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Primary blast neurotrauma represents a unique injury paradigm characterized by

high-rate overpressure effects on brain tissue. One major hallmark of blast neurotrauma

is glial reactivity, notably prolonged astrocyte activation. This cellular response has

been mainly defined in primary blast neurotrauma by increased intermediate filament

expression. Because the intermediate filament networks physically interface with

transmembrane proteins for junctional support, it was hypothesized that cell junction

regulation is altered in the reactive phenotype as well. This would have implications

for downstream transcriptional regulation via signal transduction pathways like nuclear

factor kappa-light-chain-enhancer of activated B cells (NF-κB). Therefore, a custom

high-rate overpressure simulator was built for in vitro testing using mechanical conditions

based on intracranial pressure measurements in a rat model of blast neurotrauma.

Primary rat astrocytes were exposed to isolated high-rate mechanical stimulation to study

cell junction dynamics in relation to their mechano-activation. First, a time course for

“classical” features of reactivity was devised by evaluation of glial fibrillary acidic protein

(GFAP) and proliferating cell nuclear antigen (PCNA) expression. This was followed by

gene and protein expression for both gap junction (connexins) and anchoring junction

proteins (integrins and cadherins). Signal transduction analysis was carried out by

nuclear localization of two molecules, NF-κB p65 and mitogen-activated protein kinase

(MAPK) p38. Results indicated significant increases in connexin-43 expression and

PCNA first at 24 h post-overpressure (p < 0.05), followed by structural reactivity (via

increased GFAP, p < 0.05) corresponding to increased anchoring junction dynamics

at 48 h post-overpressure (p < 0.05). Moreover, increased phosphorylation of focal

adhesion kinase (FAK) was observed in addition to increased nuclear localization of

both p65 and p38 (p < 0.05) during the period of structural reactivity. To evaluate the

transcriptional activity of p65 in the nucleus, electrophoretic mobility shift assay was

conducted for a binding site on the promoter region for intracellular adhesion molecule-1

(ICAM-1), an antagonist of tight junctions. A significant increase in the interaction of

nuclear proteins with the NF-κB site on the ICAM-1 corresponded to increased gene

and protein expression of ICAM-1 (p < 0.05). Altogether, these results indicate multiple

targets and corresponding signaling pathways which involve cell junction dynamics in

the mechano-activation of astrocytes following high-rate overpressure.
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INTRODUCTION

Traumatic brain injury (TBI) has proven particularly challenging
to treat clinically because of the disparity amongst injury
modes and severities. As such, there are no current FDA-
approved treatments that exist for TBI.Many strategies have been
employed against general hallmarks of cellular injury, such as
inflammation and oxidative stress, however, with little success for
recovery. There is a growing appreciation for the need to better
characterize and understand how brain cells, individually and
collectively, respond to mechanical damage. The pathological
profile associated with mild TBI progression in particular, is quite
complex and remains to be fully elucidated. It is especially critical
to understand the potential differences in cellular and molecular
hallmarks of TBI within the context of the mechanical injury
itself. Importantly, the toxic environment associated with acute
secondary injury acts as the initiator for prolonged neural cell
dysfunction and cognitive deficits. This cascade of early cellular
events offers the greatest promise for therapeutic intervention but
is also highly complex, interdependent, and heterogeneous across
TBI modes (1–5).

Although many of the same features of cellular stress exist
across TBI modes, in vitro models have shown that brain cells
have differential capacity to sense and respond to varied injury
mechanics (6–9). This is important to consider in the context
of high-rate injury scenarios, like blast neurotrauma, in which
little is known about cellular tolerances. Blast neurotrauma
represents a unique injury mode which has a high incidence
rate in military populations exposed to explosive events (10,
11). From a mechanics standpoint, blast injury mechanisms are
still largely controversial (12). Multiple proposed mechanisms
from computational and experimental approaches exist and may
include overpressure, shearing, and compression. These models
have also suggested that shock waves generated by blast produces
complex, high-speed pressure oscillations in brain tissue (13–
15). This is important because hallmarks of cellular injury are
dependent on overpressure mechanics (16–18), and behavioral
aberrations seem to exist even at the lower injury thresholds
(19–22).

