations
between tissue loss and the TICI score into a custom loss function
of the network. Second, at a patient level, which explicitly encodes
the TICI score of each patient as an extra input channel of
the network. To evaluate our proposal, we used the publicly
available ISLES 2017 dataset, where we show the potential value
of incorporating imaging and clinical meta-data for stroke tissue
outcome prediction at a 3-month follow-up.

1.1. Previous Work
Several methods have been proposed for stroke lesion
segmentation (11). However, only recently approaches based on
machine learning have been proposed for ischemic stroke lesion
outcome prediction. These proposals are based on multivariate
linear regression models (12–14), decision trees (15), and
CNN-based deep learning architectures (16, 17).

Scalzo et al. (12) proposed a framework to predict stroke tissue
outcome, 4 days after clinical intervention (thrombectomy),
based on Fluid Attenuation Inversion Recovery (FLAIR) MRI
sequence, and Apparent Diffusion Coefficient (ADC) and
Time-to-Maximum (Tmax) maps, if available. Tissue outcome
prediction was achieved through a regression model that learns
the behavior of neighbouring voxels within a cuboid. Kemmling
et al. (14) used CT and MRI perfusion maps alongside clinical

information, encompassing the reperfusion success. The authors
used a generalized linear model to consider the effect of multiple
clinical variables when performing the stroke lesion outcome
prediction, however, each voxel is considered independently,
disregarding spatial context. Rose et al. (13) proposed a two-
stage approach for stroke lesion outcome prediction based on
perfusion maps, Cerebral Blood Flow (CBF), Cerebral Blood
Volume (CBV), Mean Transit Time (MTT), and Diffusion-
Weighted Imaging (DWI) maps. Initially, the method defines
a region of interest (ROI) from the intensity signal of the
perfusion and diffusion maps. Afterwards, a Gaussian mixture
model, trained in different sets of MRI maps, performs stroke
outcome prediction. McKinley et al. (15) also used a two-
stage classification, where each stage comprehends two Random
Forests (RFs). In the first stage, the method focusses on lesion
delineation, through the definition of a ROI, where each classifier
considers features extracted from different sets of MRI maps.
After defining the hypo-perfused ROI, a second set of two
RFs performs a precise prediction of the stroke lesion. These
classifiers are trained on different sets of patients. One classifier
is trained with patients with no reperfusion, to obtain worst case
scenarios, whereas a second classifier is trained in patients with
good reperfusion, therefore predicting scenarios where hypo-
perfused tissue has higher chances of being salvaged. Afterwards,
the final prediction is obtained by combining the results of both
classifiers, using a logistic regression model.

Most recent methods are based on deep learning. Choi
et al.(17) employed an ensemble of 12 deep learning methods,
divided in two different groups. One group performs voxel-wise
segmentation, based on the U-net architecture (18) adapted for
3D data, totalling four models. The other group encompasses
Fully Connected Networks architectures with different patch
sizes, to perform classification. The final prediction results from
a weighted merging.

In previous approaches, the clinical information related to the
success of reperfusion (TICI scale) has either been used within
multivariate linear regression models (14), or to dichotomize the
training data to train specific RFs models (15). Nonetheless, non-
imaging clinical information has up to our knowledge not been
integrated in deep learning architectures to predict stroke lesion
outcome.

1.2. Contributions
In this paper, we propose an automatic method for stroke lesion
outcome prediction, whose main contributions are:

1. The combination of imaging and non-imaging clinical data in
an end-to-end deep learning architecture.

2. The development of a customized loss function to incorporate
clinical information during the learning phase. Therefore,
learning relationships between imaging and non-imaging
information at a population level.

3. The inclusion of clinical information during the prediction
phase at a patient-specific level, allowing us to perform
predictions of different outcome scenarios in clinical
environment.
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The following sections are organized as follows: section 2
describes the proposed method. Section 3 details the database
used and evaluation methods. Section 4 presents the results and
its discussion. Finally, section 5 summarizes up the main aspects
of the proposal.

2. METHODS

Stroke lesion outcome prediction consists of characterizing
follow-up changes in location and extension of lesions over
time from multi-sequence MRI and clinical information. In our
proposal, to perform tissue outcome prediction, the method
assigns to each voxel of the MRI volume one out of two classes,
healthy tissue or stroke lesion. The following subsections describe
the main steps of our proposal.

2.1. Pre-processing
Our proposal uses diffusion and perfusion maps, adding up to
six MRI parametric maps: diffusion ADC map, and perfusion
relative Cerebral Blood Flow (rCBF), relative Cerebral Blood
Volume (rCBV), Mean Time to Transit (MTT), Time-to-Peak
(TTP), and Tmaxmaps. Figures 1, 2 show two cases ofMRImaps
with different TICI scores, alongside the manual segmentation
(ground truth) obtained from a T2 sequence at a 90 day follow-
up.

