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This review details our current understanding of thrombin signaling in neurodegeneration,

with a focus on amyotrophic lateral sclerosis (ALS, Lou Gehrig’s disease) as well as

future directions to be pursued. The key factors are multifunctional and involved in

regulatory pathways, namely innate immune and the coagulation cascade activation,

that are essential for normal nervous system function and health. These two major host

defense systems have a long history in evolution and include elements and regulators

of the coagulation pathway that have significant impacts on both the peripheral and

central nervous system in health and disease. The clotting cascade responds to a variety

of insults to the CNS including injury and infection. The blood brain barrier is affected

by these responses and its compromise also contributes to these detrimental effects.

Important molecules in signaling that contribute to or protect against neurodegeneration

include thrombin, thrombomodulin (TM), protease activated receptor 1 (PAR1), damage

associated molecular patterns (DAMPs), such as high mobility group box protein 1

(HMGB1) and those released frommitochondria (mtDAMPs). Each of thesemolecules are

entangled in choices dependent upon specific signaling pathways in play. For example,

the particular cleavage of PAR1 by thrombin vs. activated protein C (APC) will have

downstream effects through coupled factors to result in toxicity or neuroprotection.

Furthermore, numerous interactions influence these choices such as the interplay

between HMGB1, thrombin, and TM. Our hope is that improved understanding of the

ways that components of the coagulation cascade affect innate immune inflammatory

responses and influence the course of neurodegeneration, especially after injury, will

lead to effective therapeutic approaches for ALS, traumatic brain injury, and other

neurodegenerative disorders.
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INTRODUCTION

In humans, the coagulation system or cascade was conceptualized over the past five to six decades
to consist of five serine proteases (factor VII, FVII; factor IX, FIX; factor X, FX; protein C, PC and
prothrombin, PT) that act with five cofactors (tissue factor, TF; factor V, FV; factor VIII, FVIII;
thrombomodulin, TM; and protein S, PS) to control the generation of fibrin, which is subsequently
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FIGURE 1 | The clotting cascade, TBI, infection (LPS) and the blood brain

barrier. Cartoon shows injury or infection, lipopolysaccharide (LPS) releasing

tissue factor (TF) to activate clotting resulting in active α-thrombin, which

cleaves a receptor(s) known as PAR on endothelial cells (ECs) to disrupt BBB.

Through disrupted BBB thrombin gains access to CNS and can cleave to

activate PARs on microglia/astrocytes for neuroinflammation and neurons to

form neurofibrillary tangles (NFTs).

cross-linked by Factor XIII (FXIII), a transglutaminase (1).
This system is essentially conserved throughout mammalian
species (schematically shown in Figure 1), but the system’s
endpoint, hemostasis, has been around for 450 million
years. Hemostasis consists of three activities that are closely
regulated; vasoconstriction, platelet aggregation, and clotting
factor activation. Two different pathways, the intrinsic (contact)
and extrinsic (TF), exist to activate clotting and the principal
difference is the role of TF in the extrinsic pathway, which
works very rapidly. With blood vessel damage, inactive FVII
comes in contact with TF, a protein on the endothelial cell
(EC), and activates it to a protease (2). Activated Factor VII
then proteolytically activates FX that then binds activated FV
to form prothrombinase. So, recapping, TF release is very rapid
and generated by damaged blood vessels and surrounding tissues,
which is especially high in brain, and initiates the extrinsic
pathway.

Since endothelial cell damage is the principal mechanism
for clotting factor activation via TF generation it invariably
occurs with systemic microbial infection, as in sepsis, where
the innate immune system is activated (2). Indicating sepsis
in Figure 1 is bacterial LPS (lipopolysaccharide or endotoxin).
It was subsequently found that trauma, a sterile injury, also
produces TF-generated coagulation (Figure 1) (3).

The clotting system is involved in host defense, and arose with
and is linked to innate immunity or inflammation at very early
evolutionary stages. TF is the key actor and common generator
providing the critical nexus between these twomajor host defense
systems (4). TF belongs to the cytokine receptor superfamily and
is a type I integral membrane glycoprotein (5). Thrombin, the
ultimate serine protease in the cascade, is the key downstream
product of TF-initiated coagulation. Not only does it play a
central role in hemostasis but more recent studies have revealed
its fundamental and intense proinflammatory effects (6). These

latter attributes of thrombin, just as its role in causing platelet
aggregation, were subsequently ascribed to its non-coagulation
actions as a ligand for cell-surface receptors, now known as
protease-activated receptors (PARs) (7–9).

Although these thrombin-mediated, PAR-activated cellular
effects involve thrombin’s roles in cell proliferation and
modulation, cytoprotection and apoptosis, its role as a
proinflammatory mediator is key that further brings together
coagulation and inflammation—the coag-inflamm nexus.
Furthermore, it incorporates innate immune pathways
such as toll-like receptors (TLRs) and complement,
exosomes/microparticles (MPs) into this nexus. With
cellular activation thrombin also recruits other systems to
provide a balance for this coag-inflammatory pressure, and
this includes the protein C (PC)–thrombomodulin (TM)
natural anticoagulant/anti-inflammatory machinery along with
activation and monitoring of the fibrinolytic system.

In the 1980’s a few studies began to explore the direct effects of
thrombin on cultured neural cells (10–13). Those initial reports
ushered in a number of successive studies of thrombin, the
coagulation and fibrinolytic cascades, TM, PARs in the CNS that
continues to the present time. More recent efforts at translation
of tissue culture and animal studies to neurologic diseases are
now chronicled in other reports in this Frontiers in Neurology
collection.

AMYOTROPHIC LATERAL SCLEROSIS
(ALS) AND NEURODEGENERATIVE
DISORDERS

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative
disorder exemplified clinically by muscle weakness and wasting
and neuropathologically by degeneration of upper and lower
motor neurons in the spinal cord, brain and brainstem (14–16).
More recent evidence indicates that a number of endophenotypes
exist for ALS beyond what was considered 30–50 years ago:
the four classic motor neuron disorders. These are: classical
ALS (upper and lower motor neuron and bulbar involvement),
progressive muscular atrophy (PMA; only lower motor neuron),
progressive bulbar palsy (PBP; brainstem with little if any
extremity features) and primary lateral sclerosis (PLS; only upper
motor) if it is actually part of the spectrum. As a distinct nosologic
disorder ALS has been known in the medical literature since
Charcot first described it 150 years ago in the late nineteenth
century (17).

