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Background: Fetal alcohol spectrum disorders (FASD) is one of the most common

causes of developmental disabilities and neurobehavioral deficits. Despite the

high-prevalence of FASD, the current diagnostic process is challenging and time- and

money- consuming, with underreported profiles of the neurocognitive and

neurobehavioral impairments because of limited clinical capacity. We assessed

children/youth with FASD from a multimodal perspective and developed a

high-performing, low-cost screening protocol using a machine learning framework.

Methods and Findings: Participants with FASD and age-matched typically developing

controls completed up to six assessments, including saccadic eye movement tasks

(prosaccade, antisaccade, and memory-guided saccade), free viewing of videos,

psychometric tests, and neuroimaging of the corpus callosum. We comparatively

investigated newmachine learning methods applied to these data, toward the acquisition

of a quantitative signature of the neurodevelopmental deficits, and the development of

an objective, high-throughput screening tool to identify children/youth with FASD. Our

method provides a comprehensive profile of distinct measures in domains including

sensorimotor and visuospatial control, visual perception, attention, inhibition, working

memory, academic functions, and brain structure. We also showed that a combination

of four to six assessments yields the best FASD vs. control classification accuracy;

however, this protocol is expensive and time consuming. We conducted a cost/benefit

analysis of the six assessments and developed a high-performing, low-cost screening

protocol based on a subset of eye movement and psychometric tests that approached

the best result under a range of constraints (time, cost, participant age, required

administration, and access to neuroimaging facility). Using insights from the theory of

value of information, we proposed an optimal annual screening procedure for children at

risk of FASD.
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Conclusions: We developed a high-capacity, low-cost screening procedure under

constrains, with high expected monetary benefit, substantial impact of the referral and

diagnostic process, and expected maximized long-term benefits to the tested individuals

and to society. This annual screening procedure for children/youth at risk of FASD can be

easily and widely deployed for early identification, potentially leading to earlier intervention

and treatment. This is crucial for neurodevelopmental disorders, to mitigate the severity

of the disorder and/or frequency of secondary comorbidities.

Keywords: fetal alcohol spectrum disorder (FASD), eye movements, psychometrics, DTI, early screening

INTRODUCTION

Fetal alcohol spectrum disorder (FASD) is the most
common preventable developmental disorder, resulting from
prenatal alcohol exposure (1). The estimated prevalence of FASD
among school-age children may be as high as 2–5% in the U.S.
(2, 3), and over 1% in Canada (4). Costs associated with FASD, in
areas such as health care, special education, and social services,
can run into billions of dollars annually, which places a large
burden on both families and society (5, 6).

Early diagnosis of FASD is important in that it can lead
to early interventions that reduce the risk of developing
secondary disabilities (7). Despite the high prevalence of
FASD, the clinical diagnosis can be both challenging and time
consuming. It currently requires a confirmed history of the
prenatal alcohol exposure and a comprehensive profile of central
nervous system and neurobehavioral deficits, which are often
difficult to obtain. The high rate of co-morbidity with other
developmental disorders such as attention deficit hyperactivity
disorder (ADHD) (8) may also contribute to misdiagnosis. The
diagnostic process may take up to two full days requiring a
multidisciplinary team comprised of a physician, psychologist,
facial dysmorphologist and occupational therapist, and the result
can vary from clinic to clinic because of the wide spectrum
of deficits (9). Therefore, an easy, objective, and effective
procedure which can assess the deficits and differentiate the
neurological groups is needed as a screening tool for children
at risk for FASD. Most of the screening or discrimination
studies, however, have so far relied on demographic, behavioral,
physical, psychometric, face morphometric analysis, and history
of maternal alcohol consumption (10–14), which are not time-
and cost-efficient.

Multiple brain regions including the corpus callosum are
affected in FASD (15). Studies using diffusion tensor imaging
(DTI), a magnetic resonance imaging technique widely used
to examine the structural integrity of white matter tracks,
have revealed abnormalities in white matter tracts, such as
altered fractional anisotropy (FA) and mean diffusivity (MD)
within different parts of the corpus callosum (16). Moreover,
these structural anomalies have been correlated with saccadic
eye movement control and inhibition deficits in children with
FASD (17, 18). Psychometric tests have also been used to
assess the functional and cognitive deficits caused by prenatal
alcohol exposure. Children with FASD received lower scores

on attention tests, inhibitory control and performed poorer
in working memory tests and visuospatial processing (19–21).
They also showed difficulties in learning and language such as
verbal information acquisition and word comprehension (22,
23). Saccadic eye movements are the rapid shifts that redirect
the line of sight to foveate new visual targets (24). The execution
and control of saccadic eye movements involve multiple cortical
and subcortical brain areas, reflecting the automatic, executive,
and cognitive functions of the individual (25–27). Children
with FASD have significantly poorer saccade control with more
variability, slower saccadic reaction times, and more timing and
direction errors compared to typically developing controls (18,
20, 28). Biometric signatures decoded from eye tracking during
free viewing of natural videos have been shown to help explain
the deficits and to differentiate clinical populations for various
neurodevelopmental and neurodegenerative disorders, such as
FASD, ADHD, and Parkinson’s disease (29, 30). Related work
using static natural images has shown promising results in further
understanding autism spectrum disorder (31).

