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Although retinal illumination is the main determinant of pupil size, evidence indicates that

extra-retinal factors, including attention and contextual information, also modulate the

pupillary response. For example, stimuli that evoke the idea of brightness (e.g., pictures of

the sun) induce pupillary constriction compared to control stimuli of matched luminance.

Is conscious appraisal of these stimuli necessary for the pupillary constriction to occur?

Participants’ pupil diameter was recorded while sun pictures and their phase-scrambled

versions were shown to the left eye. A stream of Mondrian patterns was displayed to the

right eye to produce continuous flash suppression, which rendered the left-eye stimuli

invisible on some trials. Results revealed that when participants were aware of the sun

pictures their pupils constricted relative to the control stimuli. This was not the case when

the pictures were successfully suppressed from awareness, demonstrating that pupil size

is highly sensitive to the contents of consciousness.

Keywords: pupillometry, pupillary constriction, high-level visual processing, visual awareness, brightness

INTRODUCTION

Increments or decrements of light are associated with pupillary constrictions or dilations,
respectively. This is known as the pupillary light reflex, and has been traditionally considered as
a low-level mechanism that simply regulates the amount of light that enters the eye to optimize
vision. However, since pupillometry—i.e., the measurement of the diameter and rate of reactivity of
the pupil—was introduced more than 50 years ago, it soon became evident that pupillary responses
can be used to index cognitive operations, such as thinking and emotional processing [(1, 2) for
a review see (3)]. More recently, it has been argued that high-level visual processing, including
attention, mental imagery, and contextual modulation, can also influence pupillary responses under
conditions of constant retinal illumination, demonstrating that the pupil diameter is not solely
determined by physiological factors [for reviews, see (4, 5)]. For example, it has been shown that
covert shifts of attention to brighter surfaces cause pupillary constrictions (6–8) and that similar
changes in pupil diameter can be induced even in the absence of visual stimulation by asking
participants to mentally visualize a bright scene (9). By the same token, the pupil constricts in
response to visual illusions of brightness (10) and stimuli that evoke the idea of bright objects,
like pictures of the sun (11, 12) or words conveying brightness (13). Another line of experiments
showing pupil changes in conditions of constant retinal stimulation examined the phenomenon
of binocular rivalry between stimuli of different luminance. The typical finding is that pupil size
follows the dominant percept, with a relative constriction when the brighter stimulus dominates
conscious perception (14–16), and an attenuation of pupillary responses to light flashes when these
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were presented to the suppressed eye (14, 17–19). There is also
a line of experiments demonstrating the importance of cortical
signals, and specifically signals from the occipital visual cortex,
for modulating the pupillary response to light. For example, pupil
perimetry (measurement of the pupillary response to light stimuli
located at different loci across the visual field) has provided clear
evidence of reduced or absent pupillary light reflex in the blind
visual area of patients with lesions to the occipital lobe [e.g.,
(20–23)].

Taken together, these findings provide compelling evidence in
support of the view that the pupillary light reflex is sensitive to
top-down modulation. This suggests that pupil light responses
may be used as a read-out of the idiosyncrasies of visual
perception—a simple, non-invasive, objective, and quantitative
measure of our attentional biases, our illusion susceptibility,
our ability to use contextual information etc., and an initial
success of this strategy has recently been reported (24). However,
before these exciting avenues can be explored, it is necessary
to demonstrate that top-down effects on pupil response do in
fact reflect the contents of visual awareness. One possibility to
address this issue is to look for correlations between perceptual
(e.g., brightness) judgments and pupillary responses (9, 25).
Here we took a more radical approach and tested whether one
such top-down effect requires visual awareness of the stimuli—
and whether it is absent when stimuli are not consciously
perceived.

