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Background: Early prediction of disease progression in patients with amnestic mild

cognitive impairment (aMCI) is important for early diagnosis and intervention of

Alzheimer’s disease (AD). Previous brain network studies have suggested topological

disruptions of the brain connectome in aMCI patients. However, whether brain

connectome markers at baseline can predict longitudinal conversion from aMCI to AD

remains largely unknown.

Methods: In this study, 52 patients with aMCI and 26 demographically matched healthy

controls from a longitudinal cohort were evaluated. During 2 years of follow-up, 26

patients with aMCI were retrospectively classified as aMCI converters and 26 patients

remained stable as aMCI non-converters based on whether they were subsequently

diagnosed with AD. For each participant, diffusion tensor imaging at baseline and

deterministic tractography were used to map the whole-brain white matter structural

connectome. Graph theoretical analysis was applied to investigate the convergent and

divergent connectivity patterns of structural connectome between aMCI converters and

non-converters.

Results: Disrupted topological organization of the brain structural connectome were

identified in both aMCI converters and non-converters. More severe disruptions of

structural connectivity in aMCI converters compared with non-converters were found,

especially in the default-mode network regions and connections. Finally, a support

vector machine-based classification demonstrated the good discriminative ability of

structural connectivity in differentiating aMCI patients from controls with an accuracy

of 98%, and in discriminating converters from non-converters with an accuracy of 81%.
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Conclusion: Our study provides potential structural connectome/connectivity-based

biomarkers for predicting disease progression in aMCI, which is important for the early

diagnosis of AD.

Keywords: brain network, conversion, diffusion tensor imaging, graph theory, mild cognitive impairment, machine

learning

INTRODUCTION

Mild cognitive impairment (MCI) is generally associated with
a higher risk of dementia and is considered as an intermediate
stage between normal aging and Alzheimer’s disease (AD) (1–
3). A prospective population-based study in elders showed that
the incidence of dementia was highest for patients with amnestic
MCI (aMCI) (4). However, not all patients with aMCI progress
to dementia (5). Early prediction and identification of individuals
with aMCI who are at high risk for conversion to AD aids timely
detection of dementia, which is essential for early intervention
strategies.

Previous studies have shown the potential of imaging

markers to predict conversion from MCI to AD dementia.
Among multiple neuroimaging modalities, MRI has attracted

significant interests due to its completely non-invasive
nature, high availability in mild symptomatic patients and

high spatial resolution. Structural MRI biomarkers such as
gray matter atrophy in the medial temporal lobe (6) and
hippocampal/entorhinal cortex (7) have been identified as
efficacious AD-specific biomarkers for the early diagnosis
and prediction of disease progression. With diffusion MRI
techniques, promising markers of microstructural white matter

(WM) damage in AD and MCI patients have been proposed
(5, 8, 9). Specifically, regional diffusion metrics of limbic WM
in the fornix, posterior cingulum, and parahippocampal gyrus

have shown better performance than volumetric measurements

of gray matter in predicting MCI conversion (10–14).

However, compared with local or regional imaging markers,

the network model has provided a new perspective to investigate
the neuropathological progression of AD from a system

level (15–18). The whole-brain WM structural network at

macroscopic level can be constructed with diffusion MRI and
tractography approaches. The topological organization of brain
network can be further characterized with graph theoretical
analysis (for reviews, see (19, 20). Several non-trivial topological
properties, such as small-worldness, modular structure, and
rich-club organization of WM networks have been consistently
demonstrated in healthy population (21, 22). For AD and
aMCI, previous WM network studies have suggested that AD
patients exhibit decreased topological efficiency than healthy
controls, which is associated with cognitive decline (23, 24).

Similarly, our previous work has also found decreased network
efficiency in patients with aMCI (25–27) and in those at an
earlier stage (28). Importantly, hub regions are preferentially

disrupted in AD and aMCI patients, especially the default
mode network (DMN) regions, which concentrated most

of the pathology of Aβ deposition (29–32). These findings

suggest potential, sensitive connectome-based markers for the
early detection of structural alterations due to pathological
or/and neurodegenerative processes in the early stages of AD.
Recently, machine learning, deep learning and complex brain
networks have been recently applied to the early diagnosis
of neurodegenerative diseases with interesting results (33–36).
Specifically, functional MRI network studies have found more
severe disruptions in MCI converters, which may distinguish
converters from non-converters with high accuracy (37–39).
Structural MRI studies have also found topological differences
of brain connectome between the two groups (40–42). However,
whether the structural brain connectome can provide sensitive
markers to predict longitudinal conversion from aMCI to AD has
remained largely unknown.

Thus, in our study, we focused on aMCI patients who
progressed to probable AD in 2 years after their baseline
scan (referred to as “aMCI converters”) and compared them
with aMCI patients who were clinically stable (i.e., did not
develop AD) during 2 years follow-up (referred to as “aMCI
non-converters”). Diffusion MRI tractography and graph theory
approaches were performed to investigate baseline differences
in the topological organization of the WM structural networks
between aMCI converters and non-converters. We sought
to determine (1) whether the WM networks would show
progressive alterations in aMCI converters compared with non-
converters, (2) how network disruptions would predict disease
progression in aMCI patients, and (3) the potential utility of brain
structural connectome for individual prediction and diagnosis in
the early stage of AD.