In this paper, we propose a machine learning framework
to address the various outcome measures that are used to
quantify deficits across multiple domains in children/youth
with FASD, and to use these measures to differentiate
the FASD group from typically developing controls. We
utilized data from eye movement behaviors, psychometric
test scores, and DTI of the brain to construct a new,
multimodal classifier that demonstrates high performance in
identifying the clinical population. Considering time, cost,
age restriction, required administration, and accessibility of
different measurements, we also propose a high-throughput
and low-cost screening procedure with high expected monetary
benefit, based on eye movement recordings for children
with FASD, which could be widely deployed and lead to
the earlier intervention and treatment that is crucial for
neurodevelopmental disorders.

To quantify the potential benefits of early screening on
a large scale, we used tools from the theory of value of
information (32). The expected value of information is computed
under situations where a decision maker has to choose
whether to spend some money to obtain an additional piece
of information which may lead to a better decision and to
long-term benefits. Here, we propose a cost-benefit model
based on this theory to evaluate the expected benefits of our
screening procedure.
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MATERIALS AND METHODS

Participants
The participants in this study were part of a large, multi-
site investigation funded by the Kids Brain Health Network
(formerly NeuroDevNet), a Network of Centers of Excellence
in developmental neuroscience (33). Participants were recruited
from five different communities in three provinces in Canada.
This study included children/youth aged 5–18 years who were
either typically developing healthy controls (n = 116) or had
received a diagnosis of an FASD (n = 91) according to the
Canadian Guidelines (9). Demographic information of the
participants is summarized in Table 1. Each participant was
tested in up to six different assessment procedures described
below. A summary of the numbers of participants that completed
each and all assessments are provided in Table 2.

All experimental procedures were reviewed and approved
by the Human Research Ethics Board at Queen’s University,
the University of Manitoba, the University of Alberta, and
the University of Southern California (USC). Written informed
consent was obtained from a parent or legal guardian before
the protocol was administered and children completed a written
assent form before study participation.

Structured Saccadic Eye Movement Tasks
Participants were comfortably seated on a stable chair in a quiet,
darkened room. Eye position was recorded using the Eyelink
1,000 system (SR Research, Kanata, ON). A 17-inch LCDmonitor
with a built-in infrared illuminator and infrared camera was
placed ∼60 cm from the left eye. The coordinates of the left
pupil were sampled in the vertical and horizontal axes at 500Hz.
Eye position was calibrated using 9 sequential visual targets
positioned around the screen (8 around the periphery and one
central). The participants were asked to fixate on each target
when it flashed. After initial calibration, the process was repeated
to validate that the average error between fixation and target was

TABLE 1 | Demographic.

FASD Control

n (%) 91 (44.0) 116 (56.0)

Age mean ± std years

(range)

11.9 ± 3.4 (5–18) 10.8 ± 3.5 (5–18)

Males n (%) 46 (50.5) 51 (44.0)

Right handed n (%) 69 (75.8) 85 (73.3)

Diagnostic

subtype n (%)

ARND 62 (68.1) –

FAS 10 (11.0) –

pFAS 19 (20.9) –

<2◦ and that no loss of eye tracking occurred. The performance
of each participant was assessed in three saccadic eye movement
tasks: prosaccade (ProSac), antisaccade (AntiSac), and a memory
guided saccade (MGSac) task.

In the ProSac and AntiSac tasks (25, 27), each trial started with
the illumination of a central fixation point (FP) for 800–1,200ms.
The FP then disappeared and, after a gap period of 200ms, a
peripheral target appeared randomly at 10◦ to the left or right of
the central FP. Participants had 1,000ms to initiate and complete
a saccade to the correct location and were instructed to look
toward the target (ProSac, Figure 1A) or away from the target
(AntiSac, Figure 1B). No error feedback was given. A single block
of 60 ProSac and 60 AntiSac trials were obtained from each
participant. In theMGSac task, participants were again instructed
to maintain fixation at the central FP, after which two peripheral
targets appeared sequentially for 100ms each in one of four
quadrants around the periphery of the screen. Participants were
required to maintain fixation on the central FP for an additional
0, 600, 1,200, or 1,800ms (randomly allocated) before receiving
the go signal (disappearance of the FP). After the FP disappeared,
participants were required to make two saccades as accurately as
possible to the remembered locations of the peripheral targets in
the same sequence in which they were presented (Figure 1C). A
single block of 72 trials was collected for each participant (28).

The recordings were analyzed based on a set of measurements,
and age corrections were applied (see Supplementary Material).
For the ProSac task, 18 measurements were obtained, including
percent correct trials, saccadic reaction time, saccade velocity
(see Supplementary Material). The number of measurements
for AntiSac and MGSac were 15 and 26, respectively.
These measurements were treated as features for further
classification analysis.

Natural Viewing
Participants watched a series of five 1min video clips, with
each clip consisting of a sequence of uncorrelated short video
snippets of 2–4 s duration chosen from a set of 70 snippets. Eye
movements were recorded as described above of the right eye,
and the participants were instructed to simply “watch and enjoy
the clips” (Figure 1F).