One of the prominent secondary features of central nervous
system (CNS) trauma is glial reactivity. Both microglia and
astrocytes play a significant role in mediating the progression of
secondary damage. Astrocytes, in particular, are multi-functional
cells that act in the healthy brain to maintain ionic and
trophic support for neurons as well as serve in active roles
for cognitive functions (23–27). Astrocytes have emerged as a
promising therapeutic target in TBI because of their diverse
roles in metabolic and ionic homeostasis, structural integrity and
tissue repair (28–30). This is especially true when considering
their potential to communicate and adequately respond to
injured neurons in a myriad of CNS insults. Specifically,
impaired neuronal-astrocytic signaling can lead to excitotoxicity,
metabolic failure and neurodegeneration, all of which have
implications for the memory deficits and behavioral outcomes of
TBI (31, 32).

Astrocyte “classical” reactivity is ubiquitously characterized by

altered expression of intermediate filament protein expression,

such as glial fibrillary acidic protein (GFAP), and by increased
proliferation (28, 33). Astrocyte reactivity has been well
characterized following in vivo blast TBI, and most notably
involves classical reactivity with increased GFAP expression in
astrocytes (16, 34–37). Studies in vitro have shown that even in
the absence of other cell types, astrocytes assume an activated
phenotype in response to varied mechanical perturbations (38,
39). There is strong evidence from in vitro studies to elude to a
mechanical basis for disruption and reactivity of astrocytes (6–
8, 40–42). Although blast-relevant (i.e., high-rate) in vitromodels
for brain cell reactivity are mostly recent in development, they
have also shown that brain cells are differentially susceptible to
insult at higher rates (43–45).

Of particular interest in this study is deciphering changes in
regulation and expression of multiple classes of cellular junction
proteins as they may relate to classical features of astrocyte
reactivity following high-rate overpressure. The regulation of
these molecules is important not only for understanding
changes to cell phenotype but also to signal regulation and
cell function. More specifically, there is a need to understand
dynamic changes in astrocyte network communication as a
means for autologous phenotypic activation and regulation
(46). There are three major classes of cell junction proteins:
gap junctions, anchoring junctions, and tight junctions. Gap
junctions, notably connexins (CX), form dimers between cells
to allow for passage of small molecules like ATP and other
secondary messengers. Anchoring junctions form between cells
and with the surrounding extracellular matrix (ECM). These
proteins are necessary for maintaining cell shape and motility
as well as structural integrity of tissue. Adaptor proteins such as
vinculin act to connect the anchoring proteins to the cytoskeleton
and create a force sensing mechanism for the whole cell. Lastly,
tight junctions form between two cell membranes to prevent
the passage of molecules between their spaces. Upon mechano-
stimulation, adhesion signaling is activated via phosphorylation
of a broad class of kinases, including focal adhesion kinase
(FAK), which together direct numerous cell behaviors (47).
Downstream of these adhesion complexes, signals diverge
on several major pathways, including the mitogen-activated
protein kinase (MAPK) and nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) pathways. Together, these
transduction pathways have important influence on astrocyte
phenotype after injury as they broadly modulate cell survival,
activation, migration, and differentiation, among other functions
(46, 48, 49).

Altogether, adhesion and signal transduction molecules have
broad influence on cell function and phenotype and therefore
may be important modulators of astrocyte reactivity and network
function. Motivation for this work has arisen from studies
on other cell types which have extensively shown mechano-
stimulation signaling responses and phenotypic shifts as a
result of transient and prolonged mechanical stress. Although
biochemical signals also activate signal transduction pathways,
several recent studies have explored how adhesion signaling and
mechano-stimulation elicit cellular reactivity in various contexts
(50–53). This coincides with evidence suggesting astrocytes are
responsive to isolated mechanical insult (54, 55). Studies have

Frontiers in Neurology | www.frontiersin.org 2 February 2019 | Volume 10 | Article 99

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Hlavac and VandeVord Junction Dynamics in Astrocyte Activation

suggested a role for mechanobiological cues and changes in the
extracellular environment of injured brain in damage cascades
which may be closely coupled with adhesion properties (56–60).

The following work combined the study of biological cues
related to cellular adhesion with well-documented aspects of
astrocyte reactivity in an effort to understand how isolated
high-rate overpressure may contribute to particular astrocyte
phenotypes. While certain aspects of astrocyte reactivity are
ubiquitous across injury modes, others are highly dependent
on injury severity, insult mechanics, and location within
the brain, among other factors. Therefore, it is possible
that reactive phenotypic features are controlled by complex
and interconnected injury mechanisms. There is a need for
methodologies to study precise mechanisms of cellular responses,
particularly to high-rate insults. This hypothesis was explored
through the use of a novel in vitro high-rate injury device
developed based on a study conducted on intracranial pressure
profiles in rodents exposed blast neurotrauma (13). The device
allows for controlled and repeatable cellular exposure to
compressive-type overpressure in an effort to provide a means
to better understand the mechanical basis for brain cell responses
to high-rate injury.