MATERIALS AND METHODS

Participants
This retrospective study involved 78 elderly subjects, including
52 aMCI patients, who were recruited from the Memory
Clinic of the Neurology Department, XuanWu Hospital, Capital
Medical University, Beijing, China and 26 demographically
matched healthy controls (HCs) who were recruited from local
communities. The inclusive criteria of aMCI patients were
proposed by Petersen (43, 44) and described as follows: (1)
definite complaints of memory declined, preferably confirmed
by an informant; (2) objective cognitive performances in
single or multiple domains including memory documented by
neuropsychological tests scores were below or equal to 1.5 SD
of age- and education-adjusted norms; (3) a Clinical Dementia
Rating (CDR) score of 0.5; (4) preservation of independence
in activities of daily living; and (5) not sufficient to meet
the criteria for dementia based on DSM-IV-R (Diagnostic and
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Statistical Manual of Mental Disorders, 4th edition, revised).
Subjects who had no complaints of cognition and normal
objective cognitive performances as well as a CDR score of
0 were referred as HCs. The exclusive criteria of participants
were as follows: (1) a history of stroke, traumatic brain injury,
neurological/psychiatric diseases, and other central nervous
system diseases that may lead to cognitive impairment; (2)
major depression (Hamilton Depression Rating Scale score
>24 points); (3) other systemic diseases including thyroid
dysfunction, syphilis, severe anemia, or HIV that may cause
cognitive impairment; (4) addictions or treatments that would
influence cognitive ability; (5) vessel disease included cortical
and/or subcortical infarcts, or WM hyperintensity and lesions;
(6) severe visual or auditory disabilities.

These participants were selected from a larger cohort
(n = 205) and consisted of those who had completed MRI
scanning at baseline and undergone a 2 years longitudinal
follow-up at least once. During follow-up, patients with aMCI
were reclassified as aMCI converters (aMCI-c) or aMCI non-
converters (aMCI-nc) based on whether they were subsequently
diagnosed with dementia. The diagnosis of dementia was
triggered by a change in the CDR score from 0.5 to 1.0 and
confirmed by neuropsychological tests and physician evaluations.
This study included 26 aMCI-c who converted to AD within 2
years and 26 demographically matched aMCI-nc who remained
stable during the follow-up.

All participants underwent regular neuropsychological
assessments, including the Mini-Mental State Examination
(MMSE) (45), Montreal Cognitive Assessment (MoCA) (46),
Auditory Verbal Learning Test (AVLT), CDR (47), Hamilton
Depression Rating Scale (48), and Activities of Daily Living
scale. The study was registered on ClinicalTrials.gov (Identifier:
NCT02225964) and study protocol was approved by XuanWu
Hospital of Capital Medical University institutional review
board, and all participants completed a written informed consent
process before any study procedures. Table 1 summarized the
main demographic and clinical information of all participants.

Data Acquisition
All participants were scanned using a Siemens Trio 3.0 T MRI
scanner at XuanWu Hospital of Capital Medical University.
Participants lay still with their heads fixed by straps and
foam to minimize movement. The T1-weighted images were
acquired using a magnetization prepared rapid gradient echo
(MPRAGE) sequence with the following parameters: repetition
time (TR) = 1,900ms; echo time (TE) = 2.2ms; flip angle = 9◦;
acquisition matrix = 256 × 224; field of view (FOV) = 256 ×

224 mm2; slice thickness = 1mm; no gap; 176 sagittal slices;
and average = 1. The diffusion tensor imaging (DTI) data were
acquired using a single-shot EPI sequence with the following
parameters: TR = 11,000ms; TE = 98ms; flip angle = 90◦;
acquisition matrix = 128 × 116; FOV = 256 × 232 mm2; slice
thickness= 2mm; no gap; 60 axial slices; and average= 3. Thirty
non-linear diffusion weighting directions with b= 1,000 s/mm2

and one b0 image were obtained. All images were reviewed
and the leukoencephalopathy and vascular comorbidity was
evaluated by an experienced neuroradiologist.

Data Preprocessing
First, the DTI data was preprocessed to remove the effect of
eddy current distortion and motion artifact by applying an affine
alignment of the diffusion-weighted images to the reference
b0 image. Then the transformation was applied to reorient
the b-matrix. Second, the diffusion tensor was calculated and
diagonalized to obtain 3 eigenvalues (λ1, λ2, λ3) and their
corresponding eigenvectors. Finally, the FA image was calculated.
The preprocessing procedure was performed with the FMRIB
Diffusion Toolbox (FDT) in FSL (version 5.0, http://fsl.fmrib.ox.
ac.uk/fsl/fslwiki/FDT).

Brain Network Construction
For each participant, the individual WM structural network was
constructed with the following procedures.

Network Node Definition
To define the network node, we used the Automated Anatomical
Labeling (AAL) atlas to parcellate the brain into 90 regions (49).
Briefly, T1-weighted image was coregistered to the b0 image in
DTI space. Then the transformed T1 images were normalized to
the ICBM152 T1 template in the Montreal Neurological Institute
(MNI) space. Finally, inverse transformations were applied to
AAL atlas to obtain an individual parcellation of 90 ROIs (45
for each hemisphere, Table S1), each representing a node of
the network (Figure 1). All procedures were performed using
the SPM8 software (https://www.fil.ion.ucl.ac.uk/spm/software/
SPM8/).

WM Tractography
Deterministic tractography was performed to reconstruct the
whole-brain fiber streamlines, by seeding each voxel with an
FA >0.2. The tractography was terminated if it reached a
voxel with an FA <0.2 or turned an angle >45 degrees
(50). The tractography was performed using Diffusion Toolkit
(http://www.trackvis.org/dtk/) based on the “fiber assignment by
continuous tracking” method (50).