To quantitatively gauge the visual properties of the scene
elements looked at by each participant, the Itti-Koch saliency
model (34, 35) was applied to each frame of the video
clips to obtain the saliency maps of seven individual visual
processing channels: color (C), intensity contrast (I), orientation
(O), flicker (F), motion (M), line junction (J), and intensity
variance (Var); two combination channels: CIOFM and CIOFMJ.
Another top-down saliency map was derived from the Gaussian
smoothed spatiotemporal gaze map of a group of healthy

TABLE 2 | Participants for different assessments.

Prosaccade M-G saccade Antisaccade Natural viewing DTI Psychometric ALL

n(FASD) 71 61 67 47 41 58 22

n(Control) 115 93 106 53 35 71 24
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FIGURE 1 | Illustration of experimental methods and classification procedure. (A) Prosaccade task. (B) Antisaccade task. (C) Memory-guided saccade task.

(D) Inhibition subtests of psychometric tests (see Supplementary Material for test description) (E) DTI. (F) Natural viewing task. (G) SVM-RFE. (H) Attentional eye

traces and Tiled CNN.

young adults (n= 19) from USC (30). The saliency model and
its constituent visual channels have been previously validated,
accurately predicting gaze patterns of controls watching natural
videos, television, or playing video games (36, 37). Here,
we used the same approach to objectively and quantitatively
detect any differences in the saliency and visual properties of
the scene elements looked at by children/youth with FASD
vs. controls. The standardized values of the saliency maps
were extracted at each recording point of the eye traces,
resulting in what we call “attentional eye traces” throughout
this paper. The 10-dimensional (seven visual channels, two
combined channels, and one top-down) attentional eye traces
obtained from each of the 70 snippets natural viewing
assessment were treated as the data for the classification
analysis (Figure 1H).

Diffusion Tensor Imaging (DTI)
Brain imaging data were collected at 3 sites (Edmonton, AB,
1.5T Siemens Sonata; Kingston, ON, andWinnipeg, MB, both 3T
Siemens Trio). All of the diffusion tensor images were acquired
using a dual spin-echo echo planar imaging sequence. Manual
deterministic tractography of the corpus callosumwas performed
in ExploreDTI (38) by a single operator, blinded to participant
group, age, sex, and handedness. The corpus callosum was
divided into 6 regions of interest (ROI): genu, rostral body,

anterior midbody, posterior midbody, isthmus, and splenium
from front to back (18, 39) (Figure 1E). Three eigenvalues,
average length and angle were obtained for each ROI, and FA,
MD, and perpendicular diffusivity (λ⊥) were calculated based on
the eigenvalues averaged across all voxels in a given tract (see
Supplementary Material). In total, 48 features were acquired
from this DTI assessment (eight features for each ROI, and six
ROIs in total).

Psychometric Tests
The Developmental Neuropsychological Assessment, Second
Edition (NEPSY-II) (40) is a standardized psychometric test
battery for children 3–16 years of age. Data from five subtests
involving attention and executive functioning (Figure 1D),
memory and learning, and visuospatial processing were used in
this study. In addition, subtests from the Working Memory Test
Battery for Children that measure the verbal and visuospatial
working memory, subtests from the Woodcock Johnson III test
battery that measure applied problem solving and quantitative
concepts, and a subtest from the Woodcock Reading Mastery
Test that measures language and reading skills, were also
used (see details in Supplementary Material). All subtests were
standardized to have a mean standard score of 10 with a standard
deviation of 3 (20). A total of 20 scores (features) were obtained
from these tests for each participant.
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TABLE 3 | Participants for training single assessment classifiers.

ProSac MGSac AntiSac Natural viewing DTI Psychometric

n(FASD) 49 39 45 25 19 36

n(Control) 91 69 82 29 11 47

Single Assessment Data Analysis
The data from saccadic eye movements, DTI, and psychometric
tests were analyzed using support vector machine-recursive
feature elimination (SVM-RFE) (41). SVM-RFE allows group
classification and feature selections at the same time. Data from
participants who finished all six assessments were left out for
testing and the remaining data was used for training with leave-
one-out (LOO) as the cross validation method. The number
of participants for training is summarized in Table 3. For the
DTI assessment, since only a small number of training samples
remained, and the FA, MD and perpendicular diffusivity were
highly correlated with eigenvalues from which they were derived
(see Supplementary Material), using all the features did not
result in a good classifier. Therefore, a subsets of features (three
eigenvalues, average length and angle of each of the six ROIs)
were used as input.

During training, data was first normalized to the 0–1 range

within each feature dimension to avoid incorrect weighting
among features. The normalized data was then analyzed with

the SVM-RFE. For each iteration, the classification accuracy,
and the contribution weight of each feature were computed, the

least useful feature with the lowest contribution weight would

be eliminated, and the remaining features became the input for
the next iteration (Figure 1G). Classification accuracy, a set of

useful features, and the corresponding classifier were the outputs
for each iteration. The procedure terminated when no further
feature was eliminated. The set of features and the classifier

corresponding to the best classification accuracy were selected.
During testing, data was first normalized according to the

range of the training data within each feature dimension. The
trained classifier was then applied to the selected features of the
test data set. Classification accuracy and the probability value of
a participant being identified as having FASD were reported on
this separate test set.