The perceptual visibility of the stimuli, specifically pictures
of the sun (11), was manipulated by means of continuous flash
suppression [CFS; (26)], a widely used technique that enables
to reliably erase stimuli from visual awareness for extended
periods of time [for reviews, see (27, 28)]. During CFS, a
static image presented to one eye is rendered invisible by
ever-changing Mondrian patterns displayed to the other eye.
This interocular suppression technique seems to be particularly
effective at disrupting high-level visual processing completely
[for a review, see (28)]. A particularly clear case can be made
from adaptation studies. Aftereffects specific to complex motion
[e.g., (29)], facial expression of emotions [(30); but see (31)],
and subordinate information about faces, such as gender or
race (32), all of which require higher order visual processing,
were abolished when adapters were suppressed from awareness
by CFS. In contrast, aftereffects specific to low-level stimulus
attributes, such as orientation [e.g., (33)] and contrast [e.g., (34)],
were only attenuated by CFS. Evidence from other paradigms,
such as priming and braking-CFS, is more mixed. A suppressed
stimulus is more likely to break CFS and come back to awareness
when it is familiar and provided with emotional values [e.g., (35,
36)], suggesting that at least some form of high-level information
may be processed even when the stimulus is suppressed from
awareness [for a review, see (37)]. Similarly, a subliminal form
of priming by stimuli made invisible by CFS, may in some
cases be observed for numerosity [e.g., (38)], object category
[e.g., (39)] and emotional content [e.g., (40)]; however, in other
cases, priming effects for complex stimulus features, such as word
stimuli (41), emotional faces (42), and threatening animal stimuli
(43), vanish completely when the prime is rendered invisible
by CFS. Thus, the literature on the effects of CFS on low- and

high-level visual processing is mixed, suggesting that processing
of many stimulus features can take place outside of conscious
awareness. Nevertheless, high-level visual properties are likely
to succumb suppression [e.g., (28, 44)], at least more than low-
level simple visual features, which continue to adapt and shape
perceptual processes quite irrespectively of awareness.

With the support of this literature, here we aimed to study how
CFS would affect the pupillary response to sun image (vs. their
phase scrambled versions). If—as argued before—the relative
pupillary constriction evoked by the sun images depends on high-
level visual processing, we predict that it should be abolished, or
at least diminished, under CFS.

METHODS

Participants
Twenty-four participants (16 females, all right handed) ranging
in age from 18 to 27 years (M = 20.48, SD = 2.24) with normal
or corrected-to-normal vision, took part in the experiment. This
sample size was deemed to be appropriate to attain a moderate
effect size with α = 0.05 and power = 0.80, according to
calculations performed in G∗Power (45). Two participants were
excluded due to technical issues and an additional participant was
excluded due to poor stereoacuity, as assessed using the Frisby
stereotest (Clement Clarke International Ltd, Essex, UK). This
resulted in a final sample size of 21 participants (13 females)
with an age range of 18–27 years (M = 20.42, SD = 2.03).
Participants received either 2 study credits or £5 for their time.
Written consent was obtained prior to testing. All procedures
were approved by the School of Psychology Research Ethics
Committee of the University of East Anglia and were carried out
in accordance with the Declaration of Helsinki.

Apparatus and Stimuli
The experiment was programmed in E-Prime 2.0 (Psychology
Software Tools, Pittsburg, PA, USA) on a Viglen DQ77MK,
running Windows 7. Stimuli were presented on a 16-inch Dell
monitor with a resolution of 1,280 × 1,024 pixels and a refresh
rate of 60Hz. Participants were seated in front of the computer
monitor in a dark room with their head fixed on a chin rest
at a distance of 57 cm and viewed the stimuli through a mirror
stereoscope. A divider (i.e., a sheet of cardboard) was placed
between the stereoscope’s midline and the center of the monitor
to ensure that images displayed on each half of themonitor would
be seen by each eye separately (46). Participants wore SMITM

(SensoMotoric Instruments) eye tracking glasses tomeasure their
pupil diameter (see “Eye Tracking” for details).

Stimuli consisted of 13 different pictures of the sun and
their phase-scrambled counterparts of matched luminance,
as developed by Binda et al. (11) (available at: http://faculty.
washington.edu/somurray/PupilSun/). The Supplementary
material reports an analysis of the luminance profile of all images
as a function of distance from image center (i.e., eccentricity,
since fixation was maintained at image center). Across all images,
there was a tendency for the sun images to have higher luminance
than their phase scrambled versions near the center (although
luminance was always lower than that of the pre-stimulus white
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screen), but this was not always the case (it is possible to select a
subsample of pictures with matched luminance profiles, where
additional analyses of the pupillary responses can be performed,
see Figures S2, S3).

The stimulus was presented on the left half of the monitor.
The rival stimulus consisted of a series of high-contrastMondrian
patterns with a flicker rate of 10Hz, which were displayed to
the right half of the monitor (26). The series of Mondrian
patterns consisted of five distinct images cycling in a sequential
order with individual frames refreshing every 100ms (mean
luminance= 70.84 cd/m2). Both static and flickering stimuli were
preceded and followed by a plain white background of maximum
luminance, i.e., 196.30 cd/m2, and subtended 7◦ × 7◦ of visual
angle. A 1◦-thick frame of various grayscale squares was placed
around the stimuli to assist binocular alignment and a white small
fixation cross was centered in each eye’s stimulus to aid stable
fixation (Figure 1). Participants’ response was recorded bymeans
of a keyboard.