Network Edge Definition
Between each pair of ROIs, the weight of the edge was defined
as the number of fiber streamlines (FN) with two end points
located in these two regions. Therefore, an FN-weighted 90 ×

90 structural connectivity (SC) network was constructed for each
participant (Figure 1).

Network Analysis
Small-World Properties
Several graph metrics were calculated to quantify the topological
organization of WM structural networks, including network
strength (Sp), global efficiency (Eglob), local efficiency (Eloc),
shortest path length (Lp), clustering coefficient (Cp), and small-
world parameters (λ, γ, and σ) (51). For regional characteristics,
we calculated the nodal global and local efficiency (52). The
detailed definitions of these network measures can refer to (51)
and Supplement 1.
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TABLE 1 | Demographics and neuropsychological testing.

aMCI-c (n = 26) aMCI-nc (n = 26) HC (n = 26) F value P-value

Age (years) 67.7 ± 8.1 (50–78) 67.7 ± 8.3 (50–78) 67.8 ± 8.0 (50–78) 0.01 0.99*

Gender(M/F) 12/14 14/12 13/13 – 0.86#

Education (years) 10.1 ± 5.0 (0–20) 9.4 ± 5.0 (0–18) 11.2 ± 5.4 (0–18) 0.63 0.54*

MMSE 23.1 ± 2.9 (17–28) 25.3 ± 3.5 (18–30) 28.0 ± 2.3 (20–30) 20.29 <0.001*abc

MoCA 17.6 ± 3.1 (10–23) 20.6 ± 4.0 (14–26) 26.5 ± 1.5 (25–30) 58.54 <0.001*abc

AVLT-Immediate Recall 4.8 ± 1.2 (2.7–7.3) 5.8 ± 1.7 (3.3–10.0) 9.3 ± 2.0 (2.7–14.7) 53.07 <0.001*bc

AVLT-Delayed Recall 2.7 ± 2.1 (0–6) 3.5 ± 3.1 (0–11) 10.1 ± 2.8 (4–15) 59.08 <0.001*bc

AVLT-Recognition 6.5 ± 3.9 (−3–13) 7.5 ± 3.7 (0–14) 12.2 ± 2.3 (5–15) 20.22 <0.001*bc

Values are represented as the mean ± SD (range). All of the scores are raw values.

HC, healthy control; aMCI, amnestic mild cognitive impairment; aMCI-c, aMCI converters; aMCI-nc, aMCI non-converters; MMSE, Mini-Mental State Examination (Chinese Version);

MoCA, Montreal Cognitive Assessment (Beijing Version); AVLT, Auditory Verbal Learning Test.

*The P-values were obtained using one-way analysis of variance (ANOVA). Post-hoc pairwise comparisons were performed using a t-test. P < 0.05 was considered significant.
#The P-values were obtained using the Kruskal-Wallis one-way ANOVA.
apost-hoc paired comparisons showed a significant group difference between aMCI-c vs. aMCI-nc.
bpost-hoc paired comparisons showed a significant group difference between aMCI-c vs. HC.
cpost-hoc paired comparisons showed a significant group difference between aMCI-nc vs. HC.

FIGURE 1 | Flowchart for construction of the WM structural network by DTI. (1) Coregistration from an individual T1-weighted image (A) to a DTI b0 image (B). (2)

Nonlinear registration from the T1-weighted image in the native DTI space to the ICBM152 T1 template in the MNI space (D). (3) Application of the inverse

transformation (T−1) to the AAL atlas in the MNI space (E), which results in individual-specific parcellation in the native DTI space (F). (4) The reconstruction of the

whole-brain WM fibers (C) was performed using deterministic tractography in Diffusion Toolkit. (5) The weighted networks of each subject (G) were created by

computing the number of the streamlines that connected each pair of brain regions. The connection matrix and 3D representation (axial view) of the WM structural

network of a representative healthy subject are shown in the right panel. The nodes are located according to their centroid stereotaxic coordinates and the edges are

sized according to their connection weights.

Hub Distribution
To identify the hub distributions of WM networks in each
group, we constructed the backbone network with consistent
edges which exist in over 80% subjects for each group.
Based on the backbone network, we identified the hub
regions by sorting the nodal degree [K(i) > mean + std].
According to the categorization of the nodes into hub and
non-hub regions, the edges were classified into rich-club,
feeder and local connections (21, 22). Finally, the connection
strength of each type of connections were calculated for each
participant.

The graph analyses of brain networks were performed using
the in-house software, GRETNA (http://www.nitrc.org/projects/
gretna/) (53) and were visualized using BrainNet Viewer software
(http://www.nitrc.org/projects/bnv/) (54).

Statistical Analysis
Group Differences
Demographic factors and clinical scores including age, years
of education, and neuropsychological scores among the three
groups were compared using one-way analysis of variance
(ANOVA). Post-hoc pairwise comparisons were then performed
using t-tests. Gender distribution was compared with the
Kruskal-Wallis one-way ANOVA. To determine the group
difference in network metrics, comparisons were performed
with univariate analysis of covariance (ANCOVA). Post-hoc
pairwise comparisons were then performed using a general linear
model. The effects of age, gender and years of education were
adjusted for all of these analyses. For regional properties, multiple
comparisons were corrected by using the false discovery rate
(FDR) correction.
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Network-Based Statistic (NBS)
To identify the specific connected components with significant
different structural connections between each pair of groups,
we used a NBS approach (55). Briefly, a primary cluster-
defining threshold was first applied to identify connections
above threshold, and the size (i.e., number of edges) of all
connected components was determined. For each component,
a corrected p-value was calculated using the null distribution of
maximal connected component size, which was derived using the
permutation approach (5,000 permutations). Notably, multiple
linear regressions were performed to remove the effects of age,
gender and years of education before the permutation tests. The
detailed descriptions of the NBS analyses can refer to (55) and
Supplement 1.