ISLES 2017 dataset provides MRI acquisitions from different
centers (19). So, the perfusion and diffusion maps were acquired
with different sets of configurations. Therefore, for each patient
we first resized all maps to a common volume of dimension
of 256 × 256 × 32. Afterwards, the ADC maps were clipped
between [0, 2, 600] × 10−6mm2/s and the Tmax maps were
clipped to [0, 20s], since values beyond these ranges are known to
be biologically meaningless (15). As a final step of pre-processing,
we applied a linear scaling across all maps transforming them to
the range [0, 255].

2.2. Deep Learning Architecture
Deep learning encompasses a variety of representation learning
techniques capable of automatically learning hierarchical and
complex features from the data. This property grants various
levels of abstraction, translating to higher discriminative
features, when comparing to hand-crafted features. In imaging
processing, the most common techniques of deep learning are
the Convolutional Neural Networks (CNNs) (20–22) and the
Recurrent Neural Networks (RNNs) (22, 23).

CNNs have recently achieved remarkable success in well-
known computer vision challenges (21). CNNs convolve a set
of kernels over an input (image or image patches) obtaining a
new feature space that characterizes local interactions in the input
data.

Gated RNNs, which achieved success in the biomedical
imaging field (23), provide a tighter notion of context. Initially
proposed for the analysis of discrete sequences, their architecture
contains gates that learn to store and read information from
linear units. Due to this property, Gated RNNs, namely Long-
Short Term Memory (24) and Gated Recurrent Unit (25),
can process inputs and outputs of varying lengths and retain

information over long time-steps. When applied to computer
vision, the memory capability of multi-dimensional gated RNNs
allows us to model interactions among all the input data, which
translates to a higher notion of context regardless of the receptive
field.

Our proposal is inspired by the fully convolutional U-net
architecture (18), which has proved to be competitive in many
biomedical image segmentation applications. In addition, we
combined the U-net with a 2D-dimensional Gated Recurrent
Unit (GRU) layer (25) to obtain smoother and structured
predictions. Figure 3 shows the proposed architecture. The
convolutional layers are responsible for the generation of
discriminative feature vectors. Afterwards, the feature maps are
fed into the GRU layer to enforce the spatial context of the
network. Finally, a convolutional layer of 1×1 reduces the feature
space to combine it with the clinical information.

2.3. Combining Imaging With Non-imaging
Data
Besides MRI imaging data, non-imaging clinical information is
also gathered during the acute phase of stroke, such as the Time
Since Stroke (TSS), Time to Treatment (TTT), modified Ranking
Scale (mRS) score, and TICI score. TSS and TTP are time
measures that mark the time-points when the stroke incident
was diagnosed and when clinical intervention was performed,
respectively. The mRS score characterizes the degree of disability
90 days after a stroke incidence. However, the most relevant
factor is the TICI score (9), which indicates the degree of success
of themechanical thrombectomy, based on cerebral angiography.
Low scores (TICI ∈ {0, 1}) describe cases with minimal perfusion
or no perfusion at all. Mid-range scores (TICI ∈

{

2a, 2b
}

)
characterize cases with progressively better partial perfusion.
The highest score (TICI = 3) characterizes a complete flow-
restoration (9). Consequently, it is expected that higher TICI
scores naturally lead to increased levels of tissue being salvaged,
and conversely, lower TICI scores might indicate increased levels
of tissue loss. In our proposal, we aim to incorporate this
information into a deep learning architecture, to relate imaging
(e.g., stroke location, extension) with clinical information. In our,
proposal we aim to include such knowledge during the learning
and testing phases of the system. To do so, our method considers
the TICI scale at two levels: population-level and patient-level.

2.3.1. Population-Level

Incorporating clinical information at a population-level is
achieved through a custom loss function, which drives the
learning process to solutions conditioned to the clinical TICI
score. Due to the presence or absence of perfusion beyond the
location of the occlusion, stroke lesion extension can present
changes between the TSS and the follow-up acquisitions. For
cases with no perfusion, it is expected that the lesion grows
between the two exams, while cases with existent perfusion
should present a shrinkage of the lesion volume. In our proposal,
we aim tomodel such lesion dynamics when predicting the lesion
progression from the MRI parametric maps at the first exam
to a future time. To do so, the training procedure is performed
based on the MRI sequences from the first exam and the manual
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FIGURE 1 | MRI parametric maps of a stroke patient with TICI score 0, and the respective manual segmentation. Only one class is defined, describing simultaneously

the infarct core and the penumbra regions.

FIGURE 2 | MRI parametric maps of a stroke patient with TICI score 3, and the respective manual segmentation.