MATERIALS AND METHODS

Primary Astrocyte Cultures
Brain cortices were isolated from P2 Sprague-Dawley rat pups
in accordance with protocols approved by Virginia Tech’s
Institutional Animal Care and Use Committee. Cortical tissue
was enzymatically digested in 0.05% trypsin for 5–10min and
cultured up to 14 days to allow populations to reach confluence
before initial passage. Seven days after isolation, other resident
cells were mechanically removed from cultures by shaking for
24–48 h. Cells were maintained in Dulbecco’s modified Eagle’s
medium (DMEM/F12, Gibco Cat# 11320) supplemented with
10% fetal bovine serum and 1% antibiotic-antimycotic (Gibco
Cat# 15240-062). Cultures were routinely stainedwith anti-GFAP
(Abcam Cat# ab7260, RRID: AB_305808) to ensure selection of a
homogeneous population of astrocytes for this study (Figure 1).
Prior to testing, astrocyte monolayers were seeded in standard
six-well plates at a density of 1 × 105 cells per well and were
cultured for 6–7 days.

High-Rate Overpressure Simulator (HOS)
for in vitro Mechanical Exposure
Upon reaching confluence, cell cultures were exposed to
isolated, transient overpressure using a custom underwater HOS
(Figure 2). The chamber was designed following a study of
the intracranial pressure profiles associated with primary blast
exposure in rodents in which pressure inside the brain mimicked
and amplified the high-rate compression wave (13). The HOS
is a one-chamber conical device that creates repeatable high-
rate overpressure through an exploding bridge wire technique
(61, 62). This mechanism operates by charging a closed electrical
circuit which contains a small bridge component. The bridge
consists of two angled plates over which a thin wire is tightly
suspended. This portion of the circuit is submerged within the

FIGURE 1 | The study population was GFAP-positive primary rat astrocytes

between passage zero and four. In the image cells were immunolabeled with

GFAP and tagged with FITC. Scale bar is 75µm.

HOS as denoted in Figure 2. Upon discharging the attached
capacitor, current flows through the circuit to the point of
least resistance (at the bridge). The bridge wire is subsequently
vaporized upon high current passage and produces a repeatable
high-rate compression wave. For testing, the chamber was filled
with warmed reverse osmosis water (at 37◦C). Cell plates were
filled completely with culture medium (no added serum) and
sealed with sterile parafilm. The cells were then placed in a
holder such that the well plate was perpendicular to the flow field
upon wave propagation. The HOS was instrumented with a piezo
transducer (Meggitt Cat# 8350C or PCB Cat# 113B21) located in
the wall of the chamber directly adjacent to the cell cultures. Cells
were exposed to an average positive overpressure of 20 psi (138
kPa) with a 1ms positive duration. This system was particularly
advantageous for the study of high-rate overpressure, or blast-like
injuries, because cells were exposed directly to the propagating
compression wave with little to no impedance change as
it was conducted in a completely submerged environment.
Sham samples paralleled each overpressure-exposed plate and
underwent the same preparation and placement in the HOS,
without exposure to overpressure.

RNA and Total Protein Extraction
In order to analyze molecular alterations related to cellular
reactivity, adhesion and signaling, astrocyte RNA and total
protein were collected at time points between 24 and 72 h
after overpressure exposure. After removing culture medium,
Trizol reagent (ThermoFisher Cat# 15596018) was incubated on
samples at room temperature. The remainder of the protocol
was based on manufacturers’ recommendations. Following phase
separation using chloroform and centrifugation, RNA was
isolated and precipitated using propanol, washed with ethanol,
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FIGURE 2 | The HOS is a water-filled chamber which exposes in vitro samples to high-rate overpressure via an exploding bridge wire mechanism. (A) The generator

is composed of four main parts. (i) Capacitor (ii) Circuit mechanism (iii) Wire bridge (inside) (iv) Wire bridge (zoomed) (v) Piezo transducer. (B) The simulated high-rate

overpressure profile is designed to mimic intracranial pressure traces from in vivo blast testing.

dried and resuspended in water. MinElute (Qiagen Cat# 74106)
spin columns were used under manufacturer’s protocol to
purify RNA samples. DNA contamination was removed using
DNase treatment (Promega Cat# M6101) at 37◦C for 30min.
Samples were quantified using spectrophotometry, and those
with 260/280 ratios between 1.8 and 2 were used for further
analysis by polymerase chain reaction (PCR).