ROC Analysis
To determine the power of the connection strength of
the NBS components to serve as potential biomarkers for
clinical diagnosis of aMCI patients and differentiation between
converters and non-converters, we performed a receiver
operating characteristic (ROC) curve analysis for the strength of
NBS components, which showed significant group differences.

Relationships Between Network Metrics and Clinical

Scores
For the network metrics showing significant group differences,
partial correlation analyses were performed between the network
metrics and clinical scores for aMCI converters and non-
converters separately, while removing the effects of age, gender
and years of education. All the statistical analyses were performed
using the MATLAB program (The MathWorks, Inc.).

Support Vector Machine-Based
Classification
To determine the discriminative ability of structural connectivity
in separating aMCI patients from controls and separating
converters from non-converters, we used the connection strength
of the edges as the features for individual classification. For
each pair of groups, we performed a support vector machine
(SVM) classification, with a Gauss kernel function and the default
settings of C = 1, coef = 0 and gamma as the reciprocal of the
number of features in the LIVSVM Toolbox (http://www.csie.
ntu.edu.tw/~cjlin/libsvm/) (56). Leave-one-out cross-validation
(LOOCV) was used to evaluate the SVM model. Each subject
was designated the test subject in turns while the remaining ones
were used to train the SVM predictor. The hyperplane derived
from the training subjects was then used to make a prediction
about the group label of the test subject. Sensitivity, specificity,
accuracy, and area under the curve (AUC) value were calculated
to assess the performance of the classifier.

To avoid overfitting and reduce the redundant information,
the F-score was calculated for each feature (connection), and the
features with higher F-scores were used to train the model. The
number of selected features (1%−20%with an interval of 1%) was
decided by a grid search. The F-score was defined as (57):

F (i) =
(x
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i − xi)

2
+ (x

(−)
i − xi)

2

1
n+−1

∑n+
k=1

(x
(+)
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i )
2
+ 1

n−−1

∑n−
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(x
(−)
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2
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where xi, x(+)
i , x(−)

i are the average of the i-th feature of the

whole, positive, and negative data sets, respectively; x
(+)

k, i
is the i-

th feature of the k-th positive instance; and x
(−)

k, i
is the i-th feature

of the k-th negative instance.
The radial basis kernel function was defined as:

K (x, z) = e

(

‖x−z‖2

2γ 2

)

(2)

where x, z is the feature vector of a different instance; e is the Euler
number, and γ is the hyper-parameter.

Reproducibility Analysis
Effects of Different Thresholds
To test the stability of the results, we constructed individual WM
networks with five different thresholds of fiber number (wij = 1,
2, 3, 4, 5). If the streamline number of an edge was less than the
threshold, the edge weight was set to zero. For each threshold, the
global networkmetrics were computed, and the group differences
were assessed.

Effects of Different Parcellation Schemes
To evaluate the effects of different parcellation schemes on
the network metrics, we further subdivided the low-resolution
AAL (L-AAL) template into 1024 ROIs of equal size [i.e.,
high-resolution (H-1024)] (58). A high-resolution network was
constructed for each participant and followed that with the same
network analysis.

RESULTS

Demographics and Neuropsychological
Testing
No group differences were found in age, gender and years
of education among the three groups. For clinical scores,
aMCI patients showed a lower MMSE [F(2,75) = 20.29,
p < 0.001], MoCA [F(2,75) = 58.54, p < 0.001], and AVLT
scores [AVLT-immediate recall: F(2,75) = 53.07, p< 0.001; AVLT-
delayed recall: F(2,75) = 59.08, p < 0.001; AVLT-recognition:
F(2,75) = 20.22, p < 0.001] than controls. Between the two
aMCI groups, lower MMSE and MoCA scores were observed
in aMCI converters relative to non-converters (all p < 0.05;
Table 1).

Global Topology of the WM Structural
Networks
Characteristic small-world organization of the WM networks
(λ ≈ 1, γ > 1) were observed for both aMCI patients
and control subjects. Among the three groups, ANCOVAs
on the global network properties showed significant group
effects in network strength [F(2,75) = 10.18, p = 0.0001],
global efficiency [F(2,75) = 6.51, p = 0.0025], local efficiency
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TABLE 2 | Group differences in global network metrics.

aMCI-c

(n = 26)

aMCI-nc

(n = 26)

HC

(n = 26)

F value P value

Strength 220.4 ± 46.6 241.0 ± 37.3 268.6 ± 39.6 10.18 <0.001abc

Global efficiency 12.1 ± 2.5 13.0 ± 1.9 14.1 ± 2.1 6.51 0.002bc

Local efficiency 18.3 ± 3.3 19.7 ± 2.6 21.4 ± 3.0 8.05 <0.001abc

Lp (×10−2) 8.66 ± 2.16 7.85 ± 1.24 7.22 ± 1.07 6.40 0.003ab

Cp 0.53 ± 0.03 0.55 ± 0.02 0.55 ± 0.02 5.20 0.008ab

Lambda 1.18 ± 0.06 1.19 ± 0.03 1.19 ± 0.04 0.35 0.71

Gamma 3.21 ± 0.49 3.10 ± 0.30 3.03 ± 0.25 1.92 0.15

Sigma 2.72 ± 0.41 2.61 ± 0.24 2.55 ± 0.21 2.53 0.09

Values are represented as the mean ± SD. Abbreviations: HC, healthy control; aMCI, amnestic mild cognitive impairment; aMCI-c, aMCI converters; aMCI-nc, aMCI non-converters.