FIGURE 3 | Overview of the proposed architecture. Blue feature maps result from 2D-dimensional convolutions. The green feature maps represent the

2D-dimensional GRU layer. The first dimension corresponds to the number of feature maps. The dashed line consists of a cropping step to connect the U-Net with the

GRU layer. The prediction is provided by the last layer, corresponding to a SoftMax activation.

segmentation of the lesion at the follow-up acquisition. When
the lesion shrinks, our system must learn that although the
lesion presents a larger extension in the MRI sequences, it
should produce a smaller segmentation, and when the lesion
grows, it should learn to predict a larger segmentation, although
the information provided by the MRI sequences indicates it is
smaller. We may model this dynamic by interpreting the growth
as oversegmentation, and the shrinkage as undersegmentation
in relation to the information supported by the MRI sequences
in the present time. We may interpret the oversegmentation

as an increase in false positives (FP) and the shrinkage as an
increase in false negatives (FN), since these are not supported
by the information in the MRI sequences, acquired at the first
medical exam. Such dynamic in our proposal is modeled by
the Fβ score that combines the Precision and Recall scores as
follows:

Fβ = (1+ β2)
precision× recall

(β2 × precision)+ recall
. (1)
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The Precision score, defined as Precision = TP
TP+FP , measures

the presence of false positives (FP), while the Recall, given by
Recall = TP

TP+FN , considers the presence of false negatives (FN)
(TP corresponds to the number of true positives). As shown in
Equation (1), the relation between these two scores is controlled
by β , which in our proposal encodes the TICI score. To be
applicable to a supervised learning approach, Fβ needs to relate
the predictions with the ground truth, which is defined in the
following way:

Fβ = (1+ β2)

∑N
i pigi

∑N
i β2p2i +

∑N
i g2i

. (2)

The sum is performed for the N voxels of the patch in the
prediction, pi ∈ P, and the ground truth, gi ∈ G. The gradient
of the Fβ score for the jth voxel prediction is computed as:

δFβ

δpj
= (1+ β2)

(

gj(
∑N

i β2p2i +
∑N

i g2i )− (2β2pj)
∑N

i pigi

(
∑N

i β2p2i +
∑N

i g2i )
2

)

.

(3)

2.3.2. Patient-Level

The inclusion of the TICI score at a patient level is achieved
by an extra channel before the final layer of the architecture
(see Figure 3). By combining the feature set extracted from
imaging data and the respective TICI score, we aim to drive the
learning process to search for correlations among them.With this
approach we hypothesize that the model should be aware that
different TICI scores should predict different lesion outcomes,
during the estimation phase. Therefore, our proposal would be
capable of predicting the amount of salvageable tissue loss in the
presence and absence of recanalized perfusion.

2.4. Post-processing
As post-processing step, we performed simple morphological
filtering. Stroke lesions vary significantly in size. The post-
processing should take this variation into account to avoid the
complete removal of stroke lesions; therefore, a threshold to
remove only connected components with less than 25 voxels was
defined using cross-validation.

3. EXPERIMENTAL SETUP

We evaluated our proposal on the ISLES 2017 training and testing
datasets, where the online platform also includes an automated
evaluation of prediction results submitted to the system. In this
work, we compared the performance of our proposal with and
without using clinical meta-data.

3.1. Dataset
ISLES 2017 dataset comprises a total of 75 ischemic stroke
patients divided into two groups: training (n = 43) and testing
(n = 32), who underwent mechanical thrombectomy. For each
subject a total of six MRI acquisitions are provided: ADC,
TTP, Tmax, rCBV, and rCBF. All image modalities are already
co-registered and skull-stripped (16). Alongside the diffusion

TABLE 1 | TICI distribution for ISLES 2017 training and testing datasets.

TICI 0 TICI 1 TICI 2a TICI 2b TICI 3

Training 6 (14%) 3 (7%) 3 (7%) 11 (26%) 20 (46%)

Testing 3 (9%) 2 (6%) 4 (13%) 6 (19%) 17 (53%)

and perfusion parametric MRI maps, each patient has a lesion
outcome manually segmented by a clinician on a 90-day follow-
up T2 MRI. The ground truth was provided only for the
training dataset, since the test set is evaluated by the online
platform. Alongside the imaging information, each patient is
also characterized by the TICI score, TSS, TTT, and mRS Score.
Although other clinical information is available, only the TICI
scores were used in this study. Table 1 describes the distribution
of TICI score for each available dataset.

3.2. Evaluation
The performance of each method was evaluated using five
metrics: Dice Similarity Score (DSC), Precision, Recall, Hausdorff
Distance and Average Symmetric Surface Distance (ASSD). DSC
measures the similarity between two volumes and is defined
by DSC = 2TP

FP+2TP+FN . As for the distance metrics, Hausdorff
Distance denotes the maximum distance between two volumes
surface points, capturing outliers. It is defined as: HD(A,B) =

max{maxa∈Aminb∈B d(a, b), maxb∈Bmina∈A d(b, a)}. Finally,
ASSD describes the average distance between the volumes

surface points defined as: ASSD(A,B) =
∑

a∈A minb∈Bd(a,b)
|A| .

3.3. Setup
The validation set comprised seven cases, while the testing set
of 36 cases from ISLES 2017 training set. To assess the added
value of our contributions, we perform a 7-fold-cross-validation
scheme within the training set. We compare our proposal with
a baseline architecture, which does not encompass any clinical
meta-data. In addition, we changed the loss function to the soft
dice (26), which is a standard loss function for segmentation
tasks.

3.4. Hyper-parameters
For each subject, around 500 patches of size 88 × 88 were
extracted, using a uniform random sampling scheme. The
network was trained with ADAM optimizer (27) (learning rate
of 1 × 10−5) using a mini-batch size of 4. The implementation
was based on Keras (28) with Theano backend. All tests were
conducted on a workstation equipped with a GeForce GTX 1070
with 8 GB. For each patient, prediction took around 15s.