Proteins were extracted from the phenol phase using ethanol
and propanol followed by three 20min washes with 0.3M
guanidine hydrochloride in 95% ethanol and one 20min wash
in ethanol. Samples were re-suspended in 1:1 mixture of 1%
sodium dodecyl sulfate solution and 8M urea in 1M Tris-HCl
(pH= 8.0) and protease inhibitor (Sigma-Aldrich Cat# P8340) at
1:100. Protein samples were homogenized for 10 s followed by a
10min incubation at 55◦C to facilitate resuspension. This process
was repeated two more times. Alternatively, some analyses
involved protein isolation by a standard lysis protocol. Instead of
Trizol, cells were lysed in a buffer containing 40mM Tris-HCl
(pH = 7.5), 150mM NaCl, 2.5mM EDTA and 1% Triton X-
100. After scraping cells from plate surface, samples were placed
on ice and shaken vigorously (∼600 rpm) for 30min. Following
centrifugation at 16,000 × g for 20min, the solubilized proteins
were transferred for further applications. Total protein samples
were quantified by BCA assay (Pierce Cat# 23225) for use in
Western blotting experiments described below.

Reverse Transcription Real-Time PCR
(qPCR)
Complementary DNA was synthesized from 1 µg of RNA
by incubation with random hexamers and equimolar (10mM)
deoxynucleotide solution with dATP, dCTP, dGTP, and dTTP.

Reverse transcriptase M-MLV (Invitrogen Cat# 28025-013) was
added to convert RNA to cDNA. A qPCR master mix was
prepared using SYBR green, ultrapure water, and primers at
a final concentration of 0.33M forward and 0.33M reverse.
Primers were designed using PrimerExpress and are listed in
Table 1. Analysis of gene expression was conducted using a delta-
Ct method with glyceraldehyde 3-phosphate dehydrogenase
(GAPDH) as a housekeeping gene. Results are shown as
normalized gene expression relative to the sham average for each
gene (i.e., sham= 1).

Western Blotting
A capillary-based automatic western blotting system called Wes
(Protein Simple) was used for relative protein quantification.
Supplies for the assays were purchased from Protein Simple
and include separation modules (Cat# SW-004), anti-mouse
detection modules (Cat# DM-002) and anti-rabbit detection
modules (Cat# DM-001). Samples were prepared by following the
manufacturer’s protocol. This included a 10min reducing step
at 95◦C with DTT (supplied). Primary antibodies used to probe
total protein samples were anti-GFAP (Abcam Cat# ab7260,
RRID: AB_305808), anti-CX43 (Novus Cat# NB100-91717,
RRID: AB_1216521), anti-N-cadherin (Novus Cat#NBP1-48309,
RRID: AB_10011059), anti-ICAM-1 (Novus Biologicals, NBP2-
22541), anti-proliferating cell nuclear antigen (PCNA, Cell
Signaling Technology Cat# 13110, RRID: AB_2636979), integrin-
β1 (Cell Signaling, D6S1W), phospho-FAK (Y397, Abcam
Cat# ab81298, RRID: AB_1640500), anti-p38 (Cell Signaling
Technology Cat# 8690, RRID: AB_10999090), and anti-p65
(Cell Signaling Technology Cat# 8242, RRID: AB_10859369).
Loading controls used in this study were either anti-β-actin
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TABLE 1 | Gene sequences from PrimerExpress used for qPCR analysis.

Gene Abbrev. Forward sequence Reverse sequence

Connexin-43 CX43 TACAGCGCAGAGCAAAATCG GGCGTGCGAGTTGGAGAT

Intercellular adhesion molecule ICAM-1 GACAGTGCTGTACCATGATCAGAAT CCCGCAATGATCAGTACCAA

Integrin beta-1 Int β1 GAAGAGTCTTGGGACGGATCTG GCCAATGCGGAAGTCTGAA

Vinculin Vinc TCCTGCGCGGGATTACC CAGACGTTCCAGAGAGGATTCC

Glyceraldehyde 3-phosphate dehydrogenase GAPDH TGGCCTTCCGTGTTCCTACC AGCCCAGGATGCCCTTTAGTG