Lp, shortest path length; Cp, clustering coefficient.

The P-values were obtained with a univariate analysis of covariance (ANCOVA). Post-hoc pairwise comparisons were then performed using a general linear model. The effects of age,

gender and years of education were adjusted for all of these analyses. P < 0.05 was considered significant.

apost-hoc paired comparisons showed a significant group difference between aMCI-c vs. aMCI-nc.
bpost-hoc paired comparisons showed a significant group difference between aMCI-c vs. HC.
cpost-hoc paired comparisons showed a significant group difference between aMCI-nc vs. HC.

[F(2,75) = 8.05, p = 0.0007], shortest path length [F(2,75) = 6.40,
p= 0.0028] and clustering coefficient [F(2,75) = 5.20, p= 0.0078;
Table 2] (Figure 2). In addition, post-hoc comparisons showed
significantly reduced network strength, global efficiency and local
efficiency in both aMCI converters and non-converters relative
to the controls. Increased shortest path length and decreased
clustering coefficient were found only in aMCI converters
relative to controls. Between aMCI converters and non-
converters, significant group differences were found in network
strength [t(47) =2.28, p = 0.027], local efficiency [t(47) = 2.19,
p = 0.034), shortest path length [t(47) = −2.12, p = 0.039],
and clustering coefficient [t(47) = 2.20, p = 0.033; Table 2;
Figure 2].

Node-Based Analysis
Following the discovery of a disrupted global network
organization, we further localized the regions with altered
nodal global and local efficiency. For nodal global efficiency,
regions with significant group effects were mainly distributed
in the frontal and parietal cortices, including 7 frontal regions
(right dorsolateral superior frontal gyrus, right middle frontal
gyrus, right opercular part of the inferior frontal gyrus, right
triangular part of the inferior frontal gyrus, left anterior cingulate
gyrus, bilateral supplementary motor area) and 3 parietal
regions (left posterior cingulate gyrus, bilateral precuneus)
(p < 0.05, corrected) (Figure 3). Post-hoc tests showed that
all of these regions showed reduced global efficiency in both
aMCI converters and non-converters relative to controls. In
particular, several brain regions showed more severe disruptions
in aMCI converters compared with non-converters, including
the bilateral precuneus, left anterior cingulate gyrus, right middle
frontal gyrus, and right triangular part of the inferior frontal
gyrus (all p < 0.05).

For nodal local efficiency, regions with significant group
effects were mainly distributed in the limbic cortices (bilateral
median cingulate and paracingulate gyri and posterior cingulate
gyrus), temporal cortices (left superior temporal gyrus, right

temporal pole, and bilateral hippocampus), subcortical regions
(left caudate nucleus and bilateral putamen) and right superior
occipital gyrus (p < 0.05, corrected) (Figure 4). All of these
regions had a reduced local efficiency in aMCI converters
compared with controls. In seven of these regions, including the
bilateral putamen, bilateral median cingulate and paracingulate
gyri, left posterior cingulate gyrus, left hippocampus and left
caudate nucleus, reduced local efficiency was observed in
aMCI non-converters compared with controls. Between the two
aMCI groups, four regions (left superior temporal gyrus, right
superior occipital gyrus, right posterior cingulate gyrus, and
right hippocampus) showed a more severe disruption of local
efficiency in the aMCI converters relative to non-converters (all
p < 0.05).

Connectivity-Based Analysis
NBS analyses were carried out to identify the disrupted connected
components in patients. Compared to healthy controls, a
single component with 83 nodes and 177 connections was
altered in aMCI converters (p < 0.001, corrected) and a
component with 73 nodes and 122 connections was detected
in aMCI non-converters (p < 0.001, corrected) (Figure 5A).
The involved regions had a widespread distribution across the
frontal, temporal, parietal, occipital, and subcortical regions.
The comparison between aMCI converters and non-converters
revealed a component with decreased strength in converters,
which was composed of 70 nodes and 81 connections (p < 0.05,
corrected), mainly involving the bilateral precuneus, bilateral
putamen, left anterior cingulate gyrus, right superior parietal
gyrus, left middle temporal gyrus, left paracentral lobule, and left
superior occipital gyrus (Figure 5A).

ROC analyses were performed to evaluate the discriminative
ability of the disrupted component identified by NBS. The NBS
component exhibited good performance for the discrimination
between aMCI converters and healthy controls (with an AUC
value of 0.96), between aMCI non-converters and healthy
controls (with an AUC value of 0.91) and between aMCI
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FIGURE 2 | Global measures of the WM structural network were quantified in the aMCI converters, non-converters, and controls. The bars and error bars represent

the fitted values and the standard deviations, respectively. The fitted values indicates the residuals of the original values of the network metrics after removing the

effects of age, gender and years of education. The asterisk indicated a significant difference between groups. (*) represents a significant group difference at p < 0.05;

(**) represents a significant group difference at p < 0.01; and (***) represents a significant group difference at p < 0.001.