Procedure
Prior to the beginning of the experiment, two frames with a
fixation cross in each were presented dichoptically to the eyes and
participants were instructed to adjust the stereoscope’s mirrors
until the left and right stimuli were correctly aligned and fused.
In addition, to ensure that binocular fusion was maintained
throughout the experiment, the same calibration stimuli were
presented at the beginning of each trial and participants were
asked to initiate the trial by pressing the spacebar on the keyboard
only after they perceived a single frame and fixation cross.

To manipulate the perceptual visibility of the stimuli,
participants were tested both in CFS and no_CFS conditions. In
the CFS condition, the right eye was presented with a continuous
stream of Mondrian images while static pictures of the sun or
their scrambled versions were displayed to the left eye. Under this
condition, the CFS mask typically renders perceptually invisible
the static images for prolonged periods of time (26). In the
no_CFS condition, the Mondrians were replaced by a blank
background. The removal of the CFS mask should make the
left-eye stimulus easily visible to the participants [e.g., (47)].

Each trial lasted for 6 s, which consisted of: (a) 2-s blank pre-
stimulus interval where participants’ eyes were exposed to the
maximum luminance of the monitor; (b) 2-s stimulus interval
where a static picture (sun or scrambled version) was displayed
to the left-eye while flickering Mondrians (CFS) or a blank
background (no_CFS) were displayed to the right-eye; (c) 2-
s post-stimulus interval where the monitor returned to the
maximum luminance (11). Participants were discouraged from
blinking or making saccades over the entire duration of the trial
but they were allowed to do so in between trials.

To ensure that stimuli were truly suppressed from conscious
perception under the CFS condition, participants were asked at
the end of each trial to report whether or not they saw an image
besides the CFS mask (i.e., failure of suppression) by pressing
designated keys on the keyboard. These unsuccessful trials were
labeled as “failed CFS.” In order to compare pupil traces in failed
and successful CFS trials (characterized by identical stimulation
but different conscious percept), we aimed to collect a significant

amount of “failed CFS” trials, ideally as many as the successful
ones. To this end, we chose to flash the sun/scrambled image
abruptly, rather than gradually ramping it in, since flashing the
stimulus is known to encourage CFS-breaking [e.g., (48)].

The experiment consisted of 52 trials in total, namely 2
suppression conditions × 2 image types × 13 repetitions.
The suppression conditions (i.e., CFS vs. no_CFS) were tested
in two separate blocks. The order of these two blocks was
counterbalanced across participants. Within each block, trials
were presented in a random fashion.

Eye Tracking
SMITM eye tracking glasses registered pupil diameter binocularly
at a sampling rate of 60Hz. A 3-point calibration was performed
at the beginning of each block. Time points with impossible
pupil size (i.e., exceeding the range 2–8mm) were considered
as signal losses and removed from the analysis. To measure the
change in pupil diameter evoked by the static pictures, individual
data were baseline-corrected against a 500-ms window preceding
the stimulus presentation. The time course of the pupillary
response was determined by averaging baseline-corrected data
in 250-ms bins (25 data points). To allow comparisons across
conditions, an average of the baseline-corrected data during the
last second of stimulus presentation was also calculated (this
window was selected based on previous data, as the interval
where the difference across image types is expected to be the
largest, see 11).

Data Analysis
A two-way repeated measures analysis of variance (ANOVA)
was carried out on average baseline-corrected pupil diameter
during the last second of stimulus presentation, to evaluate the
main effects of Condition (no CFS vs. CFS) and Image Type
(sun vs. phase-scrambled), and their interaction. To establish if
changes in pupil diameter could predict individual differences
in visual awareness of the pictures, we further analyzed the
effect of Image Type separately in CFS trials where pictures were
successfully suppressed or where they could still be seen by the
participant. For this analysis, we relied on a Linear Mixed Model
approach, motivated by the considerable sample size variability
across subjects (due to the variability of the CFS success). In
this approach, individual trials from all subjects are compared
with a model comprising both the effect of experimental variables
(“fixed effects”) and the variability across participants (“random
effects”). Fixed effects were coded as categorical variables Image
type (sun vs. phase-scrambled) and Visibility Condition (no-
CFS, failed-CFS and successful CFS). Random effects were
coded by allowing subject-by-subject variations of both the
slope and intercept for each of the fixed effects. An additional
analysis reported in the Supplementary material combines the
two approaches described above and directly compares pupil
responses when the sun or scrambled images were seen (no-CFS
and failed-CFS trials) or unseen (successful CFS trials), either
considering all images or a subset of sun/scrambled images with
matching luminance profiles.