For the attentional eye trace data from the natural viewing
experiment, two stacked tiled convolutional neural networks
(Tiled CNNs, Figure 1H) (42) were used to learn a sparse
representation of the data within each saliency channel. Each of
the CNN was a topographic independent component analysis
(TICA) network (43). The Tiled CNNs were pre-trained on a
separate dataset obtained from young adults at USC. The learned
representations for different saliency channels of the same video
snippet were concatenated together (30).

A classification procedure was then applied to the learned

representation of natural viewing data. During training, the input
data was normalized to the 0–1 range across participants. A two-

tail t-test with correction for multiple comparisons was used to
reduce the input dimension by eliminating feature dimensions
with no significant difference between FASD and controls. 70

weak classifiers were trained on data from each video snippet
via L1-regularized logistic regression (LR), which is to solve the
following problem (44):

min
∑

|wj| + C
∑

log(1+ exp
(

−yiw
Txi

)

)

where yi is the group label (0 for control and 1 for FASD),
xi is the input data of each participant, wj is the regression
weight of each input dimension and C is the parameter selected
during cross validation. The 70 probabilities of being FASD
after those classifiers were concatenated as a single vector
input for training another LR classifier. LOO was used as
the cross-validation method for this two-layer LR classifier
training framework.

The test data for natural viewing were normalized
across participants and filtered according to the training
data before the classification. The classification accuracy
and probability of a participant being identified as
having FASD were then reported through the two-layer
LR procedure.

Multiple Assessments Data Classification
To take advantage of data from different assessments, we
then performed a classification analysis on the dataset of the
participants who finished all six assessments (N = 46, see
Table 2). An iterative train-test procedure was applied. During
each iteration: one participant’s data set was excluded as test data;
the remaining data were used for training with cross validation.
The probability of a participant being identified as having FASD

predicted from each assessment was concatenated as input for
training a LR classifier. The iteration terminated when every

participant’s data was used as the test sample once and the
accuracy was calculated based on the prediction labels acquired

during testing.

Multilinear Regression
Multilinear regression can be used to analyze the relationship
of features and outcomes (differentiation probability of being
FASD) across different assessments. The linear relationship
between a response Y, which can be either the feature or the
outcome of one assessment, and the regressors (explanatory
variables) X, which are features from another assessment, for each
observation, is measured by the following equation

E (Y|X) = β0 +

N
∑

i= 1

βixi

where βi is the coefficient. An estimation of Y, Ŷ, is obtained
via X and β̂ , which was learned by minimizing the sum of
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squared residuals. The relationship is depicted by the square of
the correlation coefficient r2 of Y and Ŷ. Features for saccadic eye
movement and psychometric tests were the same as previously
used in classification analysis. Differentiation probabilities of
weak classifiers with non-zero regression weights (N = 35) were
treated as features for natural viewing, and all features except λ⊥
were used for DTI. F-test was applied to decide the significance
of regression.

Performance Analysis of Classifiers
To statistically compare the performance of different classifiers,
we first computed the performance variances by repeating the
training and testing process 20 times for each classification
method with a resampled training set. For every repetition,
we performed a stratified resampling with replacement of the
training set (maintaining the same number of samples in each
group), trained the classifier, and tested on the test set. Twenty
classification accuracies were acquired for each classifier. The
average of the accuracies and their standard errors are shown
in Figure S1. One-way ANOVA test was used to compare
these accuracies of different classifiers, and the Tukey’s honestly
significant difference procedure was applied when multiple
comparisons were involved. The significance level was set
to be 0.05.

RESULTS

Classification on Single Assessment
First, we aimed to establish the classification accuracy obtained
separately from each of the six assessments. Both cross validation
accuracy on the training dataset and the classification accuracy
on the test dataset are reported (Figure 2A). Chance level
was 52.17%. To better understand the results of the feature
elimination process, we report in Table 4 the features that
were selected in the top-scoring classifier for each assessment
taken individually. Their normalized contribution weights and
categories are also summarized in Table 4. The contribution
weights for the assessment features were normalized so that their
absolute values summed to 1 (this normalization would not affect
the relative ratio among features).

For saccadic eye movement data, raw feature sets and
age-corrected feature sets were used separately. Statistically
significantly better accuracies were obtained using the age-
corrected feature sets, indicating that the measurements varied
with age. The numbers of selected features for age-corrected
ProSac, AntiSac and MGSac were 11 out of 18, 9 out of 15, and
15 out of 26, yielding accuracies of 69.57, 76.09, and 65.22%,
respectively. For clarity, the saccadic eye movement features
were grouped into 6 main categories. Among these categories,
features measuring accuracy, variability, main sequence (saccade
amplitude, velocity, and duration), and other sensorimotor
measures (including saccadic reaction time and express saccades)
were common across all three types of tasks. AntiSac and
MGSac have an additional feature category regarding response
inhibition (direction errors and timing errors, respectively),
and MGSac has an extra feature category for working
memory (sequence errors). Features from all those categories

contributed to differentiating the participants, with the most
important (heaviest weighting) features coming from accuracy
measurement (ProSac and AntiSac) and response inhibition
measurement (MGSac).