3.4.1. Inclusion of Clinical Information

When considering cases with low TICI score, predicting the
maximal extent of tissue loss eases the clinical decision-making
process, therefore decreasing the chances of tissue death by hypo-
perfusion. In such circumstances, with the inclusion of the TICI
score we aim to drive themodel to predict the worst-case scenario
of stroke lesion outcome. Conversely, in a case with a high
TICI score we would prefer a prediction where the recovered

Frontiers in Neurology | www.frontiersin.org 5 December 2018 | Volume 9 | Article 1060

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Pinto et al. Stroke Prediction With Imaging and Clinical Information

TABLE 2 | Results obtained through cross-validation in ISLES 2017 training

dataset for the baseline method and our proposal. Each metric contains the

average ± standard deviation.

Dice Hausdorff

distance

ASSD Precision Recall

Baseline 0.34 ± 0.22 35.09 ± 17.27 6.08 ± 5.27 0.37 ± 0.29 0.54 ± 0.26

Proposal 0.35 ± 0.22 31.38 ± 15.81 5.55 ± 5.00 0.41 ± 0.30 0.47 ± 0.24

hypo-perfused tissue due to reperfusion is achieved with success,
holding on the same principles as before. It is worth mentioning
that such relationship is further affected by several other clinical
and patient-specific pathophysiological aspects, such as collateral
flood, onset time of the stroke, etc.

Giving the available number of cases per TICI in ISLES 2017
dataset, we merged TICI scores, increasing the number of cases
per score. Therefore, at a population level, β in Equation (4)
encodes the TICI score as follows:

β =











2, if TICI ∈ {0, 1}

1, if TICI ∈
{

2, 2a, 2b
}

0.5, if TICI = 3

(4)

In this way, for TICI = 3 (i.e., complete perfusion) we defined
β = 0.5, so recall is weighted four times less than precision.
Hence, we drive the model to give higher importance to the
expression of false positives rather than false negatives, preferring
scenarios with low tissue loss. Conversely, for TICI ∈ {0, 1} (i.e.,
poor recanalization), we defined a β = 2, where recall is weighted
four times higher than precision. For such cases, themotivation is
to give preference to high tissue loss. Finally, for TICI ∈

{

2a, 2b
}

the value of β = 1, obtaining the Dice Score, where precision
and recall are equally taken into consideration. Such scale of β

was defined through cross-validation.

4. RESULTS AND DISCUSSION

In this section, we first evaluate the main contribution of our
proposal in the training set. Using cross-validation we compare
the performance of the baseline method without non-imaging
clinical information against our proposal. Afterwards, we present
the results obtained in ISLES 2017 testing dataset, performing a
comparison against state-of-the-art methods.

4.1. Incorporation of Non-imaging Clinical
Information
Due to the large diversity of appearance, size and shape, the tissue
outcome prediction presents as a challenging task (10). In this
study, we show the importance of having non-imaging clinical
information in a neural network, to characterize principal and
collateral blood flow hemodynamic and obtain better prediction
outcomes. The results obtained for the training set are shown in
Table 2.

When comparing with the baseline, our proposal is capable
of achieving higher DSC and lower Hausdorff Distance, showing

the added value of incorporating the TICI score into the neural
network. Considering the precision and recall metrics, our
proposal achieved higher precision but lower recall. This suggests
a higher capability to perform stroke lesion outcome prediction,
by depicting gradual changes in the hypo-perfused tissue. We
hypothesize that making the model aware to intrinsic biological
phenomena of lesion growth or shrinkage (TICI dependent) lead
to more precise predictions, which is sustained by the lower
values of distance metrics and higher DSC score.

However, in clinical practice the TICI score is only obtained
after recanalization. Being so, predicting the stroke lesion at
a 90 day follow up, during the sub-acute phase, needs to
consider different reperfusion scenarios. In our proposal, we
grant such property at patient-level domain. By adding an extra
input channel that contains the TICI score, we aim to obtain
tissue outcome predictions with successful and unsuccessful
reperfusions. When accessing both case scenarios, during the
decision-making process, our method could provide to clinicians
additional information on the salvaged tissue if mechanical
thrombectomywas performed. In Figures 4, 5we show the added
value of incorporating clinical information on two patients with
different TICI scores: one with an unsuccessful reperfusion (TICI
= 0), and one with a successful reperfusion (TICI = 3).