It is a fatal and currently enigmatic disease with death usually
resulting from the inexorable progression of diaphragmatic and
intercostal muscle weakness ultimately causing paralysis and
respiratory failure typically within 5 years of diagnosis. The
incidence of ALS has changed only slightly since the 1970 s and is
∼1.5–3 per 100,000 in Western Europe and North America with
little variation. It is overwhelmingly a sporadic disease (sALS),
but genetic variants exist (fALS) accounting for no more than
10% of all cases (see below), although newer information may
be changing this. ALS has an estimated lifetime risk of 1 in
400, is an adult-onset illness that is rare before the age of 40
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TABLE 1 | Partial history of thrombin signaling in CNS and PNS: Key processes

involving neural and neuromuscular health and the thrombin signaling pathway.

Event References

Release of acetylcholinesterase (AChE) in ALS and denervation of

muscle

(19–26)

Denervation and plasminogen activators (27–38)

Thrombin, protease nexin I, PAR1, and synapse

formation/elimination

(39–52)

Thrombospondin and ALS (53–59)

Coagulation, astrocytes, BBB and neuroinflammation (60–64)

years increasing exponentially with age. There are no known
treatments that impact progression of the disease. Until 2017,
the last Food and Drug Administration (FDA) approved drug
was RiluzoleTM, licensed in 1996 and that only extended survival
of ALS patients 3 months. In May 2017 the FDA approved
edaravone (RadicavaTM) to treat ALS patients based on a 2nd
Phase 3 study after the first was negative (18). As the authors
wrote: the drug “. . . ..showed efficacy in a small subset of people
with ALS who met criteria identified in post-hoc analysis of a
previous phase 3 study, showing a significantly smaller decline
of ALSFRS-R score compared with placebo.”

As discussed in detail below, our laboratory at the Kansas City
VA Medical Center began studies of the coagulation system in
ALS in the 1980’s (see Table 1).

GENETICS AND ALS: fAMILIAL ALS (fALS)

Although it was considered a sporadic illness beginning in the
1990 s interest in the∼5–10% of ALS cases that had family history
began. Identification of mutations in the superoxide dismutase 1
gene (SOD1) was reported in 1992 (65, 66). Over the next 25 years
remarkable progress in our understanding of SOD1 and fALS has
occurred (67–73).

Even amongst otherwise sALS cases about 1–3% possess
missensemutations in SOD1 (74) and evenmore, about 5–10% of
sporadic ALS cases are caused by intronic expansions in C9orf72,
the open reading frame (ORF 72) on chromosome 9 (75–77). This
indicates that 1 in 20 cases of sALS and about 40% of fALS are due
to C9orf72 hexanucleotide repeats.

With SOD1 and C9orf72 more than 20 mutated genes have
now been found to be specifically associated with fALS (78)
that include TARDBP (79–81) and FUS (82, 83), the fused in
sarcoma gene on chromosome 16p11.2, that is involved with
RNA processing, which together with SOD1 and C9orf72, are
the four most common genes involved in causing ALS clinically.
TARDP encodes a protein, TAR DNA binding protein (TDP-43)
that accumulates in most sALS motor neurons but not SOD1
fALS neurons (84). These genes have been numbered now as
ALS1-ALS22, along with FTDALS1, FTDALS 2, FTDALS 3, and
FTDALS 4 (78). Genome-wide association studies (GWAS) may
be changing the role of genetics in ALS including what we now
consider sALS (85–87).

The changing viewpoint results from studies of the
relatively uncommon genetic cases of this enigmatic and

fatal neurodegenerative disorder that have revealed some
fundamental clues that might uncover novel therapeutic targets.
Amongst these are more recently identified endophenotypes
beyond the classical motor sub-types. Endophenotypes are
inherited traits identified using clinical or laboratory measures
including electroencephalographic or electromyographic
abnormalities, neurocognitive deficiencies, and other modalities
that identify impairment. Until recently they have been largely
used in psychiatric and psychopathology-related research.
Originally conceived by Gottesman and Shields (88), they
were proposed to appear not only in patients but also in their
unaffected relatives. The presumption of endophenotypes is
that they are more proximate to gene action than the clinical
diagnoses (89, 90). In neurodegenerative diseases such as
Parkinson’s (PD) and Alzheimer’s (AD) diseases, in addition
to ALS, they might provide dual positives such as improving
diagnoses and initiating therapy in preclinical stages (91–93).

ALS Endophenotypes Beyond the Motor
System
ALS is now recognized as a multi-system neurodegeneration
rather than a disease limited tomotor neurons (94–97). Although
40 years ago if a patient was clinically diagnosed with ALS but
exhibited cognitive symptoms that patient was not considered to
have classical ALS and typically was removed from consideration.
In fact, in the original El Escorial criteria (98) and El Escorial
revisited (99, 100), the presence of dementia essentially ruled
out ALS as diagnosis. This action was taken despite the fact that
descriptions of cognitive and behavioral symptoms resembling
frontotemporal dementia (FTD) in otherwise typical ALS motor
phenotypes date back to the 1880 s. The neurologic giant,
Arnold Pick, whose name is eponymic for a subgroup of FTD
known as Pick’s disease, was aware that Charcot had considered
that non-motor brain regions might also be involved in the
neurodegeneration of what is now known asMaladie de Charcot
or la sclérose latérale amyotrophique (SLA) by francophones.

One of the first descriptions of FTD associated with ALS in
the modern era was provided by the late Canadian neurologist,
Arthur Hudson (101), who also described mixed types of ALS
with parkinsonism as well as with dementia and other clinical
features, reminiscent of theALS-parkinsonism-dementia complex
of Guam (102, 103). Since then increasing interest in FTD-like
symptoms in ALS patients appeared and it is now thought that
about 10% of patients with one of the four classic motor-neuron
disorders: classical ALS, PMA, PBP, and PLS, have cognitive
features.

Subsequent reviews of the ALS/FTD complex have appeared
(104, 105) that now also include associations with C9orf72
expansions (77, 96, 106, 107). In fact, the seminal discovery of
a GGGGCC hexanucleotide repeat expansion (HRE) within the
chromosome 9 ORF 72 (75–77, 108), has been established as
cause for the most common form of ALS/FTD (107).