A test accuracy of 71.74% was achieved for natural viewing.
Among all the 70 video snippets, only 35 were selected by the
LR classifier with statistically significant non-zero coefficients,
indicating that eye movement recordings on half of the videos
were not used and suggesting a possibly shorter natural viewing
assessment (see Discussion).

A combination of measurements from the genu, rostral
body, posterior midbody, and splenium of the corpus callosum
contributed to the classifier of DTI, yielding a test accuracy
of 67.39%.

The used features of the classifier for the psychometric data
were scores of quantitative concepts (measuring math ability),
inhibition, and digit recall (measuring working memory).
The test accuracy reached 78.26%, which was the best
single assessment classification accuracy. This finding was
confirmed statistically using our classifier performance analysis
procedure (see Supplementary section S5 and Figure S1A).
However, eye movement features also resulted in good
classification performance.

Classification on Multiple Assessments
We hypothesized that the best classification accuracy
would be obtained by combining features from multimodal
assessments. Although this would be an expensive and
resource-intensive approach, the combined accuracy can be
used as a ceiling value for comparison with smaller subsets
of assessments.

The classification accuracy based on data from all
assessments under the iterative train-test procedure reached
84.78 with 52.17% as the chance level (naïve Bayes), which
was an 11.4% improvement of the best single assessment
accuracy. The sensitivity and specificity of the classification
were 81.8 and 87.5%, respectively (Figure 2B). A further
exploration of the feature combinations revealed that after
dropping the MGSac and DTI features, the same result
was still maintained. Thus, the optimized combination of
assessments should be ProSac, AntiSac, natural viewing and
psychometric tests.

Given this high combined accuracy, we next asked whether it
could be approached with just pairs of two assessments. A similar
iterative train-test classification procedure was thus applied
to all possible pairs of assessments. The range of classification
accuracies attained with different assessment pairs is summarized
in Figure 2C. A combination of AntiSac and psychometric
assessments achieved the highest pair-wise classification
accuracy at 82.61%. The second highest accuracy was achieved
by the combination of psychometric features and natural viewing
(or ProSac) with a value of 80.43%. Our classifier performance
analysis procedure further suggested no significant difference
among the 5 top-scoring pairs, which are the 5 pairs that include
the psychometric assessment (see Supplementary section 5).
The highest accuracy without psychometric assessment
was 78.26%, reached by the combination of ProSac and
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FIGURE 2 | Classification results. (A) Classification accuracies and evaluations on single assessments. Top: train (cross validation) and test accuracies of each

assessment. Bottom: evaluations of different assessments. (B) Classification accuracy on all assessments. Left: classification accuracy and the chance level. Right:

the confusion matrix. (C) Classification results of pairwise assessments. The first three light-colored bars show accuracies of the top pairs. The forth shows the

highest accuracy without psychometric tests.

natural viewing, which was an improvement of 12.5 and
9.1% to their individual accuracy, respectively. Other
combinations gave either non-improved or decreased
accuracy compared with either individual assessment within the
combination, suggesting that the combinations were noisy to
each other.

Multilinear Regression
If features collected in one assessment, or the outcome of
that assessment, were predictable from features collected in
another assessment, one of the two assessments could be
eliminated, thus saving time and resources. To investigate
this, we first counted the number of features within one
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TABLE 4 | Selected features and normalized weights for single assessment classification.

Assessment Feature Weight Category

ProSac

(age-corrected)

Percent of trials with step saccades 0.231

Standard deviation of SRT for correct trials 0.176

Coefficient of variation of correct trials 0.145

Skew 2 0.086

Saccadic reaction time of correct trials 0.073

Angle between direct path to target and first saccade 0.071

Amplitude 0.070

Skew1 0.055

Percent of direction errors that were corrected 0.043

Skew index 0.035

Percent of express saccades(90-140ms) 0.015

AntiSac

(age-corrected)

Angle between direct path to target and first saccade 0.216

Percent of anticipatory errors 0.174

Percent of correct trials 0.173

Velocity 0.163

Percent of direction errors 0.105

Percent express saccades in both directions 0.060

Coefficient of variation of correct trials 0.056

(Continued)
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TABLE 4 | Continued

Assessment Feature Weight Category

Percent of direction errors that were corrected 0.042

Percent of trials with step saccades 0.010

MGSac

(age-corrected)

Percent of trials where they skipped the first target and go to second only 0.114

Accuracy of the first saccade 0.110

Accuracy of the final fixation to the second target 0.089

Percent of timing errors 0.073

Percent of All Timing Errors 0.070

Percent of false starts only 0.066

Percent of trials that are sequence and timing errors 0.065

Coefficient of variation of saccadic RT of first saccade of correct trials 0.064

Angle between direct path to target and first saccade 0.064

Coefficient of variation of saccadic RT of second saccade of correct trials 0.063