For each case, we present the tissue outcome predictions with
and without non-imaging clinical information. In the absence of
the TICI score, the tissue outcome prediction performs worse
than our proposal, for both cases. Our proposal is capable of
employing the TICI score to yield better predictions, which are
corroborated by higher Dice scores, but also provides a result
that physiologically is more plausible. Observing the stroke lesion
outcome predictions of our proposal against the baseline, it
is noticeable the presence of physiologically infeasible isolated
regions in the latter. Additionally, we also tested if our method
was capable of predicting different lesion outcomes by changing
the TICI score. When changing the TICI score, we obtained
different lesion outcomes for each patient. Furthermore, such
scenarios agreed with the expected outcome describe for each
TICI score (e.g., by changing from a TICI score of 3 to 0 it was
observed a larger lesion outcome volume). From the latter study,
we show that our proposal gained awareness to scenarios of no-
perfusion and complete perfusion. Such capability could provide
the clinicians useful insight on the benefits and risks associated
to the mechanical thrombectomy. Moreover, it can also be used
to forecast recovery, which is important for patient treatment
and the complete standard care associated to patient recovery. To
corroborate our qualitative analysis,Table 3 contains the ground-
truth lesion volume for each case, alongside the predicted volume
outcome for the original TICI score and for the opposite case
scenario, respectively.

On Table 3, we show the effect of the TICI score in
our proposal. When changing the TICI score we observe
different stroke lesion outcome predictions, in agreement to
the reperfusion success. When increasing the TICI score the
volume of salvaged hypo-perfused tissue becomes higher, which
corresponds to a stroke lesion shrinkage. Case 24, with TICI =

0, shows such behavior. After increasing the TICI score to
TICI = 3, we obtain a smaller stroke lesion volume. As
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FIGURE 4 | Example case of stroke lesion outcome prediction, with and without non-imaging clinical information in a patient with unsuccessful reperfusion. For sake

of description we present the ADC and Tmax maps and the GT. In the presence of clinical information, we show the two possible outcomes: unsuccessful (TICI = 0)

and successful reperfusion (TICI = 3), respectively.

FIGURE 5 | Example case of stroke lesion outcome prediction, with and without non-imaging clinical information in a patient with successful reperfusion. We also

present the ADC and Tmax maps and the GT. In the presence of clinical information, we show the two possible outcomes: successful (TICI = 3) and unsuccessful

reperfusion (TICI = 0), respectively.

TABLE 3 | Results obtained by our proposal on two patient cases with different

TICI scores, alongside the obtained result after changing the original TICI score to

its opposite (marked with a *).

Case GT volume

(voxels)

TICI Dice Precision Recall Predicted

volume (voxels)

24 21,310 0 0.48 0.87 0.33 8170

3* 0.44 0.90 0.29 6840

42 288 3 0.43 0.59 0.33 163

0* 0.24 0.17 0.39 651

for case 42 with TICI = 3, when we decrease the TICI
score from TICI = 3 to TICI = 0 the prediction volume
characterized the opposite phenomena. With TICI = 0 there
is higher hypo-perfused tissue loss, and the tissue outcome
prediction volume is larger. From both case scenarios, the
observed changes in the tissue outcome prediction volume
shows that the TICI score was capable of driving the tissue
outcome prediction scenario, and simultaneously grant a lesion
growth or shrinkage in accordance with the physiological
dynamics of each TICI score and without infeasible isolated
regions.

4.2. ISLES 2017 Testing Set
In Table 4, we compare our proposal with methods from ISLES
2017 testing dataset, evaluated by the online platform (29) and
ordered decreasingly by the DSC score. To reinforce our analysis,
we also included the baseline method.

Incorporating clinical information through the proposed
custom loss function and the extra TICI channel resulted in
a higher performance, in comparison to the baseline. Our
proposal was able extract information from non-imaging data
and to drive its training and testing phases toward better
predictions. Therefore, the simultaneous incorporation of the
reperfusion status, as an additional feature and in the loss
function, improved performance of the classifier. In addition,
we show the higher generalization capability of our proposal,
since the performance metrics or our proposal for both datasets
present less variation.

Although a previous work (15) had investigated the use
of non-imaging clinical information to conduct the training
of machine learning methods, such information has not
been evaluated directly in the context of deep learning
methods. The results on the ISLES2017 indicate the benefits
of incorporating non-imaging clinical information in deep
learning architectures implicitly during the training phase,
and explicitly by extra channels, incorporating patient-specific
information.
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TABLE 4 | Results of ISLES 2017 testing dataset, alongside our baseline method and proposal. Each metric contains the average ± standard deviation.