For all analyses, we used standard MATLAB functions
provided with the Statistics and Machine Learning Toolbox
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FIGURE 1 | Trial sequence and timing. At the beginning of each trial, a white background of maximum luminance was presented for 2 s (i.e., pre-stimulus interval).

This was followed by a 2 s stimulus interval where a static picture (sun or scrambled version) was displayed to the left-eye while flickering Mondrians (CFS; as depicted

here) or a blank background (No_CFS) were displayed to the right-eye. Finally, a blank screen was presented for 2 s during the post-stimulus interval. The flickering

Mondrians successfully suppressed the static image in ∼50% of trials on average, whereas images were always seen when accompanied by the blank.

(R2015b, The MathWorks). Specifically, the function “fitlme
(data, model)” fit the linear-mixed model to the data, yielding
an object “lme” with associated method “anova” that returns
F statistics and P-values for each of the fixed effect terms.
The function “fitrm (data, model)” fit the ANOVA for
repeated measures, returning F statistics, degrees of freedom
and associated P-values. Standard t-test functions were
complemented with Bayes Factors estimations, using the
“Bayes Factors” toolbox for Matlab available online at https://
figshare.com/articles/Bayes_Factors_Matlab_functions/1357917.
All reported p-values were based on two-tailed criteria.

RESULTS

We tracked changes in pupil diameter induced by the
presentation of pictures of the sun and their scrambled version
(11) and manipulated the perceptual visibility of the stimuli
by means of CFS. The CFS mask successfully suppressed the
unchanging image in 58.29% (s.e.m. 7.17%) of trials, while images
were constantly visible under the no_CFS condition. The average
baseline pupil size (during blanks, when screen luminance was
maximum)was 3.66mm (s.e.m= 0.11mm); pupil baseline values
were tightly distributed around this value, and never exceeded the
2.5–6.5mm range, ensuring that our measurements were clear
of the physiological limits of pupil diameter, where mechanical
factors could artefactually reduce pupil size variability.

Figure 2A illustrates the time course of the pupillary response
averaged across participants while mean pupil changes during the
stimulus presentation is shown in Figure 2B.

A 2×2 ANOVA for repeated measures was carried out on
the mean pupil size during the stimulus interval (shown in
Figures 2C,D) with Condition (no-CFS vs. CFS) and Image
Type (sun vs. scrambled) as main factors, revealing a significant
interaction (F1,20 = 12.835, p < 0.01). The statistical significance
of the interaction term means that the pupil difference between

sun and scrambled images varies across conditions. This indicates
that the CFS procedure was able to modulate the “sun-pupil
effect” and suggests that the level of conscious awareness of the
images is important for determining the pupil response they
evoke. Note that the same conclusions hold when analyzing
pupillary responses in trials when the sun/scrambled images
were seen or unseen (Figure S1, collapsing no_CFS trials and
trials in which CFS failed to suppress awareness of the images,
and comparing them with trials in which CFS was successful
in suppressing awareness). The conclusions also hold when
analyzing only a subset of trials where both the average luminance
and the spatial profile of luminance are matched between sun and
scrambled images (Figures S2, S3).

To further investigate the effect of suppressing images from
conscious awareness, we focused on the CFS condition and
analyzed pupil responses separately in trials where CFS failed
to suppress awareness of the sun/phase-scrambled pictures and
where it succeeded in suppressing pictures visibility. Because
different participants contributed an uneven number of trials,
this analysis was conducted with a Linear MixedModel approach
(see methods). Figure 3 shows the distribution of pupil responses
when the sun pictures or the phase-scrambled images were
displayed for the no_CFS condition (panel A), and separately
for trials where CFS was successful at making the pictures
invisible (panel C) and trials where pictures remained visible
despite CFS (panel B). In the latter case, like in the no_CFS
condition, there was a clear and reliable difference between
pupil responses to the sun pictures and their phase-scrambled
versions. In line with this, the Linear Mixed Model analysis
revealed a significant interaction (F(2,1970) = 7.786, p < 0.001)
between the factors “Image Type” (sun vs. phase-scrambled) and
“Suppression Condition” (no_CFS vs. failed CFS vs. successful
CFS). The same significant interaction holds when selecting only
CFS trials, failed and successful (F(1,956) = 4.842, p < 0.05)
indicating that the sun-scrambled pupil difference depends
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FIGURE 2 | Pupillary response to sun pictures and their phase-scrambled versions, under no_CFS (visible), and CFS conditions. (A,B) Baseline-corrected pupil

diameter (i.e., pupil change) as a function of time from stimulus onset. (C,D) Mean pupil change during the last second of the stimulus interval. Error bars represent

standard error of the mean (s.e.m) across our 21 observers.