Percent of sequence errors 0.063

Path length accuracy (actual/optimal path length) 0.053

Amplitude of the 2nd saccade 0.045

Standard deviation of SRT of the 1st saccade of correct trials 0.037

SRT of the 1st saccade of correct trials 0.025

(Continued)
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TABLE 4 | Continued

Assessment Feature Weight Category

DTI Genu: Length average 0.366

Rostral: eigenvalue 3 0.290

Splenium: eigenvalue 3 0.150

Posterior: parallel diffusivity 0.081

Splenium: Length average 0.069

Posterior: Angle average 0.044

Psychometric Quantitative concept standard score 0.408

Inhibition total errors scaled score 0.333

Digit recall standard score 0.259

, Accuracy; , Variability; , Main sequence; , other sensorimotor measures; , Response inhibition; , Working

memory; , Structure; , Math; SRT, saccadic reaction time.

assessment that could be significantly predicted (p < 0.05)
by features from another, and then divided the number by
the total number of features for that assessment (Figure 3A).
All the percentages of significant predictions were below
50%. Therefore, all the assessments have their unique roles
in analyzing the deficits of FASD, and the lack of full
predictability is likely the reason why combined accuracy
is best.

A second type of multilinear regression could be
performed using measures from one assessment to predict
the outcome from another. The r2 for significant predictions
are summarized in Figure 3B. In most cases, the predictions
were not significant. However, the Psychometric outcome
could be predicted by natural viewing measures with an
r2 of 0.92. This is also an explanation for the pairwise
classification accuracy in that the ProSac-NaturalView
pair achieved similar accuracy as the ProSac-Psychometric
pair, indicating that the Psychometric and natural
viewing assessments are interchangeable with respect to
classification accuracy.

DISCUSSION

General Findings
In this study, we showed that children with FASD could be
distinguished from typically developing controls based on the
measurements from a group of multidisciplinary tasks involving
saccadic eyemovements, natural viewing, psychometric tests, and
DTI of the corpus callosum, while assessing their deficits during
the classification procedure.

In the saccadic eye movement tasks, features derived from the
accuracy of the saccade trajectory, the frequency of corrective
saccades, the variability and the main sequence were always
selected by the classifiers across the three tasks. Measurements of
direction errors and percent of express saccades were significant
in ProSac andAntiSac during classification. The saccadic reaction
times were distinguishing in ProSac and MGSac. Inhibitory
control was impaired for children with FASD in both AntiSac
and MGSac, while measurements related to working memory in
MGSac were also impacted. All of these findings were consistent
with reported impairments in saccadic eye movement control
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FIGURE 3 | Multilinear regression results. (A) Ratio (in percentage) of significant features of one assessment predicted by another. (B) r2 of predicting the

differentiation probability of one assessment from another.

in other studies (20, 21, 28, 45). However, instead of limiting
the analysis to individual or a few eye movement parameters,
the classifier uses all of the parameters as the input, and detects
the distinguishing ones to predict the clinical group (FASD vs.
control). Thus, a more comprehensive profile of parameters
with differentiating significance (feature weights of the classifier)
can be obtained, without any specific hypotheses about which
features best distinguish the groups.

Our previous study showed that children with FASD could
be classified through their natural viewing behaviors (30).
Here we used LR instead of Adaboost, tested on a completely
separate testing dataset about the same size of the training set,
and achieved comparable classification accuracy. The LR also
provided us with information about the significance among
different video snippets, showing that half of them could be
discarded with zero contribution to classifying this particular
disorder. Upon casual visual inspection, and in terms of
distribution of scene contents, filming location, and themes, the
selected and non-selected video snippets showed no difference.
We then measured the saliency model’s response to each snippet
as a possible differentiator, focusing on the peak saliency value
in each frame as a measure of the most salient event or object
in that frame. When ranking each video snippet by the average
of the peak values across frames of every saliency channel (not
including the top-down channel), and considering the top seven
snippets (top 10% of all the snippets), the selected snippets by the
classifier covered 6/7 for the flicker channel, 5/7 for the junction
channel, and 5/7 for the two combined channels (CIOFM and
CIOFMJ). This suggests that snippets with more dynamic and
complex contents were more useful for classification. In addition,
we computed the entropy of the top-down channel for each
frame as a measure of inter-observer variability. All the snippets
were ranked by the average entropy across frames. The snippets
selected by the classifier covered 60% in the top 28 snippets (top
40% of all snippets). That is, snippets that elicited more varied
viewing behavior, for example because they contained multiple
actors as opposed to one, contributed more to classification. This

result suggests an even more efficient experimental procedure of
2.5min of natural viewing, or a re-consideration of our video
snippet choices for a better classification result.

Performance scores relating to math ability, inhibition and
working memory were selected by our elimination procedure
to classify children with FASD from the typically developing
children, with math ability measurement found to be the most
distinguishing feature. Significantly poorer performances in these
cognitive or executive functions have frequently been reported
in the literature (20, 21, 45–49). For example, individuals with
FASD were reported as having more difficulties in mathematics
compared to other cognitive areas, and the deficit was correlated
with the amount of prenatal alcohol exposure (50). These
impairments were also correlated with abnormalities in various
neural projections from the parietal and frontal lobes passing
through the corpus callosum (50, 51).