Dice Hausdorff distance ASSD Precision Recall

C
h
a
lle
n
g
e

Mok et al. * 0.32 ± 0.23 40.74 ± 27.23 8.97 ± 9.52 0.34 ± 0.27 0.39 ± 0.27

Kwon et al. * 0.31 ± 0.23 45.26 ± 21.04 7.91 ± 7.31 0.36 ± 0.27 0.45 ± 0.30

Bertels et al. * 0.30 ± 0.21 33.85 ± 16.82 6.81 ± 7.18 0.34 ± 0.26 0.51 ± 0.32

Monteiro et al. * 0.30 ± 0.22 46.60 ± 17.50 6.31 ± 4.05 0.34 ± 0.27 0.51 ± 0.30

Lucas et al. * 0.29 ± 0.21 33.85 ± 16.82 6.81 ± 7.18 0.34 ± 0.26 0.51 ± 0.32

Choi et al. * 0.28 ± 0.22 43.89 ± 20.70 8.88 ± 8.19 0.36 ± 0.31 0.41 ± 0.31

Robben et al. * 0.27 ± 0.22 37.84 ± 17.75 6.72 ± 4.10 0.44 ± 0.32 0.39 ± 0.31

Pisov et al. * 0.27 ± 0.20 49.24 ± 32.15 9.49 ± 10.56 0.31 ± 0.27 0.39 ± 029

Niu et al. * 0.26 ± 0.20 48.88 ± 11.20 6.26 ± 3.02 0.28 ± 0.25 0.56 ± 0.26

Sedlar et al. * 0.20 ± 0.19 58.30 ± 20.02 11.19 ± 9.10 0.23 ± 0.24 0.40 ± 0.29

Rivera et al. * 0.19 ± 0.16 63.58 ± 18.58 11.13 ± 7.89 0.27 ± 0.25 0.21 ± 0.17

Islam et al. * 0.19 ± 0.18 64.15 ± 28.51 14.17 ± 15.80 0.29 ± 0.28 0.25 ± 0.25

Chengwei et al. * 0.18 ± 0.17 65.95 ± 25.94 9.22 ± 6.99 0.37 ± 0.30 0.21 ± 0.23

Yoon et al. * 0.17 ± 0.16 45.23 ± 19.14 12.43 ± 11.01 0.23 ± 0.27 0.36 ± 0.32

Baseline 0.24 ± 0.20 53.29 ± 26.95 10.59 ± 4.98 0.27 ± 0.27 0.50 ± 0.35

Proposal 0.29 ± 0.22 47.17 ± 22.13 7.20 ± 4.14 0.26 ± 0.23 0.61 ± 0.28

* Static results in Ischemic Stroke Lesion Segmentation Challenge (29).

FIGURE 6 | Hausdorff Distance vs. Dice score from methods of ISLES 2017 in the testing database. Note that closer to the horizontal axis and further away from the

origin is better (i.e., high Dice and low Hausdorff). Ensemble methods are marked with a purple plus.

When comparing to the state-of-the-art methods, our
proposal can reach competitive results, being placed among
top scoring methods. With single model method, our proposal
yields results within the top five methods, alongside ensemble
approaches [e.g., Choi et al. (17)]. In the same group, our method
achieved the highest recall metric, with lower precision score. As
for the distance metrics, our proposal can provide competitive
ASSD score, with low standard deviation, and a Hausdorff
Distance among of top methods. We emphasize that, as post-
processing step, our method only applies a simple morphological
removal of small connected components. Therefore, elaborate
schemes of post-processing such as Conditional Random Fields
or evenweighted schemes of ensemble can boost the performance
of such approaches. Even in such cases, our approach provides
a good robustness and precision in stroke lesion outcome

delineation. To enforce such analysis in Figure 6, we show the
average DSC score and the Hausdorff Distance obtained by each
state-of-the-art method in ISLES 2017 testing dataset. Besides our
proposal, we included the baseline method.

From Figure 6, we can observe the performance boost of our
proposal over the baseline method, placing it within the group of
top scoring methods.

5. CONCLUSIONS

Prediction of stroke lesion outcome has the potential to assist
interventionists when assessing the risks and benefits associated
to mechanical thrombectomy. Therefore, having such tool can
provide useful information during the clinical decision process.
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In this work, we propose a novel deep learning architecture
that beyond previously proposed architectures incorporates
clinical information in a principled way. To do so, our proposal
integrates clinical information at two different levels of the
architecture. The first level considers the population domain-
knowledge, achieved through the development of a custom loss
function, to depict relationships between the TICI score and
the tissue outcome prediction. The second level considers the
patient-specific domain, where the TICI is encoded into an
input channel of the architecture. From the latter level, we
showed that our proposal was able to characterize different
outcome scenarios of successful and unsuccessful reperfusion.
Such methodology presents itself as a ground-breaking tool
with potential to access the risks and benefits associated to
the mechanical thrombectomy. The evaluation of our proposal
was conducted on the publicly available ISLES 2017 dataset.
We observe that the proposed method has benefited from
the combination of imaging and non-imaging information. In
addition, when comparing to the state-of-the-art methods, we
observed that a single architecture with fewer parameters, such
as ours, yields competitive performance metrics similar to more
elaborate and/or ensemble methods.

However, there is still room from improvement since none of
the current state-of-the-art methods, provides the robustness and
accuracy needed for clinical practice, and are currently bellow
the inter-rater performance of expert radiologists (DSC=0.58)
(19). In the future, we would like to investigate on adding
other clinical information, such as TTT and TSS. We esteem
that the proposed approach can be further applied to other
diseases where clinical information complements imaging
information.

ETHICS STATEMENT

The study utilizes anonymized data from the Bernese stroke
registry, a prospectively collected database approved by

the Kantonale Ethikkomission Bern. All patients were

treated for an acute ischemic stroke at the University
Hospital of Berne between 2005 and 2013. The study was
performed according to the ethical guidelines of the Canton
of Bern (Swiss Humanforschungsgesetz) with approval of
our institutional review board (Kantonale Ethikkomission
Bern). Some cases were supplied by the University Medical
Center Schleswig-Holstein in Lübeck, Germany. They were
acquired in diagnostic routine with varying resolutions,
views, and imaging artifact load. A smaller group of cases
were scanned at the Department of Neuroradiology at the
Klinikum rechts der Isar in Munich, Germany. Both centers
are equipped with 3T Phillips systems. The local ethics
committee approved their release under Az.14-256A. Full
data anonymization was ensured by removing all patient
information from the files and the facial bone structure from the
images.