Given this common cause of sALS with FTD, 10% of sALS
and an additional 10% of FTD, the next question, given that
it has taken more than 25 years with SOD1 mutations, is
just how cytotoxicity occurs with the GGGGCC (G4C2) HRE
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within the C9ORF72 gene? Several recent studies have shed
light on this: it has been reported that HRE RNA forms hairpin
and G-quadruplex structures that bind and sequester RNA-
binding proteins (RBPs). The GGGGCC are translated into
specific dipeptide-repeat (DPR) proteins, and these form toxic
aggregates, particularly the arginine-rich dipeptides, specifically
proline-arginine (PR), that possess potent neurotoxicity forming
aggregates in nuclei and nucleoli, and stress granule formation,
with likely effects on translation (109).These authors used
inducible pluripotent stem cells (iPSCs) to differentiate into
human motor neurons (iMNs), including those from ALS
patients carrying the repeat-expanded C9ORF72. These studies
revealed that C9ORF72 in the ALS patients was haploinsufficient.
Thus, the ALS/FTD gene had only one functional copy, causing
a loss-of-function mutation. Using blood cells from healthy
individuals they used gene-editing techniques to delete the
C9ORF72 or from ALS patients with the abnormal gene.
They found that C9ORF72 cooperated with endosomes, was
involved in vesicle trafficking and formation of lysosomes in
motor neurons. When they repeated the nucleotide expansion
this reduced C9ORF72 expression, and with this process,
neurodegeneration was triggered via both gain- and loss-of-
function mechanisms. The former produced a buildup of
glutamate receptors, causing excitotoxicity, while the latter
weakened neurotoxic dipeptide repeat proteins clearance derived
from the repeat expansion. This cooperative action led to
neurodegeneration. These and other researchers have begun
using the gene-editing tool, CRISPR, specifically the CRISPR–
Cas9 system, to perform genome-wide gene-knockout screens
similar to studies in cancer (110).

Frontototemporal lobar degeneration (FTLD) is the 2nd most
common cause of dementia in elderly (over age 65) individuals
and is actually a broad spectrum of neurological disorders.
FTD is a variant of FTLD and from GWAS studies now
appears to share a number of genetic as well as clinical and
neuropathological features. In a recent GWAS study of more
than 120,000 neurodegenerative diseases and controls unique
genetic overlap between ALS and FTD spectrum diseases was
found (111). Of interest, the H1 haplotype of the tau protein
gene (MAPT) appeared to confer risk for ALS, as did BNIP1, a
mitophagy-associated, proapoptotic protein.

If an endophenotype strategy in ALS should be implemented,
as has since been undertaken in several neurodegenerative
studies, it will depend both on quality and properties of a
specific trait. It will be necessary to critically evaluate the
trait(s) to determine if it truly can capture pre-diagnosis features
of ALS/FTD. However, no consistency has yet appeared for
endophenotypes or intermediate traits or even biomarkers, but
some encouraging signs have appeared (112, 113). When such
validated intermediate traits or biomarkers are considered, it will
be necessary to forgo requiring that they be absolutely specific
for ALS or FTD. Consequently, application of endophenotypes
to future analyses of ALS and FTD seems more than justified.

With consideration of the ALS spectrum as a non-cell
autonomous condition (114, 115), it brought to the picture the
evidence that glial cells, including astrocytes, oligodendrocytes,
and even microglia play important roles in the pathogenesis of

ALS (116–118). Prior to the last decade it was widely assumed
that motoneuronal cell death proceeded by cell autonomous
mechanisms. However, information gained initially from using
SOD1 transgenic mice and subsequently with other genetic
models, the non-cell autonomous position evolved. In terms
of SOD1 more than 170 different mutations have been shown
to cause fALS. When SOD1 mutations were expressed only in
neurons neurodegeneration did not occur in the mice (119). But
just how these mutations in SOD1 result in cytotoxicity is still
unclear, despite more than 25 years of study. In fact, no consensus
has emerged as to the principal mechanism for neurotoxicity or
even how cells might protect themselves from it. Cleveland and
colleagues proposed that ALS was just the tip of the iceberg and
that non-cell autonomy will be shown to be the mode in other
neurodegenerative diseases (114, 115, 120, 121).

Along these lines the multi-faceted roles of astrocytes have
now become prominent for investigation in ALS (115, 118, 122–
124). Discussed in more detailed below, reactive astrocytosis
also known as astrogliosis, is a classic glial response to CNS
injury and scar-forming reactive astrocytes are usually viewed
as detrimental to clinical outcome (125), but not always (126).
Astrocytes are also hallmarks of neurodegeneration (127) and
using the ME7 prion mouse model Cunningham and colleagues
showed that neurodegeneration primed astrocytes to produce
exaggerated chemokine responses when stimulated with acute
proinflammatory cytokines (128). The usual neuropathologic
means to characterize reactive astrocytes is by using antibodies
to the intermediate filament glial fibrillary acidic protein
(GFAP). However, all phenotypes of astrocytes including reactive
astrocytes and scar-forming astrocytes strongly express GFAP. In
fact, being able to modulate extent and phenotypes of reactive
astrocyte function (129) is potentially attractive as novel targets
to enhance the functional outcomes after spinal cord injury (SCI)
(130) or in ALS and other neurodegenerative diseases might be
revealed (116, 131).

CONNECTING DOTS TO
NEURODEGENERATION:
NEUROINFLAMMATION, COAGULATION,
BBB

Inflammatory, and Innate Immune Aspects
of ALS
Reviewing numerous studies of the past two decades has divulged
previously held concepts that upper and lower motor neurons
were the focus of ALS disease burden have now been replaced by
non-cell autonomous mechanisms. Such non-cell autonomous
mechanisms, particularly neuroinflammation, may not only
contribute to the disease process but may initiate it, as detailed
below.

Based on several lines of evidence within the last 20 years
both sALS and fALS have had numerous proinflammatory
markers associated with them (132–135). More than two
decades ago, Appel et al. emphasized potential autoimmunity in
ALS (136–138), and several different approaches revealed that
immunoglobulin G (IgG) from ALS patients’ sera caused toxicity
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in cultured motor neurons and in mouse models (138–141), with
activation of L-type Ca2+-channels.

As exception proving the rule or standing in apparent
contradiction, since it was present in the context of
immunodeficiency, was our earlier report documenting
ALS in a young homosexual male patient in whom HTLV-III
(subsequently re-named HIV) was isolated (142). This initial
observation was later confirmed in more recent accounts (143–
147), suggesting that ALS, if truly autoimmune, may also be
associated with immune deficiency disorders such as AIDs.

By definition, neuroinflammation is inflammation
of nervous tissue and is characterized by proliferation
and activation of glial cells, primarily microglia, and
astrocytes, as well as transmigration of circulating immune
cells, including polymorphonuclear neutrophils (PMNs),
monocyte/macrophages, and T lymphocytes (T-cells) into the
parenchyma across the blood-brain barrier (BBB) (148–152).
In addition to these cellular characteristics, neuroinflammation
includes humoral features such as proinflammatory cytokine
and chemokine overproduction, along with their respective
receptors (151). Of relevance here are the numerous reports
of neuroinflammation in both sALS and fALS including its
appearance in pre-symptomatic phases in transgenic mice.
However, confusion has developed from these data since both
deleterious and beneficial effects have been found especially
when focusing on motor neuron survival and also depending on
what disease stage was examined (153, 154).