(Sigma-Aldrich Cat# A5441, RRID: AB_476744) or anti-GAPDH
(Novus Cat# NB600-502, RRID: AB_10077682). Secondary
antibodies and other reagents were all supplied through the
manufacturer. Standard settings of 25min for separation time
(at 375V), 5min for blocking, 30min for primary antibody
incubation, and 30min for secondary antibody incubation were
maintained for all experiments. Prior to experimentation, each
antibody was optimized with samples to ensure a dynamic
linear range for signals. Compass for SW software v.3.1
(Protein Simple) was used to quantify protein levels from area
measurements derived from electropherograms at the same
exposure time (5 or 15 s depending on the protein target) across
all data plates. The software calculates the area under the curve
using standard peak fits for all samples (Figure S1). Target
proteins were first normalized to their respective loading controls
and then to the overall sham average. Results are displayed
as normalized expression relative to sham averages. It should
be noted that the bands shown in the figures are digitized,
clipped forms of these electropherograms which are meant to be
representative of how the proteins traveled through the capillary
system on the Wes and for qualitative visual comparison.

3-(4,5-Dimethylthiazol-2-yl)-2,5-
Diphenyltetrazolium Bromide (MTT)
Assay
Following in vitro overpressure exposure, astrocytes were
assessed for metabolic (NADPH-dependent) activity by MTT
assay. At 24 and 48 h post-overpressure, cell media was changed
and supplemented with tetrazolium dye (Sigma-Aldrich Cat#
M2128) at a final concentration of 0.25 mg/mL. Cultures were
incubated at 37◦C for 3 h with the tetrazolium before being
dissolved in dimethyl sulfoxide. Samples were then transferred in
triplicate to a 96-well plate and absorbance was read at 570 and
650 nm (background). Percent activity was calculated based on
average optical density measurements for the sham samples.

Nuclear Protein Extraction
Nuclear proteins were isolated using a commercially available
kit from Epigentek (Cat# OP-0002-1). Manufacturer’s protocols
were followed. Briefly, cells were trypsinized and centrifuged
for 5min at 1,000 rpm. Cell pellets were incubated with lysis
buffer NE1 (kit component) for 10min on ice. Following, samples
were vortexed at 11,000 × g for 1min, with the supernatant
containing the cytoplasmic proteins. The nuclear protein pellet
was then incubated with NE2 buffer (kit) and repeatedly vortexed

to re-solubilize. Proteins were quantified using a microBCA assay
(Pierce Cat# 23235) for use in Western blotting experiments.

Electrophoretic Mobility Shift Assay
(EMSA)
EMSA is a gel-based assay for the study of DNA-protein
interactions. Nuclear proteins were extracted as described above
from samples collected at 48 h post-exposure or sham treatment.
Oligonucleotides were constructed based on the NF-κB binding
site at −218 on the rat ICAM-1 promoter. The 45-mer used for
this study began at −236 and contained an NF-κB consensus
sequence (5′-GGAAATTCC-3′). Biotinylated and unlabeled
sequences were purchased from Integrated DNA Technologies.
Reactions were carried out in accordance with manufacturer’s
protocol for LightShift Chemiluminescent EMSA kit (Pierce Cat#
20148). Sample preparation included recommended volumes
of binding buffer, poly (dI·dC), 50% glycerol, 1% NP-40, and
100mM MgCl2. Biotinylated DNA concentrations (200 nmol)
were optimized to ensure a linear region for reaction detection.
Nuclear proteins were diluted to equal total concentration with
a final reaction concentration of 120 ug/mL in DNA mixtures.
Samples were run on 6% DNA retarding gels (Invitrogen Cat#
EC6365BOX) and transferred onto 0.45µm nylon membranes
(Biodyne Cat# 77016) for detection on a FujiFilm LAS-3000
CCD camera. In order to determine specificity of binding, several
experiments were conducted with unlabeled sequence in excess to
ensure changes chemiluminescence.

Immunohistochemistry
Cell samples were fixed with ice-cold methanol for 7min at
−20◦C. Following fixation, samples were permeabilized for
15min with PBS containing 0.5% Triton X-100, followed by
2min with PBS containing 0.01% Tween-20. Hydrochloric acid
was used to depurinate samples for 30min. Next, samples were
incubated with PBS containing 0.01% Tween-20 for 10min and
then were blocked with 10% bovine serum albumin for 1 h.
Overnight incubation with 5-methylcytosine (Epigentek Cat#
A-1014-100) was conducted at 4◦C. Secondary antibody was
incubated on the samples for 1.5 h. Images were obtained using a
standard fluorescent microscope (Zeiss) with a 20× objective.