AUTHOR CONTRIBUTIONS

AP is the main author of the research presented in the
manuscript, being supervised by RM during an internship at
Bern. CS, VA, RW and RM gave thoughtful insights during this
research.

FUNDING

AP was supported by a scholarship from the Fundação
para a Ciência e Tecnologia (FCT), Portugal (scholarship
number PD/BD/113968/2015). This work is supported
by FCT with the reference project UID/EEA/04436/2013,
by FEDER funds through the COMPETE 2020 Programa
Operacional Competitividade e Internacionalização (POCI)
with the reference project POCI-01-0145-FEDER-006941.
We acknowledge support from the Swiss National Science
Foundation−DACH320030L_163363.

REFERENCES

1. World Health Organization. Global Status Report on Noncommunicable

Diseases 2014.World Health Organization (2014).

2. Mathers CD, Boerma T, Ma Fat D. Global and regional causes of death. Brit

Med. Bull. (2009) 92:7–32. doi: 10.1093/bmb/ldp028

3. Wardlaw J. Neuroimaging in acute ischaemic stroke: insights into

unanswered questions of pathophysiology. J Intern Med. (2010) 267:172–90.

doi: 10.1111/j.1365-2796.2009.02200.x

4. Memezawa H, Smith ML, Siesjö BK. Penumbral tissues salvaged by

reperfusion following middle cerebral artery occlusion in rats. Stroke (1992)

23:552–9.

5. Gonzalez R, Hirsch J, Koroshetz W, Lev M, Schaefer P. Acute ischemic

stroke: imaging and intervention. Am J Neuroradiol. (2007) 28:1622–3.

doi: 10.3174/ajnr.A0628

6. Butcher K, Emery D. Acute stroke imaging part II: the ischemic penumbra.

Can J Neurol Sci. (2010) 37:17–27. doi: 10.1017/S0317167100009604

7. El Tawil S, Muir KW. Thrombolysis and thrombectomy for acute ischaemic

stroke. Clin Med. (2017) 17:161–65.

8. Sandercock P,Willems H. Medical treatment of acute ischaemic stroke. Lancet

(1992) 339:537–9.

9. Higashida RT, Furlan AJ, Roberts H, Tomsick T, Connors B,

Barr J, et al. Trial design and reporting standards for intraarterial

cerebral thrombolysis for acute ischemic stroke. J Vasc Interv

Radiol. (2003) 14:E1–31. doi: 10.1161/01.STR.0000082721.

62796.09

10. Maier O, Wilms M, von der Gablentz J, Krämer UM, Münte TF,

Handels H. Extra tree forests for sub-acute ischemic stroke lesion

segmentation in MR sequences. J Neurosci Methods (2015) 240:89–100.

doi: 10.1016/j.jneumeth.2014.11.011

11. Rekik I, Allassonnière S, Carpenter TK, Wardlaw JM. Medical image

analysis methods in MR/CT-imaged acute-subacute ischemic stroke

lesion: segmentation, prediction and insights into dynamic evolution

simulation models. A critical appraisal. Neuroimage Clin. (2012) 1:164–78.

doi: 10.1016/j.nicl.2012.10.003

12. Scalzo F, Hao Q, Alger JR, Hu X, Liebeskind DS. Regional prediction of

tissue fate in acute ischemic stroke. Ann Biomed Eng. (2012) 40:2177–87.

doi: 10.1007/s10439-012-0591-7

13. Rose SE, Chalk JB, Griffin MP, Janke AL, Chen F, McLachan

GJ, et al. MRI based diffusion and perfusion predictive model to

estimate stroke evolution. Magn Reson Imaging (2001) 19:1043–53.

doi: 10.1016/S0730-725X(01)00435-0

Frontiers in Neurology | www.frontiersin.org 9 December 2018 | Volume 9 | Article 1060

https://doi.org/10.1093/bmb/ldp028
https://doi.org/10.1111/j.1365-2796.2009.02200.x
https://doi.org/10.3174/ajnr.A0628
https://doi.org/10.1017/S0317167100009604
https://doi.org/10.1161/01.STR.0000082721.62796.09
https://doi.org/10.1016/j.jneumeth.2014.11.011
https://doi.org/10.1016/j.nicl.2012.10.003
https://doi.org/10.1007/s10439-012-0591-7
https://doi.org/10.1016/S0730-725X(01)00435-0
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Pinto et al. Stroke Prediction With Imaging and Clinical Information

14. Kemmling A, Flottmann F, Forkert ND, Minnerup J, Heindel W, Thomalla G,

et al. Multivariate dynamic prediction of ischemic infarction and tissue salvage

as a function of time and degree of recanalization. J Cereb Blood Flow Metab.