Microglia

The understanding of these complex interactions largely centers
on microglia, considered the brain’s resident macrophages,
and their dual roles or Janus faces, in neurodegeneration in
general and ALS in particular (107, 153). In essence, although
microglial phenotypes were classified as either M1 (“classically
activated”) orM2 (“alternatively activated”), similar to circulating
macrophages, phenotypic diversity of microglia is actually
a spectrum (155). M1 microglia could be considered more
proinflammatory while M2 more anti-inflammatory, possibly
viewed as “deactivated” after phagocytosis of apoptotic cells.
Clearly, a therapeutic strategy in ALS or in AD or PD for that
matter, might be to selectively modulate microglial phenotypes,
such as inhibiting or blocking M1 or enhancing M2. That may be
too simple, although it is a strategy worth evaluating. However,
this should not be done with pre-clinical animal models due
to known differences in inflammatory responses compared to
humans, but in human iPSC ex vivo models that incorporate
elements of the blood-spinal cord barrier (BSCB)BBB/NVU
along with neurons (156, 157).

Astrocytes

Of the several types of glial cells in the CNS astrocytes are
the most abundant. Classically considered “supportive” cells for
neurons astrocytes have recently been shown to be critical in
regulating CNS immunity, but exactly how they do this is largely
unknown. Astrocytes have been shown to be regionally diverse
within the brain and in the spinal cord. Regions where astrocytes

may be involved in regulating CNS immunity are at their “end-
feet” localized to where they are contiguous with ECs of the
BBB and neurovascular unit (NVU) as well as perivascular end-
feet that form the glia limitans. All astrocytes are ramified and
have processes that terminate on basal lamina impacting the
perivascular compartment with their end-feet (127).

Of interest, one molecule highly concentrated in astrocytic
end-feet is the gap junction protein, connexin 43 (Cx43) (158).
Cx43 may have roles in the non-cell autonomous pathogenesis
of sALS, implicating toxic mitochondria transferring from
astrocytes to motor neurons at the BSCB (159, 160), as detailed
below.

By analogy to macrophages, the M1/M2 macrophage and
microglial nomenclature (161), although with caveats for its
potential simplicity researchers have also applied these to
reactive astrocytes (125, 127) into A1 and A2 sub-classes (162),
whether caused by neuroinflammation or ischemia, respectively.
As with microglial M1 and M2 sub-classes the macrophage
phenotypic literature clearly indicates that these circulating
immune cells display more than two polarization states (155, 163,
164). Chronic neurodegeneration also produces changes in the
secretory profile of astrocytes in terms of what cytokines and
chemokines are produced (128).

As M1 macrophages were considered destructive, so, too, are
A1 astrocytes. Conversely, since M2 were considered reparative
and protective as a macrophage or microglial phenotype, so were
the A2 astrocytes. Liddelow, in the late Ben Barres’ group, further
showed that A1 were induced by reactive microglia (165).

INNATE IMMUNE ACTIVATION IN ALS

Over the past two decades our thinking about the brain and spinal
cord as being an immunologically privileged site has changed.
It was previously thought that the CNS could not mount an
immune response nor process antigens. More recent studies have
reversed that indicating that immune surveillance does take place
in the CNS, and glial cells of all types act as immune effector
cells within the CNS (149, 166). We now know, for example that
the primary function of the CNS innate immune system is to
provide neuroprotection against invading pathogens. However,
in addition to infectious agents it is also protective for injury
stimuli, and by so doing maintains CNS homeostasis.

Pattern Recognition Receptors,
Pathogen-Associated Molecular Patterns
in ALS
Knowledge of how membrane and intracellular receptors
respond to pathogenic components dramatically increased with
identification of pattern recognition receptors (PRRs) to identify
pathogen-associated molecular patterns (PAMPs), the prototype
for which is lipopolysaccharide (LPS) or endotoxin, from Gram-
negative bacteria. The effect of LPS in the CNS is to cause sickness
behavior, a coordinated set of adaptive behavioral changes to
LPS and others (166–168) that includes: fever, anorexia, social
withdrawal, lethargy, and decreased rapid-eye movement sleep
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TABLE 2 | PAMPs and DAMPs: danger/damage recognition systems extrinsic

and intrinsic.

Patterns Characteristics

Pathogen-associated

molecular patterns (PAMPs)

Prototype is lipopolysaccharide (LPS;

endotoxin)

Activate several pattern recognition receptors

(PRRs)

PRRs include Toll-like (TLRs) and advanced

glycation end-product (RAGE) receptors

Highly Conserved among diverse species

MAMP (microbe-associated molecular pattern)

may be more accurate

Damage-associated

molecular patterns (DAMPs)

Prototype is high mobility group box protein 1

(HMGB1)

Non-histone DNA binding, nuclear protein

Also present in mitochondria (mtDAMPs), like

TFAM

Activated late in sepsis, necrotic and dendritic

cells

Released with trauma, necrosis, including in

the CNS

(REMS). Major innate immune system PRRs such as the Toll-
like receptors (TLRs) and the receptor for advanced glycosylation
endproducts (RAGE) are expressed in the CNS. Most TLRs, now
15 members of the family, and RAGE, are expressed in all neural
cells (167–174).

Damage-Associated Molecular Patterns
(DAMPs)
The danger-damage theory expressed in 1994 by Polly
Matzinger (175–177) changed the concept of immunology
from simply detecting self vs. non-self. Her thesis was
that the immune system’s driving force is the need to
recognize danger and prevent destruction. This theory
evolved with publication of the proceedings of the
EMBOWorkshop on Innate Danger Signals and HMGB1

that took place February 2006 in Milan, Italy (organized by M.
Bianchi, K. Tracey, and U. Andersson) (178). In keeping with this
concept a group of endogenous molecules that signaled damage
or danger were developed and were referred to as alarmins, a
sub-category of DAMPs. Subsequent studies indicated that the
PRRs recognized and responded to DAMPs in essentially the
same manner as their response to PAMPs (177, 179, 180) and
that the CNS also participated (181). The comparison of PAMPs
and DAMPs and list of both is shown in Table 2.