FIGURE 3 | The distribution of brain regions with significant group effects in the nodal global efficiency among the three groups (p < 0.05, corrected). The node sizes

indicate the significance of group differences in the nodal global efficiency. For each node, the bar and error bar represent the fitted values and the standard deviations,

respectively, of the nodal global efficiency in each group. post-hoc tests revealed that all of these regions showed reduced nodal global efficiency in both aMCI

converters and non-converters relative to controls. Several brain regions (5/10) showed more severe disruptions in aMCI converters compared with non-converters,

including the bilateral precuneus, left anterior cingulate gyrus, right middle frontal gyrus, and right triangular part of the inferior frontal gyrus. (*) represents a significant

group difference at p < 0.05; (**) represents a significant group difference at p < 0.01; and (***) represents a significant group difference at p < 0.001.

converters and non-converters (with an AUC value of 0.89)
(Figure 5B).

Rich-Club Organization
Similar hub distributions were found across three groups
(Figure 6A), mainly located in bilateral precuneus, bilateral
putamen, right dorsolateral superior frontal gyrus, left middle
temporal gyrus and several occipital regions. Several brain
regions were identified as hubs only in the control group, such as
bilateral orbital part of superior frontal gyrus. Among the three
groups, significant group effects were identified in the strength
of rich-club [F(2,75) = 6.67, p = 0.0022], feeder [F(2,75) = 7.25,
p = 0.0013] and local [F(2,75) = 9.44, p = 0.0002] connections
(Figure 6B). Compared with healthy controls, aMCI converters
showed significant decreases in all three types of connections (all
p < 0.005) and aMCI non-converters showed decreases in rich-
club [t(47) = 2.06, p = 0.045] and local [t(47) = 2.82, p = 0.007]

connections. Only feeder connections decreased significantly in
aMCI converters compared with non-converters [t(47) = 2.26,
p= 0.028].

Correlations Between Network Metrics
and Neuropsychological Tests
The relationship between network metrics and clinical scores
were examined for aMCI converters and non-converters,
respectively. In aMCI converters: MoCA was positively
correlated with global efficiency (r = 0.41; p = 0.049), and
negatively correlated with shortest path length (r = −0.53;
p = 0.010); MMSE was negatively correlated with shortest
path length (r = −0.43; p = 0.041) (Figure 7A). In aMCI
non-converters: MMSE was positively correlated with network
strength (r = 0.44; p = 0.034) and global efficiency (r = 0.47;
p = 0.022), and negatively correlated with shortest path
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FIGURE 4 | The distribution of brain regions with significant group effects in the nodal local efficiency among the three groups (p < 0.05, corrected). The node sizes

indicate the significance of group differences in the nodal local efficiency. For each node, the bar and error bar represent the fitted values and the standard deviations,

respectively, of the nodal local efficiency in each group. post-hoc tests revealed that all of these regions had a reduced nodal local efficiency in aMCI converters

compared with controls. In seven of these regions, including the bilateral putamen, bilateral median cingulate, and paracingulate gyri, left posterior cingulate gyrus, left

hippocampus and left caudate nucleus, reduced local efficiency was observed in aMCI non-converters compared with controls. Between the two aMCI groups, four

regions (left superior temporal gyrus, right superior occipital gyrus, right posterior cingulate gyrus, and right hippocampus) showed a more severe disruption of local

efficiency in the aMCI converters relative to non-converters. (*) represents a significant group difference at p < 0.05; (**) represents a significant group difference at

p < 0.01; and (***) represents a significant group difference at p < 0.001.

FIGURE 5 | Altered structural connectivity between each pair of groups identified using NBS. (A) Compared to healthy controls, a single component with 83 nodes

and 177 connections was altered in aMCI converters (p < 0.001, corrected) and a component with 73 nodes and 122 connections was detected in aMCI

non-converters (p < 0.001, corrected). The comparison between aMCI converters and non-converters revealed a component with decreased strength in converters,

which was composed of 70 nodes and 81 connections (p < 0.05, corrected). The edge sizes indicate the significance of the between-group differences. (B) ROC

curve of the NBS component between aMCI converters and healthy controls (AUC = 0.96); between aMCI non-converters and healthy controls (AUC = 0.91); and

between aMCI converters and non-converters (AUC = 0.89). (AUC, area under the curve).
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FIGURE 6 | Hub distributions of the WM structural network in the aMCI converter, aMCI non-converter and control groups. (A) The hub nodes are shown in red with

the node sizes indicating their nodal degree. The networks shown here were constructed by averaging the WM connection matrices of all the subjects in each group

with a sparsity of 10%. (B) The group differences in the rich-club/feeder/local connection strengths. The bars and error bars represent the fitted values and the

standard deviations, respectively, of the connection strength in each group. (*) represents a significant group difference at p < 0.05; (**) represents a significant group

difference at p < 0.01; and (***) represents a significant group difference at p < 0.001.

length (r = −0.47; p = 0.025); AVLT-Immediate Recall was
positively correlated with global efficiency (r = 0.43; p = 0.038)
(Figure 7B).

Individual Classification of aMCI
Converters and Non-converters
The results of SVM classification demonstrated good
discriminative ability of structural connectivity in the
differentiation between aMCI patients and controls and
between aMCI converters and non-converters. The ROC curves
for the classification between each pair of groups are shown in
Figure 8A. For the discrimination between aMCI converters
and controls, an AUC value of 1.00 was obtained, with an
accuracy of 98.08%, sensitivity of 100% and specificity of 96.15%.
Between aMCI non-converters and controls, an AUC value
of 0.99 was obtained, with an accuracy of 98.08%, sensitivity
of 100% and specificity of 96.15%. Between aMCI converters
and non-converters, an AUC value of 0.89 was obtained, with
an accuracy of 80.77%, sensitivity of 92.31%, and specificity
of 69.23%. The effects of number of selected features on the
classification accuracy were also evaluated (Figure S1).