(2015) 35:1397–405. doi: 10.1038/jcbfm.2015.144

15. McKinley R, Häni L, Gralla J, El-Koussy M, Bauer S, Arnold M, et al. Fully

automated stroke tissue estimation using random forest classifiers (FASTER). J

Cereb Blood Flow Metab. (2016) 37:2728–41. doi: 10.1177/0271678X16674221

16. Maier O, Menze BH, von der Gablentz J, Häni L, Heinrich MP, Liebrand M,

et al. ISLES 2015-A public evaluation benchmark for ischemic stroke lesion

segmentation from multispectral MRI. Med Image Anal. (2017) 35:250–69.

doi: 10.1016/j.media.2016.07.009

17. Choi Y, Kwon Y, Lee H, Kim BJ, Paik MC, Won JH. Ensemble of

deep convolutional neural networks for prognosis of ischemic stroke. In:

International Workshop on Brainlesion: Glioma, Multiple Sclerosis, Stroke and

Traumatic Brain Injuries. Athens: Springer (2016). p. 231–43.

18. Ronneberger O, Fischer P, Brox T. U-net: convolutional networks for

biomedical image segmentation. In: International Conference on Medical

Image Computing and Computer-Assisted Intervention. Munich: Springer

(2015). p. 234–41.

19. Winzeck S, Hakim A, McKinley R, Pinto JA, Alves V, Silva C, et al. ISLES 2016

and 2017-benchmarking ischemic stroke lesion outcome prediction based on

multispectral MRI. Front Neurol. (2018) 9:679. doi: 10.3389/fneur.2018.00679

20. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. Imagenet

large scale visual recognition challenge. Int J Comput Vis. (2015) 115:211–52.

doi: 10.1007/s11263-015-0816-y

21. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep

convolutional neural networks. In: Bartlett PL, Pereira FCN, Burges CJC,

Bottou L, Weinberger KQ, editors. Advances in Neural Information Processing

Systems. Lake Tahoe, NV: Curran Associates Inc. (2012). p.1097–105.

22. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, et al. A

survey on deep learning in medical image analysis. Med Image Anal. (2017)

42:60–88. doi: 10.1016/j.media.2017.07.005

23. Stollenga MF, Byeon W, Liwicki M, Schmidhuber J. Parallel multi-

dimensional LSTM, with application to fast biomedical volumetric image

segmentation. In: Cortes C, Sugiyama M, Lee DD, and Garnett R, editors

Advances in Neural Information Processing Systems Montreal, QC (2015). p.

2998–3006.

24. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput.

(1997) 9:1735–80.

25. Cho K, Van Merriënboer B, Bahdanau D, Bengio Y. On the properties of

neural machine translation: encoder-decoder approaches. arXiv preprint

arXiv:14091259 (2014).doi: 10.3115/v1/W14-4012

26. Milletari F, Navab N, Ahmadi SA. V-net: fully convolutional neural

networks for volumetric medical image segmentation. In: 2016 Fourth

International Conference on 3D Vision (3DV). California, CA: IEEE (2016).

p. 565–71.

27. Kingma D, Ba J. Adam: a method for stochastic optimization. arXiv preprint

arXiv:14126980 (2014).

28. Chollet F. Keras (2015). Available online at: https://keras.io

29. Ischemic Stroke Lesion Segmentation Challenge. Available online

at: http://www.isles-challenge.org (Accessed March 29, 2018)

(2017).

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Pinto, Mckinley, Alves, Wiest, Silva and Reyes. This is an open-

access article distributed under the terms of the Creative Commons Attribution

License (CC BY). The use, distribution or reproduction in other forums is permitted,

provided the original author(s) and the copyright owner(s) are credited and that the

original publication in this journal is cited, in accordance with accepted academic

practice. No use, distribution or reproduction is permitted which does not comply

with these terms.

Frontiers in Neurology | www.frontiersin.org 10 December 2018 | Volume 9 | Article 1060

https://doi.org/10.1038/jcbfm.2015.144
https://doi.org/10.1177/0271678X16674221
https://doi.org/10.1016/j.media.2016.07.009
https://doi.org/10.3389/fneur.2018.00679
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1016/j.media.2017.07.005
https://doi.org/10.3115/v1/W14-4012
https://keras.io
http://www.isles-challenge.org
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles

	Stroke Lesion Outcome Prediction Based on MRI Imaging Combined With Clinical Information
	1. Introduction
	1.1. Previous Work
	1.2. Contributions

	2. Methods
	2.1. Pre-processing
	2.2. Deep Learning Architecture
	2.3. Combining Imaging With Non-imaging Data
	2.3.1. Population-Level
	2.3.2. Patient-Level

	2.4. Post-processing

	3. Experimental Setup
	3.1. Dataset
	3.2. Evaluation
	3.3. Setup
	3.4. Hyper-parameters
	3.4.1. Inclusion of Clinical Information


	4. Results and Discussion
	4.1. Incorporation of Non-imaging Clinical Information
	4.2. ISLES 2017 Testing Set

	5. Conclusions
	Ethics Statement
	Author Contributions
	Funding
	References