on the awareness of the images. Post-hoc t-tests indicated a
significant effect of Image type in the no-mask [two-sample t-
test: t(510,506) = 6.71, p < 10−5] and failed CFS [t(186,214) = 3.50,
p < 0.001] conditions. However, there was no reliable difference
between pupil responses to the sun and phase-scrambled pictures
in trials where they were not consciously perceived, due to
successful CFS [t(295,265) = 0.01, p = 0.994]. For each of these
t-tests, we computed the JZS Bayes Factor (49), which quantifies
the amount of evidence against or in favor of the null hypothesis
(i.e., that sun and phase-scrambled pictures evoke equal pupil
responses): a BF smaller than 0.3 is strong evidence in favor
of the null hypothesis; a BF larger than 3 is strong evidence
against it. In the no-mask and the failed CFS condition, Bayes
Factors were >30. In the successful CFS condition, however, the
Bayes Factor was 0.094: strong evidence in support of the null
hypothesis, or equal pupillary response to the sun and scrambled
images.

Complementary to these post-hoc tests is another set of

comparisons assessing the effect of CFS on pupillary responses
to each image type (sun and scrambled). These indicate that
the pupil dilation evoked by scrambled images was significantly
reduced in successful CFS trials compared to failed CFS trials

(t(186,295) = 4.71, p < 10−5, BF = 3903), whereas the pupil
response to sun images was the same (t(204,265) = 1.00, p= 0.317,
BF = 0.166). Due to a limitation of the experimental design, this

result does not lend itself to an unequivocal interpretation (as
discussed below).

DISCUSSION

A growing body of evidence shows the role that extra-retinal
factors exerts on the pupil diameter, challenging the notion
that the pupillary light response is merely a reflex. The aim of
the current study was to determine whether these modulations
require visual awareness. In agreement with previous research
(11, 12), we observed pupil constrictions to pictures of the sun
relative to their phase-scrambled versions. However, this effect
was only present when participants were aware of such stimuli,
namely when the mask was replaced by a blank background
(no_CFS) or when the stimuli broke through suppression and
became consciously visible (failed_CFS). The effect disappeared
when stimuli were made invisible (successful_CFS). Importantly,
any potential difference in the luminance profile of the stimuli
cannot account for the effect, implying that retinal and
subcortical processing alone are insufficient to explain changes
in pupil response. Instead, the pupil needs conscious (high-level)
processing to be able to distinguish between sun and phase-
scrambled pictures. This finding is in line with the large literature
on CFS, showing that suppressing a stimulus from conscious
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FIGURE 3 | Pupil changes (relative to the pre-stimulus baseline) in individual trials (pooled across participants). Red and black distributions show pupil responses to

sun and phase scrambled pictures, respectively, with their means indicated by vertical lines. (A) trials from the no CFS condition; (B) trials where CFS failed to

suppress awareness of the picture; (C) trials where CFS successfully made the sun/scrambled pictures unseen.

awareness limits its perceptual processing, especially for complex
high-level stimulus properties (28, 37).

The hypothesis of a high-level modulation of pupil diameter is
supported by numerous studies demonstrating changes in pupil
response during high-level cognition, including spatial attention
(6–8, 50), imagery (9), memory (51), decision-making (52),
contextual (10–12), and semantic processing (13). Relevant to
the present work is the observation of pupil modulations during
binocular rivalry of stimuli with different luminance, whereby
pupillary dilations were associated with perceptual transitions
from bright to dark stimuli, and pupillary constrictions with
transitions from dark to bright stimuli (15). Similar to Naber
et al. (15), we found that under constant retinal illumination,
pupil size adjusts according to the dominant percept. However,
in our case, pupil size is independent of actual luminance of the
dominant image [as was in Naber et al. (15)] but depends on
high-level visual analyses producing a differential pupil response
to pictorial representations of a high-luminance object (the sun)
vs. a meaningless image matched in luminance and contrast
(scrambled).