The discriminative features for the classification were mapped
onto the regions, which were rendered with the total number
of connections from this region selected as features in the

SVM classification (Figure 8B). For the classification between
aMCI and controls, the most selected features were connections
of the bilateral precuneus, bilateral posterior cingulate gyrus,
right putamen, right thalamus, right dorsolateral superior
frontal gyrus, left orbital part of the inferior frontal gyrus,
and left caudate nucleus. For the classification between aMCI
converters and non-converters, the most contributed features
were connections of the bilateral precuneus, bilateral middle
temporal gyrus, bilateral putamen, right medial superior frontal
gyrus and left triangular part of the inferior frontal gyrus.

Reproducibility of the Findings
Effects of Different Thresholds
For the different thresholds of network construction
(wij = 1,2,3,4,5), similar group differences were found for
network strength, global efficiency, local efficiency, and shortest
path length (all p < 0.05) (Figure S2A).

Effects of Different Parcellation
For the high-resolution (H-1024) network analysis, significant
group effects in network strength [F(2,75) = 10.14, p = 0.0001],
global efficiency [F(2,75) = 9.40, p = 0.0002], local efficiency
[F(2,75) = 6.41, p = 0.0027], and shortest path length
[F(2,75) = 9.30, p= 0.0003] were observed (Figure S2B). Post-hoc
analysis revealed significantly reduced network strength, global
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FIGURE 7 | Clinical correlations of the network metrics in aMCI converters and non-converters. Plots showing the significant correlations between the network

metrics and the clinical scores in aMCI converters (A) and non-converters (B), respectively. The fitted values indicate the residuals of the original values of the network

metrics after removing the effects of age, gender and years of education.

FIGURE 8 | ROC curves of the SVM classification between each pair of groups. (A) ROC curve of the SVM classification between aMCI converters and healthy

controls, AUC = 1.00; between aMCI non-converters and healthy controls, AUC = 0.99; and between aMCI converters and non-converters, AUC = 0.89. (AUC, area

under the curve) (B) Regions to which the structural connections with the most discriminative power in the SVM classification was connected. The color shows the

average number of edges selected as the features in each SVM classification connected to this region.

efficiency, local efficiency and increased shortest path length
in both aMCI converters and non-converters relative to the
controls (all p < 0.05). Between aMCI converters and non-
converters, significant group differences were found in network

strength [t(47) = 2.06, p = 0.044], global efficiency [t(47) = 2.06,
p = 0.044], and shortest path length [t(47) = −2.27, p = 0.028].
The group differences of global networkmetrics were comparable
with those from low-resolution networks.
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DISCUSSION

By combining DTI tractography and graph theoretical analyses,
we demonstrated convergent and divergent topological
alterations of the brain structural connectome in aMCI
converters and non-converters. More severe disruptions of
the structural connectome were identified in aMCI converters,
especially in the DMN regions and connections. Importantly,
the structural connectivity showed good discriminative
ability in the differentiation of aMCI converters and non-
converters, providing potential connectome-based markers
for the early prediction of disease progression in aMCI
patients.

Global Network Disruption Between MCI
Converters And Non-converters
First, we found similar patterns of global network alterations
in both aMCI converters and non-converters. Compared with
healthy controls, aMCI patients showed reduced network
strength, global efficiency and local efficiency, but remained
similar with respect to small-world parameters. These findings
are consistent with our previous graph analysis of brain
structural networks in aMCI patients (26, 27). As a disconnection
disease, lower network global, and local efficiency were related
to the widespread disruption of both long-range and short-
range structural connectivity in aMCI patients, which indicated
the pathological or degenerative alterations of WM in the
early stage of AD. The possible mechanisms of structural
disconnection may be due to cortical amyloid deposition,
neural dysfunction, vascular damage, demyelination and so on
(59–61).

Importantly, compared to aMCI non-converters, converters
demonstrated lower network strength, local efficiency, and
increased shortest path length even at baseline. Lower network
strength was associated with sparse connectivity of brain
networks, which indicated reduced WM integrity in the early
phase of aMCI converters. This finding is in line with the
evidence of more severe disruption of WM connectivity in MCI
converters than non-converters with conventional DTI analyses
(10, 12, 62). In addition, decreased local efficiency is mainly due
to the loss of short-range connections among the neighborhood
regions, and an increased shortest path lengthmay be attributable
to the disrupted long-range connections between remote regions,
which is important for interregional effective integrity or prompt
transfer of information in brain networks and constitutes the
basis of cognitive processes (63). The alteration pattern of WM
networks between converters and non-converters was similar
to that in prior cross-sectional studies, which have identified
network alterations with disease progression in AD and MCI
patients (64–66). More severe disruptions of network properties
in AD patients relative to MCI patients were found. Our study
confirmed these cross-sectional reports of network dysfunction
in AD and MCI and extended those with additional new
findings.