DTI studies of the corpus callosum have consistently shown
lower FA of the splenium of the FASD group (52–54), which
is involved in visuospatial processing. Posterior regions of the
corpus callosum including the posterior midbody, the isthmus,
and the splenium are more affected. Altered FA or MD in the
genu and isthmus have also been reported in the literature (55).
Our classification results revealed abnormalities in the genu,
the posterior midbody, and the splenium, with the posterior
regions having two more contributing features. Although we also
found significantly higher MD of splenium [one-way ANOVA,
F (1, 75) = 5.98, p = 0.017] for our participants with FASD,
classifiers with FA or MD did not reach the best result.
Instead, parallel diffusivity, the average length and the angle of
the fibers were discovered to most contribute to classification
accuracy, indicating more biometric features contribute to DTI
abnormalities in the FASD group. We also found that involving
the measurement from the rostral body, an anterior region that
was not reported to be affected previously, increased classification
performance significantly. Since a large portion of orbitofrontal
fibers project through the rostral body (56), and visual processing
was altered within the FASD group, our result may suggest a
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potential role of this anterior part of the corpus callosum in FASD
that is not predicted simply by its FA or MD values.

Classification Evaluation and Limitations
The best single assessment classification accuracy was achieved
by the psychometric data. However, this may in part be due to
the fact that these psychometric tests assess domains of function
that are also part of the clinical diagnosis of our participants,
including memory, executive functioning, abstract reasoning,
and attention (9). Although the top feature selected by the
classifier was the measurement of math ability, which was not
directly included in the diagnostic procedure that provided
ground truth for our sample, the scores for inhibition and digit
recall (an indicator of working memory), might be a concern
for confounding.

Another more important concern during classification is
the generalizability of our methods. To address this, we used
completely separated testing set/samples, and reported test
accuracies on these independent testing set/samples. Cross-
validation was applied during the training process, which
is generally accepted as a good way to prevent overfitting
and improve the generalizability. The classification accuracy
is expected to improve if we have a larger dataset with
more individuals assessed in the future, as the cross-validation
accuracies reported on the training datasets were usually higher
than the test accuracies. Besides the generalization problem of
supervised learning, the high accuracy was achieved due to the
relatively large training set (which included all but only one test
sample at each time under the LOO condition).

The number of participants who finished all the six
assessments is 46 (24 controls vs. 22 FASD), which is still
larger than the dataset used for other studies about classification
of children with FASD (13, 29). We used an iterative train-
test procedure to make the maximum use of our data while
considering its generalizability. A relatively simple classifier,
the LR classifier, was used for our multiple assessments data.
This classifier is easier to train, requiring much less computing
time and resources, and can generalize better compared to
other complicated classifier. More confidence could be added
if we could have a larger number of participants, and recruit
participants from other geographically different areas with more
diverse background.

Assessment Evaluation
The six assessments could be investigated from various aspects
besides classification accuracy (Figure 2A). The natural viewing
task only takes 5min to run. The running time for saccadic
eye movements are 7min for ProSac and AntiSac, and 10min
for MGSac. The time required for psychometric tests and DTI
are much longer, up to 1 h. Age restrictions apply according
to either the participant’s behavioral ability or the assessment
requirements. Infants older than 2 months can do a natural
viewing task (57). The age thresholds for saccadic eye movements
are 3 years for ProSac and 6 years for AntiSac and MGSac.
Children must be old enough to participate well in a brain
imaging scan and the youngest participant who finished the
scan was 7 years old. The subset of tests we used from the four

psychometric batteries requires an overlapped age restriction
between 5 to 15 years. With respect to the different paradigms,
anyone who is trained to use the Eyelink 1000, which is just a
laptop connected to a high-speed camera, can administrate the
natural viewing and saccadic eye movement tasks. In contrast, a
trained psychometrist or clinical psychologist is needed for the
full battery of psychometric tests, while a brain imaging center
and a MRI technician are required for DTI. The administration
requirements make significant differences regarding the total
assessment cost and accessibility. Natural viewing and saccadic
eye movements are the lowest-cost assessments with the easiest
accessibility. Brain imaging is the most expensive paradigm with
the most difficult accessibility.

Screening Procedure
A high-throughput and low-cost screening procedure could be
proposed at this point (Figure 4). The participant is first assessed
by the ProSac and Natural viewing tasks, with sensitivity 77.27%,
specificity 79.17% and accuracy 78.26%, for estimating the risk
of having FASD. If the participant is classified as high risk of
having FASD (FASD score returned by the classifier higher than
0.55 on a 0 to 1 scale), then a full diagnostic evaluation could
be suggested. This is the most cost-effective approach, with the
least age restriction and task load, and can be further evaluated
from a “value of information” perspective of view (32). For
older children/youth, the addition of the AntiSac task and/or
short battery of psychometric tests adds to the classification
accuracy, adding greater confidence that at-risk children/youth
are not missed.