Note that, when images were successfully suppressed
from visual awareness, the pupillary response was dominated
by constriction—not dilation, as could be expected if the
constriction in response to the sun image was selectively
suppressed. This finding lends itself to two explanations. The
first, which is hard to interpret, is that CFS only affects the

pupil dilation in response to the scrambled images, leaving
the response to sun images unaffected. The second, which we
deem more sound, is that successful CFS trials are associated
with enhanced pupil constriction because the high-contrast
Mondrian mask-pattern dominates perception in these trials.
This is a very reasonable scenario, given that high contrast
images are known to generate pupillary constriction, provided
that they are cortically processed [as reviewed in Barbur
(53)], and given previous evidence shows that, when different
stimuli are presented to the two eyes, pupillary responses are
primarily driven by the consciously perceived stimulus (15).
This constriction response to the mask-pattern confounds the
interpretation of the individual pupil traces in response to the
sun and scrambled images, leading to our inability to establish
whether CFS interferes more with the response to one or the
other image type. However, this does not confound our ability to
compare the sun-scrambled difference in pupil response across
conditions, and affirms that this is reduced in successful CFS
trials, implying that CFS hampers the signals that differentiate
sun and scrambled images for the purpose of generating a
pupillary response.

What are these signals, and how do they affect pupil control?
The pupillary light reflex relies on a simple subcortical system:
from the retina, luminance signals are relayed to the olivary
pretectal nucleus, which activates the parasympathetic neurons
of the Edinger-Westphal nucleus to induce pupillary constriction
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(54). Our findings along with several pupillometry studies
lead to the suggestion that the pupilloconstrictor activity must
incorporate input from a separate pathway: a brightness signal
from the visual cortex, which is sensitive to the top-down effects
described above [see also (55)]. This idea is further corroborated
by a recent study on patients with Parinaud’s syndrome (56),
a rare condition following selective lesions of the subcortical
pretectal area; although the pupillary reflex was depleted in
these patients, remarkably their pupil size was modulated by
attention. This indicates that pupil response may be regulated
by multiple pathways, some of which are cortically-mediated.
Together with the present results, this implies that pupil control
incorporates information from relatively complex cortical visual
processing. This conclusion is line with direct evidence from
cortical lesion patients, who have atypical pupillary responses to
light (e.g., 20–23) and to contrast, which are tightly linked to their
residual (sometimes unconscious, e.g., blindisight) visual abilities
(57).

Although a high-level cortical site appears to be the most
likely origin for the signals controlling the pupil sun-scrambled
differential response, we cannot exclude the possibility that both
the perceptual suppression and the suppression of the pupil
response in fact originate at an earlier site. Our two image
categories (sun and scrambled) were matched in luminance
and (for many images, see Figures S2, S3) in the gross spatial
profile of luminance. However, many simple visual features
were eliminated by the phase scrambling procedure, including
local contrast at lines and edges (58). Further insight into the
neural underpinning of this effect could be gained by creating
alternative control images, through novel scrambling methods
[e.g., (59)].

A note on the size of pupil modulations is in order. The
pupil modulations we report here are 0.1mm and less. These are
similar in size to the effects of other perceptual and cognitive
variables found to affect pupil size: while light responses are
often in the range of 1mm and more (2), 0.05–0.1mm is the
typical size of pupil responses to equiluminant contrast (53),
motion direction changes (60), spatial attention (6), and feature-
based attention (61), implying that pupil modulations in this
range can be reliably measured (with eye-tracking apparatus
comparable to the one used here). Albeit measurable, 0.05–
0.1mm pupil change is very small compared to the full range
of pupil size (2–9mm). Appreciation of this point is important

to guide speculations on the functional relevance of this and
other cognitive and perceptual influences on pupil size. Some
have argued that these influences could “optimize” the optics
of the eye for specific perceptual and cognitive tasks, given that
pupil diameter is known to affect the light adaptation state
of the retina (62) and visual spatial resolution (63). However,
there is no evidence that changing pupil diameter by a fraction
of mm has any measurable consequence on vision. Thus, it is
possible that the importance of these small pupil modulations
does not lay in their impact on perception, but in their usefulness
as indices to track the contents of perception or cognition.
Specifically, here we have shown that pupil size is a sensitive
and accessible index of visual awareness, which can precisely
track the contents of consciousness on a trial-by-trial basis.
As such, pupillometry may prove to be an important tool for
the study of consciousness that could overcome methodological
limitations of introspective reports when assessing perceptual
experience.
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