Statistics
Statistical comparisons were conducted between groups using
JMP software v13.0.0 (SAS, Virginia Tech). ANOVA was used
to analyze significant differences amongst groups, followed
by Student’s t-test for individual group comparisons. The
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assumptions for normality and homoscedasticity were confirmed
by Shapiro-Wilk and Levene’s tests, respectively. In the event
that data was not normal, a logarithmic transformation was
performed to conduct statistical comparisons (GFAP data,
Figure 2). For sample sets with unequal variances, a Welch’s
t-test was performed (CX43 data, Figure 5 and nuclear data,
Figure 6B). Statistical outliers were determined using residual
analysis, and a p< 0.05 was considered significant. Total number
of replicates are denoted as the variable “n.” These represent
individual replicates. Biological replicates were considered as
blocks because they were seeded as entire six-well plates of
overpressure/sham tests and were from the same line of cells
(from the same animal and passage number). Three to four
sample blocks were used per time point depending on application
with three to four individual replicates from each block.

RESULTS

High-Rate Mechanical Insult Induces
Multiple Hallmarks of Astrocyte Reactivity
The results herein focus astrocyte reactivity to the mechanical
perturbation of a high-rate compression wave in the absence
of other cellular signals. The first objective was to understand
the extent and time course of reactivity induced by mechano-
activation of astrocytes. Samples were exposed to overpressure
parameters summarized in Table 2. The target overpressure
mimics intracranial pressures traces based on a rodent model
of low severity blast neurotrauma (13, 16, 36). To assess the
reactive phenotype, protein levels for PCNA and GFAP were
at 24, 48, and 72 h post-exposure by Western blot analysis.
Figure 3 shows that astrocytes assumed a proliferative/reparative
phenotype as measured by PCNA at 24 h post-exposure which
was sustained throughout the final 72 h time point assessed. Each
overpressure-exposed group was statistically different from its
respective sham at the same time point (p < 0.05). It should
be noted that despite increased PCNA, there were no detectable
changes in MTT metabolism until 48 h at which point there
was a significant increase in enzymatic activity (p = 0.0005;
Figure 4) Otherwise, GFAP expression had a delayed increase
at 48 h post high-rate overpressure exposure. These results are
consistent with a previous study on gene expression of GFAP in
C6 glioma cells exposed to the same mechanics (62). Increased
GFAP in conjunction with proliferative/reparative potential will
be referred to as “classical reactivity.” These data establish a
time course at which to evaluate the molecular phenotype of
mechanically-activated astrocytes using an in vitro high-rate
overpressuremodel. This transition in phenotype which occurred
between the 24 and 48 h time points will be the focus for the
subsequent analyses.

Cell Junction Molecules Become
Dysregulated in Reactive Astrocytes
Several classes of junctional molecules were assessed for
this study. Gene expression analysis was conducted for one
gap junctional target (CX43), one anchoring junction target
(integrin-β1), and one intermediate protein (vinculin). PCR

TABLE 2 | Summary of shock wave parameters.

Avg ± Std dev

Peak overpressure [psi] 19.9 ± 5.1

Positive peak duration [ms] 0.95 ± 0.28

Total tests, n = 25

FIGURE 3 | Time course analysis for normalized protein expression of

classical reactivity markers. GFAP was significantly elevated in the

overpressure group at 48 h while PCNA was increased at 24, 48, and 72 h

compared to their respective shams. *p < 0.05, Data are represented as mean

± SEM, n = 8–13/group.

FIGURE 4 | Normalized MTT metabolic activity. A significant change was

observed at 48 h after overpressure exposure as compared to sham.

*p < 0.05, Data are represented as mean ± SEM, n = 8–9/group.

results determined that gap-junctional CX43 was upregulated
compared to sham at 24 h (p = 0.028), prior to the anchoring
junction protein integrin-β1 (Figure 5A). As a gap junctional
protein, CX43 mainly functions as a signaling protein for
small molecule transport. Integrin proteins are associated
with cell-matrix and cell-cell contact and are coupled with
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cytoskeletal elements. Integrin-β1 was upregulated as compared
to sham in conjunction with structural reactivity at 48 h
(p = 0.025). Conversely there was no significant difference
in expression of the adaptor protein vinculin (p = 0.092 at
48 h). Subsequent protein analysis by Western blot confirmed
that increased gene expression of CX43 at 24 h (p = 0.035,
Figure 5B) and integrin-β1 at 48 h (p = 0.029, Figure 5C)
corresponded to increased protein translation after overpressure.
Moreover, another anchoring junction protein, N-cadherin, was
concurrently increased at 48 h relative to sham as assessed by
Western blot (p= 0.047, Figure 5C).