In fact, as an example that science, certainly more in the pre-
cloning era, was guilty of the blind men describing the elephant
parable, Finnish workers had identified a protein that guided
early neuroblasts to their final locations in developing mouse
brain and called this protein, amphoterin (182, 183). Amphoterin,
also called P30 protein, was subsequently found to be identical
to HMGB1 (170), the prototypic alarmin/DAMP. The structure
of the alarmin/DAMP HMGB1 is shown in Figure 2A and its
known signaling in Figure 2B. The relationship betweenHMGB1

and thrombin is interesting. Both are prototypes of ancient
host defense systems, inflammation and coagulation (60), but in
addition, as shown in Figure 2B, thrombin can cleave HMGB1 at
its –NH2 end and does so when bound to TM (184). Of interest,
since then HMGB1 has been shown to be involved in a number
of neuropathologic processes in the CNS and is also essential for
brain development (181, 185).

As mentioned above PRRs, especially TLRs and RAGE,
expressed by immune cells are also expressed by neural
cells, particularly astrocytic and microglial, to mediate resident
immune cell activation (169, 172). As described for AD and
other neurodegenerative diseases (63, 148, 181, 186), DAMPs
are probable candidates to partake in, and possibly initiate,
ALS neurodegenerative activities. HMGB1 is over-expressed in
SOD1 mutant mouse spinal cord and motor cortex and from
patients with ALS (187). TLRs were also found to be over-
expressed in ALS patients’ spinal cords (188), as was RAGE,
along with its proinflammatory ligands, including HMGB1,
S100B and calgranulin (189). Furthermore, a number of groups
have focused on levels of circulating soluble RAGE (sRAGE)
in various diseases including diabetes mellitus, cardiovascular
and neurodegenerative diseases (190, 191), recently including
ALS (174, 189, 192). As opposed to sRAGE being “specific” for
any of those diseases it is clear that it is implicated in their
pathogenesis and contributes to our understanding of innate
immunity in these conditions. Furthermore, it might be useful as
therapeutic strategy in one ormore of them. Additionally, sRAGE
has been considered a “decoy receptor” to block the cellular
membrane receptor to block RAGE-mediated signaling. In this
regard, sRAGE is decreased in blood while increased in affected
CNS in ALS and other neurodegenerative diseases (193).

MITOCHONDRIA, ALS, AND mtDAMPs

A key mechanism whereby motor neurons degenerate in ALS
is by influence of dysfunctional mitochondria (194–196). As in
PD and AD and other neurodegenerative diseases, studies in
SOD1 transgenics as well as in sALS cells have been performed
that show such mitochondrial defects, with an eye to novel
therapeutics (197–199). Almost 20 years have elapsed since the
close temporal relationship of the onset of motor neuronal
degeneration with initiation of astrogliosis in the SOD1 mouse
model was first identified (200). With further understanding of
the non-cell autonomous, specifically astrocytic, aspect of ALS
pathogenesis abnormalities in astrocyte mitochondria have been
found (201–205). In particular, the demonstration that “positive”
aspects of mitochondria can be shifted to neurons in transcelluar
organelle transfer (159) indicates that negative or toxic aspects of
astrocytic mitochondria might be transferred to motor neurons
in sALS or fALS (206, 207), possibly via connexin 43 (159, 160).

Of interest, aligned with the “danger theory” is the
endosymbiotic theory that mitochondria originated from
protobacteria that entered into an endosymbiotic relationship
with phagocytic, unicellular anaerobes at least a billion years ago
(208), prior to the accumulation of oxygen in the atmosphere.
Mitochondrial DAMPs (mtDAMPs), are protein DAMPs, coded
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FIGURE 2 | High mobility group box protein 1 (HMGB1). (A) HMGB1 Structure. Schematic of HMGB1’s two binding motifs, A-box and B-box. Also showing critical

cysteines that determine whether it is proinflammatory when outside cell or DNA binding when inside nucleus. In addition, the C-terminal acidic tail appears to confer

protein stability and DNA bending in vitro. (B) HMGB1 signaling. The damage-associated molecular pattern (DAMP) HMGB1 is passively released from necrotic or

exploding cells such as with infection or trauma. Within the CNS it engages pattern recognition receptors (PRRs) such as toll-like receptors (TLRs2/4) and receptor for

advanced glycation end products (RAGE) to initiate proinflammatory signaling as part of innate immune activation.

for by mitochondrial or nuclear genes, that when released
from mitochondria are potently proinflammatory (209). Most
mtDAMPs are encoded by nuclear genes that after transcription
translocate from nuclei to mitochondria. These mtDAMPs
are then released into the circulation with infection (sepsis),
trauma and/or systemic inflammatory response syndrome
(SIRS). In support of this being relevant in the CNS we
showed that mtDNA, a nucleic acid mtDAMP, was potently
proinflammatory for neurons and microglia (210). Of interest,
PCR-amplified purified mtDNA was not proinflammatory,
rather only brain isolated mtDNA in the form of nucleoids
bound to transcription factor of mitochondria A (TFAM), itself

a mtDAMP (211, 212), was proinflammatory (211, 212). Such
studies support the prediction that mitochondrial dysfunction
in neurodegeneration, and neurotrauma, is tightly linked
to neuroinflammation (151, 213), especially with mtDAMP
involvement in neurodegeneration (214). The potential roles of
mtDAMPs in neurodegeneration are shown in Figure 3.

BLOOD-BRAIN BARRIER (BBB)

Just as the CNS responds to PAMPs like LPS so does it respond
to DAMPs, both initiating proinflammatory signaling and for
the bridging or disruption of the BBB (63, 64). The history
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FIGURE 3 | mtDAMPs. A sub-category of DAMPs, mtDAMPs are components of mitochondria released from necrotic or exploding cells. Comprised of mtDNA

bound to mitochondrial proteins such as transcription factor of mitochondria A (TFAM), a homolog of HMGB1, in nucleoids. Also includes n-formyl peptides,

cytochrome C and others (not shown).

of a perceived association between ALS and BBB dysfunction
actually dates back to the 1940 s when Robert Aird began a 40
year involvement with the BBB in neurologic diseases (215–219).
However, it took several more decades before technology caught
up with the concept that ALS was associated with BBB or blood-
spinal cord barrier (BSCB) dysfunction, perhaps even at the onset
of the disorder (220–231).

Evans blue extravasation from capillaries into spinal cord
parenchyma was found in early symptomatic SOD1 transgenic
(G93A) mice but it was uncertain whether BBB/BSCB disruption
was cause or effect of motor neuron degeneration (220, 221, 223,
232, 233). More evidence suggestive of causative influences have
since appeared with further studies of SOD1 transgenic mice
with an eye toward therapy as well (233–235). This situation
is fundamentally the same for neuroinflammation in ALS—
that is, is it cause or effect? The findings that the C9orf72
expansions are also associated with myeloid cell abnormalities
and early BBB dysfunction supports the role of these processes
in pathogenesis (107, 236). The concept of the BBB being both
target of circulating coag-inflammatory molecules as well as the
source of pro-(neuro)inflammatory mediators is shown by Festoff
et al. (63).