Before disease transition, more severe structural or functional
connectivity alterations already existed in the aMCI converters
compared with non-converters (37–41). From the current study,

we found that the network measures from DTI data are sensitive
enough to detect the topological differences even at baseline,
and correlated with the disease severity evaluated by clinical
scores (MMSE, MoCA, and AVLT-Immediate Recall) in aMCI
patients. Compared with the traditional regional or local brain
measures, brain network studies provide a systematic perspective
to investigate the disease progression and new insights into
understanding the neuropathological mechanisms of disease
conversion. Our results suggest the pivotal role of WM network
disruption in the genesis of dementia and highlight the potential
of a disease marker to identify patients at risk for dementia at an
early stage.

Regional/Connectivity Differences
Between MCI Converters and
Non-converters
Between aMCI patients and controls, significant differences in
nodal global efficiency were mainly located in the bilateral
precuneus, prefrontal cortex, and posterior cingulate gyrus,
consistent with our previous network findings of aMCI patients
(25–27). The reduced nodal global efficiency reflected a disrupted
global integration of the structural connectivity in these regions,
which may be due to more severe disconnection in AD-
related hub brain regions concentrating most of the amyloid
deposition (30, 31, 67–69). Furthermore, relative to aMCI
non-converters, aMCI converters showed reduced nodal global
efficiency in the bilateral precuneus, left anterior cingulate gyrus
and right middle frontal gyrus, the regions that belong to
the default mode network (DMN), which overlap with brain
regions in distribution of early accumulation of cortical Aβ

fibril (70), as well as to the pattern of hypometabolism found
on FDG-PET studies (71) and of hypoperfusion on resting
MR perfusion studies of AD patients (72). A functional MRI
study has suggested the significant predictive value of DMN
connectivity in predicting the disease progression to AD in MCI
patients (73). Amyloid accumulation started from the DMN
and was correlated with hypoconnectivity of the DMN (70).
The association between amyloid accumulation and cognition
was found to be influenced by functional connectivity of
the DMN (74). Moreover, a prior DTI study has suggested
that an increased amyloid burden is related to changes in
topology of WM network architecture in MCI and AD patients
(60), suggesting that pathological propagation affects large-
scale functional and structural brain networks with disease
progression. Notably, the most significant differences between
converters and non-converters were located in the bilateral
precuneus; as one of the most important regions of the DMN,
the precuneus plays a critical role in memory processing and
AD progression. A previous structural MRI-based network
study has found that betweenness centrality of the precuneus
is associated with cognitive decline (75), which may suggest a
key role of the precuneus in the disease conversion of aMCI
patients.

Meanwhile, group differences in nodal local efficiency
were mainly located in the bilateral hippocampus, middle
and posterior cingulate gyri, superior and middle temporal
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gyri, which were characteristic AD-signature regions (9).
Previous neuroimaging studies have also reported the structural
or functional alterations in these brain regions in AD
and MCI patients (27, 76–78). Reduced local efficiency of
these regions may reflect local impairment in functional
segregation of episodic memory, which may be related to the
structural disruptions of short-range connections within the
memory network which centered on the hippocampus (79–
81). Relative to non-converter, reduced nodal local efficiency
in the left superior temporal gyrus, right hippocampus and
right superior occipital gyrus were found in aMCI converters.
These regions were also identified as features for predicting
progression to AD in MCI patients based on amyloid-
PET (82).

Similar hub distributions were found across three groups,
which were consistent with previous findings (27, 83). Hubs
play a pivotal role in global information transfer and seem to
be vulnerable and preferentially affected in AD patients (29).
In our study, both hub and non-hub regions showed decreased
efficiency and all categories of edges showed lower strength in
aMCI patients. Between aMCI converter and non-converters,
only feeder connections showed progressive disruption. We
speculate that aMCI initiates with a widespread disruption
of WM connectivity, and alterations in feeder connections
may be with important predictive value for the disease
progression.

Machine learning approaches for the individual prediction of
disease progression Identifying sensitive and early biomarkers
for the individual prediction of disease progression is important
for early disease diagnosis and precise medicine. Machine
learning approaches with big multimodality data provide a
promising area for future intelligent computer-aided-diagnosis
(84). For AD and MCI, a number of previous studies
have tested different imaging, CSF or neuropsychological
measures for the early prediction of disease conversion (9,
85–87). Based on the brain structure connectome and SVM
classification, we obtained a high classification accuracy of 98%
between aMCI patients and controls. Even between converters
and non-converters, the accuracy can reach 81%, which is
comparable and even higher than previous results (10, 12,
14, 38, 42, 88). This finding suggested the potential utility of
brain structural connectivity/connectome-based markers for the
individual prediction of disease conversion, which may provide
biologically relevant information not present in other imaging
markers.

Methodological Issues
Several methodological issues should be addressed. First, the
results were limited by the small sample size. In the future studies,
several large publicly available datasets, such as ADNI, should be
used as an independent cohort for validating the reproducibility
of our findings. Second, we only identified abnormalities
in patients with aMCI converters and non-converters at
baseline, and longitudinal follow-up studies of the same study
population are needed to verify the effects of early imaging

markers for disease prediction. Third, we only studied WM
structural networks. In future studies, the combination of the
multimodal imaging and conventional pathological biomarkers
would contribute to a more comprehensive prediction of the
progression from aMCI to AD dementia. Finally, some newly
developed network analysis approaches, such as multiplex
networks, can help early AD classification (33). These approaches
deserve a further investigation in future studies.

CONCLUSIONS

By using DTI tractography combined with graph analysis,
our study demonstrated more severe disrupted topological
organization of brain structural connectome in aMCI
converters compared with non-converters, providing potential
connectivity/connectome-based biomarkers for the early
prediction of disease progression in aMCI patients.
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