Astrocytes Undergo Delayed Signal
Transduction in Response to High-Rate
Insult
Activation of FAK by adhesion molecules and other membrane-

bound proteins commonly involves phosphorylation of the
molecule at tyrosine-397 (63). Results indicated that p-FAK

levels were decreased at 24 h (p = 0.037) and increased at

48 h (p = 0.002) post-overpressure relative to sham (Figure 6A).
Increased p-FAK corresponded to the time point where both

features of classical reactivity were observed. These results
implicate that this reactive profile may also be linked to dynamic
changes at the membrane-level. Additionally, considering the
downstream effects of FAK signaling will lead to further insights.
Nuclear localization of both p38 and p65 followed a similar
pattern as the FAK activation profile. A near-significant and
significant decrease in localization was observed at 24 h for p38
(p = 0.056) and p65 (p = 0.020), respectively (Figure 6B).
This response was shifted to a significant increase in nuclear

localization for both p38 (p = 0.015) and p65 (p = 0.049) at 48 h
following insult. Together, these results indicate that signaling

transduction may be augmented in conjunction with increased
FAK activation. The results suggest a potential pathway to relate
astrocyte phenotype to functional adhesion alterations.

NF-κB p65 Has an Increased Binding
Propensity for the ICAM-1 Gene in
Conjunction With Upregulated ICAM-1
Expression in Reactive Astrocytes
ICAM-1 is an antagonist for tight junction proteins and is
expressed largely for inflammatory potentiation. Its transcription
is regulated by the NF-κB pathway. To assess the potential
for NF-κB localization to influence adhesion outcomes in
reactive astrocytes, EMSAs were performed with nuclear extracts
incubated with NF-κB-binding sequences on the ICAM-1
promoter. Optimization experiments were conducted with
both biotinylated and unlabeled DNA to determine binding
specificity for the given sequence (Figure 7A). A significant
increase in association of nuclear proteins with the NF-κB
binding sequence was observed following mechanical insult as
compared to sham at 48 h (p = 0.013, Figure 7B). Subsequent
analyses of ICAM-1 gene and protein levels were conducted
to determine expression patterns. ICAM-1 gene expression
was significantly increased at 48 h post-exposure as compared
to sham (p = 0.035, Figure 8A) in conjunction with EMSA

results. Gene expression was not previously increased at the
24 h time point, indicating a specificity for this time point and
phenotype. The increased gene expression translated to increased
protein expression at 48 h as well (p = 0.032, Figure 8B).
These results suggest that the localized p65 had increased
binding affinity for the ICAM-1 promoter in reactive astrocytes
and therefore may be an important regulator of the adhesion
alterations observed.

Increased Global DNA Methylation Status
Precedes Delayed Astrocyte Reactivity
DNA methylation is an epigenetic process by which cellular
transcription can be globally influenced. At 24 h, significant
hypermethylation was observed (increased by 5.04%), indicating
potential gene repression (p = 0.040) as shown in Figure 9. This
response was ameliorated by 48 h, at which point no significant
differences were observed between groups. This methylation
pattern corresponded to both the shifts in MAPK and NF-κB
localization as well as cellular phenotype that occur across
this timeframe.

DISCUSSION

From a therapeutic standpoint, astrocytes have become an
important focus in neurotrauma research because of their
ability to influence many of these aspects of secondary injury
sequelae (29, 64, 65). Results from the study indicate that the
HOS was capable of generating a reactive response in cultured
astrocytes that is phenotypically comparable to in vivo findings.
Primary astrocytes assumed a classically-reactive response which
corresponded to alterations in several classes of junctional
molecules, increased PCNA expression, and mechano-activation
through p-FAK. The time course of study suggested differential
regulation of proliferation/repair as compared to structural
reactivity in the astrocytes. PCNA is an ideal target for
understanding reparative potential as it directly recruits and
interacts with many DNA replication proteins (66). It has been
used previously as a marker for proliferating cells, including
astrocytes (67, 68). MTT results coincided PCNA expression as
a significant increase in metabolic conversion was observed at
48 h. Together, these results support the assumption that isolated
high-rate insult has the potential to initiate increased, although
mild, reparative potential, and/or proliferation in astrocytes. It is
believed that early stages of astrocyte proliferation can distinctly
extend into a highly proliferative, scar-forming phenotype later
after insult (69–71). Thus, better understanding of the onset
of these reactive features is necessary to modulate astrocyte
responses in TBI.