NEUROTRAUMA AND ALS

The progression of neurodegenerative disease following
neurotrauma is both anecdotal and supported by epidemiologic
statistics. Dementia, including AD, and microvascular dementia
(mVAD), is now considered to have increased risk following
traumatic brain injury (TBI), while the specific mechanistic
details are still under study. Similarly, ALS occurs at an increased
risk following TBI, more so, in fact than after typical SCI.
Numerous mechanisms have been suggested for this association
of neurotrauma and neurodegeneration including increased

interest for almost 30 years in the nexus of inflammation, BBB
disruption and coagulation.

Early reviews of mechanical and other forms of spinal and
CNS injury associated with the development of ALS have
appeared, some positive while others were negative (237, 238).
Case-control studies, however, are few and those, such as that
published from Olmsted County, Minnesota by Kurland and
colleagues were not supportive (239). However, more recent
larger population-based case control investigations, such as the
Danish study, have shown an association especially with trauma
at an early age (240, 241). Even broader studies such as the
European EURALS consortium study (242) are giving credence
to a role for trauma in ALS pathogenesis. This large study
showed that more than 2 head injuries was associated with >3-
fold increased risk of ALS. Although the site of injury was not
important the risk was only ∼2-fold when trauma occurred
between 35 and 54 years of age. Certainly the age at first trauma
might help to explain discrepancies in results of past studies of
trauma and ALS.

In addition, studies of chronic traumatic encephalopathy
(CTE) with repeated mild traumatic brain injury (mTBI) or
concussions (243–245), indicate that there may be methods to
identify, monitor and treat and/or prevent neurodegenerative
disease development in the context of neurotrauma. With
more thorough investigation into CTE and former professional
athletes, an increased incidence of clinical ALS diagnosis has
been reported. A recent study of CTE and CTE associated with
ALS (CTE-ALS) confirmed that molecular changes co-existed
pathologically. Specifically, these were phosphorylation of tau at
threonine 175 (Thr175) and at Thr231 along with GSK3β were
found in these tauopathies (246). Furthermore, similar findings
were present in rats subjected to moderate TBI in a controlled
cortical impact (CCI) model (246). These findings suggest that
comparable underlying molecular mechanisms for abnormal tau
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phosphorylation associated with CTE neuropathologic aspects
may be mimicked in a rat moderate TBI model. However, they
do not provide evidence for a neurotraumatic basis for sALS.

What neurotrauma does tell us for ALS is that there is
a distinct relationship between trauma, BBB disruption and
neuroinflammation (247–250), all potential contributing
pathogenetic factors in ALS. From the BBB disruption
perspective, mechanisms involved with TBI include impact-
induced shear force stress that causes initial vascular injury
followed by escape of proteins along with extravasation
from brain to blood as well macromolecule leakage and cell
transmigration from blood to brain.

COAGULATION ASPECTS OF ALS AND
OTHER NEURODEGENERATIVE DISEASES

Beginning in the 1980s through the 2000’s our laboratory focused
its attention on thrombin, the ultimate serine protease in the
coagulation cascade, its inhibitors and receptors as specific
mediators of either toxic or trophic effects on the nervous system.
Our studies utilized in vitro tissue culture to probe the effects
of thrombin, and inhibitors of thrombin, on neurons and glial
cells. Once the thrombin receptor, subsequently named protease-
activated receptor 1 (PAR1), was identified and sequenced by
Coughlin’s group in the early 1990 s, our studies also involved the
expression of PAR1 in parts of the nervous system, in particular,
the spinal cord as well as in the brain and neuromuscular
system. Our translational interest was primarily in SCI and
ALS, since the initial studies in neuronal types found exquisite
sensitivity of spinal cord motor neurons that lead to apoptotic
motor neuronal cell death in culture by thrombin cleavage
of the G-protein coupled receptor (GPCR), PAR1. We also
explored PARs in AD and PD as well. A number of other
groups in Switzerland, Germany, Israel, Italy, Korea, China
and Japan, amongst others, as well as the U.S. also began
exploring coagulation and fibrinolytic proteases and inhibitors in
the nervous system, especially after publication of The Maratea
Meeting Proceedings in 1990 (251).

Although the emphasis of this review is on ALS similar results
and concepts have been found for other neurodegenerative
diseases including AD, PD, and multiple sclerosis (MS) and
numerous reviews are available (252). Of interest, until recent
evidence for biased signaling (see below) through PAR1 by
APC was discovered (253), the previous data indicated that
high thrombin concentrations were neurotoxic and pathologic in
brain while low thrombin concentrations could induce neuronal
and astrocytic survival after various brain insults. Interestingly,
thrombin-mediated cell death and cell survival shared initial
signaling proteins (48, 254).

THROMBOMODULIN (TM) IN CNS
DEVELOPMENT, NEUROTRAUMA, AND
NEURODEGENERATION

TM was discovered by Esmon and Owen in the 1970 s and
reported in 1982 (255, 256). This discovery came after a decade

or more of research that resulted in discovery of Protein C (PC),
a vitamin-K dependent factor that is activated by thrombin that
results in activated protein C (APC), a serine protease. Initially,
the principal role of APC was thought to be its anticoagulant
function whereby it proteolytically inactivated FV and FVIII
(Figure 1). However, this multi-molecular system, now termed
the PC–TM-EPCR (endothelial PC receptor) pathway (257, 258),
is a natural mechanism to regulate hemostasis and to integrate
it with other host defense system such as innate immunity,
inflammation, and to control cell proliferation. Since its cloning,
sequencing and chromosomal localization (259), the bulk of
studies on TM have also been in terms of its role as a natural
anticoagulant. However, as important as this action is, the
integration by TM of hemostasis and innate immunity may
determine its even greater future in disease processes that affect
the CNS.