Figure 5 shows the model structure used for the annual cost-
benefit analysis of the screening procedure for each individual.
The probabilities in the model are derived from a priori
probability of having FASD (pF , which could be the fraction
of participants with FASD in the screened population), and the
confusion matrix (detection rate rD, false alarm rate rFA, true
negative rate rTN , and miss rate rM , see Figure 4 for those values
of different screening procedures). A general cost of the screening
is denoted as CS, of value smaller than $50 using initially only
ProSac and Natural Viewing (Figure 2A). Adding the AntiSac
task does not increase this value since it can be done together
with ProSac and Natural Viewing. The cost of screening will
increase by <$200 when a short battery of psychometric tests
is also included. A participant predicted to be at high-risk of
having FASD will have a further clinical diagnostic evaluation,
which costs <$4,000 (excluding medication, hospitalization and
other non-diagnostic costs) in both the United States and Canada
(4, 58–60), denoted as CD. If our prediction of FASD is correct,
then we will have a gain G for the early detection. Conversely,
a loss L occurs when we miss a patient. The values for G and L
are difficult to estimate, and no quantitative studies about them
were found. However, a significant difference in the individual
annual cost was reported for different severities of FASD (4).
Early detection could mean that the progress of the disorder is
mitigated by providing a supportive, enriched environment for
the child, and access to services for the family, and the benefit
gained from it could be at least $20,000 per year (difference of
average annual health care costs between severe and mild FASD
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FIGURE 4 | Screening procedure. The participant is first assessed by the

ProSac and Natural viewing tasks, with an accuracy of 78.26% for estimating

the risk of being FASD. For older children/youth, the addition of the AntiSac

task and/or short battery of psychometric tests adds to the classification

accuracy, adding greater confidence that at-risk children/youth are not missed.

The confusion matrices are also shown.

patients). Thus, G ≥ $20,000. If the screening procedure can be
applied annually, then the cost of missing a patient, L, should
be less than G, under the assumption that not all missed mild
children/youth with FASD will develop severe symptoms within
the year before the next screening. The expected value of the
model for an individual is computed as follows:

EV = rDpF (G− CD − CS) − rFA
(

1− pF
)

(CD + CS)

−rTN
(

1− pF
)

CS − rMpF (L+ CS)

For an individual with FASD, the expected annual savings with
the aforementioned assumptions for the screening with eye
movement tasks only is computed as:

EV = 0.77 (G− CD) − 0.23L− CS

≥ 0.77∗ (20000− 4000) − 0.23∗20000− 50 = $7670

The probability of missing a patient in a consecutive 4-year
period is less than 0.3% (0.234), which means that, with

FIGURE 5 | Model structure for cost evaluation of the screening procedure.

CS, screening cost; rD, detection rate; rFA, false alarm rate; rTN, true negative

rate; rM, miss rate; pF , priori probability of having FASD; CD, clinical diagnostic

cost; G, gain; L, loss.

annual screening using a low-cost, high throughput procedure,
a child/youth with FASD can be discovered with a probability
higher than 99.7% within 4 years. Thus, the expected savings in 4
years is at least 7670(1+ 0.23+ 0.232 + 0.233)= $9933.

For our group of 46 children/youth with FASD in the testing
group (with pF = 0.48 in this group), the expected value of
individual annual savings multiplied by 46 is $148,065 for a
screening procedure composed of ProSac and Natural Viewing,
$151892 with the addition of AntiSac, and $187220 with another
addition of the three psychometric tests. Extrapolating this
computation to a screened population of 1,000 individuals results
in savings of more than 3 to 4 million dollars. If we have
children with prenatal alcohol exposure or any suspected (e.g.,
by parents, caregivers or teachers) neurodevelopmental deficits
to be screened, a reasonable estimation of pF is likely to be higher
than 0.48, leading to even more savings based on our model.

The proposed screening procedure consisting of three brief
eye movement tasks and a substantially shortened set of 3 sub-
tests from the psychometric battery achieved a mean sensitivity
of ∼82%, a mean specificity of ∼88%, and an overall accuracy
of ∼85%, and can be administered in under 1.5 h. It provides
a quantitative and objective signature of the disorder, for each
individual, along multiple dimensions that encompass a range
of cognitive and oculomotor functions, and alleviates the need
for screening, or discrimination tools that rely on demographic,
behavioral, physical, psychometric, face morphometric analysis,
and history of maternal alcohol consumption (11, 14). Besides the
benefits of time- and cost-effectiveness, the screening procedure
is also much easier to implement with early or pre- school
age children compared to the standard diagnostic process.
The data can be analyzed through the same machine learning
pipelines and thus all the screening estimations are achieved
through the same standards. Such a screening procedure could
be widely used at clinics, schools, or health units where young
children are seen routinely, across different regions and areas,
promoting communications within an interdisciplinary context.
At-risk individuals, especially those with limited access to clinical
resources, could receive a timely screening at a more affordable
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cost, and the disorder could potentially be detected at an earlier
stage. Such an early screening that streamlines the referral and
diagnostic process would have a substantial impact for children
with FASD because it could lead to earlier intervention and
treatment, which is crucial for neurodevelopmental disorders.
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