Of interest, shortly after the discovery of TM a report
indicated the presence of a surface marker protein in developing
mouse parietal endoderm that was modulated by cAMP (260).
Shortly thereafter, fetomodulin was found to be identical to
TM by contemporary gene cloning techniques (261). Thus, TM
or fetomodulin (FM) is present at very early developmental
stages and in adults TM expression is greatest in ECs, more
predominant in small, microvascular than in large vessel ECs, and
was found in essentially all ECs (262). However, the first article
concerning TM and CNS vasculature was negative reporting
its absence in brain ECs (263). This was not correct since it
was subsequently reported that bovine as well-human brain
capillaries expressed TM (264, 265), again suggesting its role
as a microvascular EC marker. Not surprisingly given its early
developmental appearance in parietal endoderm (FM), TM is
also expressed in a number of other cells including keratinocytes,
osteoblasts, monocytes, neutrophils and chondrocytes, amongst
others. We first found that TM was expressed in mouse brain
astrocytes, where it was functionally identical to its role in
ECs (266). Subsequently, TM was found to be a novel marker
of injury-induced astrogliosis, and identified the involvement
of thrombin-activated PAR1 (267). This finding suggested its
involvement in nervous system injury, i.e., neurotrauma. The
TM gene (THBD) is intronless and is structurally separated into
five distinct domains (see Figure 4). Biochemically, TM is a
chondroitin sulfate proteoglycan (CSPG), and consistent with
its role as a CNS injury-related CSPG would be increased in
the “glial scar” and assemble along with other CSPGs such as
neurocan and phosphacan that are also expressed in reactive
astrocytes (268).

As shown in Figure 4 TM’s additional role in regulating
inflammation, apart from coagulation and thrombin’s
proinflammatory role by PAR1 activation, is largely encoded
at its –NH2 terminal, known as the C-type lectin like domain
(TM-CTLD). The CTLD is involved in a host of inflammatory
diseases, as described in the treatise by Conway (258), one of
the leaders in this field. A mechanism for the CTLD in these
conditions was provided by the pioneering work of Maruyama’s
group that discovered that the TM-CTLD bound and neutralized
the DAMP alarmin HMGB1 (269). This same group found
that HMGB1 was upregulated in spinal cord parenchyma
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FIGURE 4 | Thrombomodulin (TM) at nexus of coagulation and inflammation (innate immunity): TM as at least a bifunctional molecule that binds coagulation

(thrombin) and proinflammatory (HMGB1) agents.

following SCI (270). Beyond its sequestering and neutralization
of HMGB1 the TM-CTLD also interferes with complement
activation and binds to LPS/endotoxin, and, in Gram-negative
bacterial infections, to the Lewis Y antigen (271). Of interest,
transgenic mice lacking the NH2-terminal CTLD (TMLeD/LeD)
have heightened susceptibility to treatment with LPS (258) and
should be more vulnerable to weight-drop SCI than wild type
mice. The deposition of HMGB1 in the injured spinal cord was
shown in rats (270), along with its release into the circulation.

The relationship between the BBB, more precisely the BSCB,
and the coag-inflammation nexus in ALS merits comment. As
mentioned above, although BBB/BSCB dysfunction in ALS was
discussed as far back as the 1940 s, it took many decades
and newer technology to establish its actual existence. The
identification by Garbuzova-Davis and her colleagues that BSCB
dysfunction occurred in both ALS patients and fALS SOD1
mice, prior to motor neuron degeneration (220, 221, 226–
229), has been confirmed by other groups (222–225, 230, 231).
Furthermore, there is a connection between BSCB dysfunction
and the PC–TM-EPCR pathway, as shown by the amelioration
of motor problems in SOD1 mice by treatment with non-
proteolytic/non-anticoagulant APC analogs (224).

A simultaneous activation of the coagulation cascade after
injury, as occurs in sepsis, is an ancient host response dating
back very early in the evolution of eukaryotes. The contemporary
clinical correlate happens in sepsis and injury where excessive
thrombin activation develops in disseminated intravascular
coagulation (DIC) associated with sepsis and sterile traumatic
SIRS (272, 273). A phylogenetic clue into the nexus of clotting
and inflammation comes from studies of the omnipresent East
Coast North American horseshoe crab, Limulus polyphemus,
with its open circulatory system containing the hemolymph, and
single cell, the amoebocyte, with properties of both platelets and
phagocytes. Limulus has survived for>250million years exposed

to LPS or endotoxin in the ocean from Cyanobacteria or blue-
green algae where they have been for the past 2 billion years (274).
The Limulus lysate detection kit for LPS in blood has been in
use worldwide for over 30 years. Coagulopathy also commonly
develops with TBI since the brain is a rich source of TF and
thromboplastin (275).

It should be noted at this point that the
thrombin→PAR1→BBB dysfunction pathogenetic pathway
is not specific for ALS but occurs in all situations where
intravascular prothrombin activation to α-thrombin exceeds its
neutralization either by circulating anti-thrombin (AT) or EC-
bound TM and the EPCR (276, 277). This dysfunction pathway
would be applicable to AD, PD, ALS and neurodegeneration, in
general, especially in those situations associated with antecedent
trauma. In this regard, all PARs are expressed on ECs and brain
microvascular ECs are no exception. However, PAR1 and PAR4
are also expressed on brain pericytes, which appear to be the
most thrombin-sensitive perivascular cells to release membrane
metalloprotease-9 (MMP-9) (278, 279). MMP-9 has been shown
to cause BBB disruption by proteolyzing tight junction (TJ)
proteins (280, 281).

Recombinant APC (rAPC; drotrecogin alfa, activated;

Xigris
TM

) was the first agent shown to stimulate PAR1-mediated
cytoprotection approved for human use (in severe sepsis).
However, it was voluntarily removed from the market by
Eli Lilly in 2011. A number of studies have emphasized the
cytoprotective role of APC, encompassing anti-apoptotic and
anti-inflammatory activities, as well as significant stabilization of
endothelial barriers including the BBB and BSCB. Most studies
indicated this was mediated by PAR1 or PAR3 (282). All PARs are
expressed on ECs (9, 283, 284) and brain microvascular ECs of
the BBB should be no exception. The evidence that thrombin, via
PAR1 activation, caused vascular leakage and disruption across
various vascular barriers (285–287), including the BBB (288)
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FIGURE 5 | Biased signaling at PAR1 showing thrombin and APC cleavage sites- basis for toxicity and cytoprotection at this G-protein coupled receptor. Also shows

synthetic PAR1 antagonist, vorapaxar, an FDA approved therapeutic for cardiovascular conditions. It has been shown to induce endothelial injury, which is associated

with BBB/BSCB dysfunction in SOD1 mice and ALS patients. Whether ALS may be triggered in susceptible individuals so treated requires evaluation. Also shown are

novel parmodulins that do not have endothelial injury side effects of vorapaxar and, thus, may have therapeutic application to ALS and neurodegenerations.

while APC activation of PAR1 did the reverse, i.e., protection and
prevention of leakage (253, 282), was a conundrum. However, as
reviewed by Griffin et al. (282) this lead PAR/APC researchers
to the notion of “biased signaling”, a phenomenon found in
other GPCRs, a group to which PARs belong. Biased signaling
through PAR1 for thrombin and APC, as conceived by Griffin
et al. is shown in Figure 5: thrombin cleaves PAR1 at ARG41 in
the extracellular –NH2 domain, while APC does so at ARG46
(282). At PAR1 thrombin signals through the small GTPase
RhoA and ERK1/2 to disrupt, while APC through RAC1,
β-arrestin and P13k/Akt to protect. This puts PAR1 on BBB
ECs in a very significant position and its different proteolytic
ligands to destroy or save BBB function. APC is effective in
compression SCI (289) and we found that recombinant TM
is also neuroprotective in rat weight-drop contusion SCI (61).
More recently, Noble-Haeusslein and colleagues reported that
APC biased signaling through PAR1 enhanced locomotor
recovery in rat SCI (290). Zlokovic and colleagues showed that
treatment with non-proteolytic/non-anticoagulant APC analogs
(224) improved motor functions in SOD1 mice.

PARs in ALS and Other Neurodegenerative
Diseases
We found that nM thrombin concentrations induced tau
neurofibrillary tangle-like aggregates (NFTs) in murine
hippocampal neurons and that this required PAR activation that
was followed by delayed synaptophysin reduction and apoptotic
neuronal death (291). Subsequently, others showed that the
initial fragmentation of tau, necessary to then cause aggregation

into NFTs, was due to a thrombin-like protease (292). These
authors wrote that fragmentation by a thrombin-like protease
was a “prelude” to aggregation, although phosphorylation
was not. HIV-associated neurodegeneration (HAND) was also
shown to require thrombin and PAR1 expression in astrocytes,
as subsequently reviewed (293). McGeer and colleagues then
showed that thrombin, as well as prothrombin, accumulated with
NFTs in the brains of AD patients (294). Additional evidence
for thrombin and PAR1 in neurodegeneration was provided by
others in AD (295, 296) and PD (297) and then reviewed as well
(50).

Our preliminary data indicated that PARs were increased
and active in several murine ALS models in which microglia
express increased monocyte chemoattractant protein 1 (MCP-1)
and other markers. In regards to neurotrauma, we found that
SCI was accompanied by an early and significant upregulation
of neurotoxic serine proteases, prothrombin, and PAR1 in the rat
spinal cord (298). It was subsequently reported that thrombin-
recruited microglia also express MCP-1 (now CCL2) and that
PAR1 activation is required for this (299).

The wobbler mouse is a model of motor neuron disease
sharing many features with ALS, including loss of spinal motor
neurons, neuromuscular loss of function over time, and TDP-
43 aggregates and C-terminal fragments identical to those seen
in the sporadic form of ALS (300). By optimizing transcription
and quantitative PCR procedures to facilitate rapid copy number
determination in small RNA samples, we documented a 5-fold
greater level of PAR1mRNA in the cervical spinal cord ofwobbler
(wr/wr) compared to wild type mice (301). Then we subsequently
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confirmed and extended these results showing that PAR1 mRNA
was dramatically increased in spinal cord alpha motor neurons in
homozygous, spontaneously mutant autosomal recessive wr/wr
mice (302). The gene for wobbler mutation is located on mouse
chromosome 11 (303) and was since shown to be a point
mutation on Vps54 (vacuolar protein sorting 54) involved with
the Golgi apparatus (304). Even before the gene was determined
an informative marker at the wobbler locus, the glutamine
synthase 1 (glns-1) pseudogene, permitted genotyping mice prior
to phenotype development as previously described (305). Using
this technique, we found that homozygotes expressed an 8-
fold increase in PAR1 message by P8, more than 2 weeks
prior to phenotype detection and this appeared primarily in
motor neurons (301–303, 305, 306). These earlier studies focused
attention on potential roles of coagulation proteases and PARs in
the nervous system but took some time before they had generated
additional interest in pursuing direct connections between them,
neurotrauma, neuroinflammation and neurodegeneration.

Following our earlier reviews (47, 48, 251, 307) more recent
efforts have emphasized the participation of coagulation in
various neuroinflammatory diseases of the CNS (64, 308–310).
Connections between tissue transglutaminase (tTG), in the same
family as the clotting cascade Factor XIII, cross-linking and
neuroinflammation in ALS also exist. SCI has been shown to
upregulate cytokines, microglia and tTG (311). In addition, we
found that SCI induced a “switch” from a GTPase function of
tTG to a novel GTP-independent cross-linking isoform in the
spinal cord (311). More recently, tTG has been implicated in
promoting neuroinflammation in SOD1 mice (312). It would be
of interest to determine whether tTG upregulation was present in
ALS spinal cord and if alternative transcription to a short isoform
existed.

EPILOG, AND POSSIBLY, PROLOG (TO
THE NEXT PHASE)

Vorapaxar is a natural product-based orthosteric antagonist
of thrombin-induced PAR1 that inhibits all signaling

downstream (313). The FDA approved it for post-myocardial
infarction following success in two large pivotal multi-center
Phase III outcome clinical trials in patients with coronary
atherothrombosis. It has a low molecular weight (590.7) and a
long effective half-life (3–4 days).

Surprisingly, the FDA review of the adverse events for both
Phase III clinical trials revealed an increased number of ALS
diagnoses in the vorapaxar arm compared to the placebo arm
(314). This adverse event was not mentioned in the publication
of the results and this vorapaxar-ALS association may recall
the studies we and others carried out with thrombin, PAR1,
thrombospondin, TM and related components of the coag-
inflamm system in development, neurotrauma, ALS and other
neurodegenerative disorders, as described above (see Table 1).
Since vorapaxar appears to inhibit all signaling downstream of
the PAR1 GPCR it would seem that is where attention should be
paid for clues to ALS pathogenesis related to it. Although it is still
a relatively rare occurrence after vorapaxar we would hope that
knowledge of this small but surprising ALS signal after vorapaxar
will uncover novel therapeutic targets for this enigmatic and fatal
neurodegenerative disorder and related disorders where synapse
retractionmay be the earliest pathophysiologic sign of the disease
(22, 24–26) and where thrombin→PAR1 activationmay well play
a role (51, 52).

In this regard, recent development of small molecule
PAR antagonists termed parmodulins (315, 316) are based
on findings that biased signaling peptides developed around
APC are cytoprotective at PAR1 and not anticoagulant (282).
We hope that such research will help advance whether
or not potential neuronal degeneration and/or impaired
neuromuscular activity is a class-specific adverse effect after PAR
antagonists (317).
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