Additionally, molecular instigators of reactivity include broad
signaling, adhesion, and structural aberrations (29, 46, 69),
which are largely uncharacterized in high-rate TBI. CX43 is
one such junctional molecule which participates in normal
and pathological ionic and metabolite buffering as well as
secondary messenger passage. It is a mechanosensitive gap
junction protein with a short half-life (72–74), which may
explain its early upregulation in exposed cells. CX43 is
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FIGURE 5 | Gene and protein expression for cell junction targets. (A) Gene expression analysis showed increased gap junction (CX43) regulation at 24 h after

high-rate overpressure and increased anchoring junction (integrin) regulation at 48 h as compared to sham. No changes were observed in vinculin mRNA expression.

(B) Western blot results confirmed increased protein levels of CX43 at 24 h after overpressure as compared to sham. (C) Anchoring junction proteins integrin-β1 and

N-cadherin were significantly elevated as compared to sham at 48 h after overpressure. *p < 0.05, Data are represented as mean ± SEM, gene: n = 7–9/group,

protein: n = 11–12/group.

specifically expressed between astrocytes and is imperative
for network communication. From in vivo experimentation,
reactive astrocytes can display upregulated CX43 in a specific
manner after TBI (75). Astrocytic CX43 has both protective
and detrimental consequences after CNS insult. CX43 is
mainly responsible for clearance of excitotoxic and damaging
extracellular molecules after insult but also contributes to the
spread of harmful signals (76–78). Evidence for significant
coupling of CX43 expression with GFAP+ astrocytes explains
one potential mechanism by which reactivity may be linked to
junctional regulation (79). However, these protein networks are
not physically connected and thus can respond independently in
the case of injury. In general, CX43-mediated shuttling involves
many types of signaling, including NF-κB activation and pro-
inflammatory regulation in various pathologies (80–82) as well as

regulating proliferation in other cells. Evidence exists to suggest
that CX43 can lead to increased cell death after trauma because of
the spread of damaging molecules (76, 78). Moreover, studies in
cancer cells suggest that CX43 controls and inhibits proliferation
(83, 84) and thus may be important to consider in the metabolic
profiles observed.

Cellular adhesion to the external environment and to
surrounding cells is another autologous regulator of mechanical
stimulation within networks of cells like astrocytes. Anchoring
junctions are a major group of tethering proteins that
interconnect the cytoskeleton to the extracellular space. The two
classes of anchoring junctions assessed in this study include
cadherins and integrins. Integrins proteins form heterodimers
that bind to the extracellular matrix and other extracellular
adhesion molecules (85). Integrins are dynamically regulated
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FIGURE 6 | Western blot analysis for whole cell and nuclear signal transduction proteins. (A) Phosphorylated FAK (Y397) was significantly decreased at 24 h and

significantly increased at 48 h as compared to sham. (B) Nuclear localization of corresponding signal transduction molecules, p38, and p65, were decreased at 24 h

and increased at 48 h as compared to sham. *p < 0.05, #p = 0.056, Data are represented as mean ± SEM, whole cell: n = 9–10/group; nuclear: n = 7–9/group.

in cells to control alterations in migration, proliferation, and
adhesion (85, 86). They are important mechanosensors for
normal physiological functions but have also been implicated
in cellular outcomes of various CNS pathologies (57, 87–
90). Integrins have been minimally explored in TBI and yet
possess the potential to widely influence cellular phenotype.
More specifically, integrin-β1 expression is required for astrocyte
migration, stability and healing potential (88, 91–93). A
few studies have implied differential expression of integrin
proteins by astrocytes following mechanical trauma (94, 95).
Results of this study indicate a basis for mechano-regulation
of anchoring junction proteins following isolated high-rate
overpressure, thus implicating them in both simple and complex
cellular architectures.

This study identified that integrin-β1 and N-cadherin
were upregulated in conjunction with increased structural
(intermediate filament) protein expression in astrocytes. This
result is supported by the fact that anchoring junctions form
physical, mechano-sensing systems with intermediate filaments,
which are necessary for stress modulation (96). One study
showed a functional relationship between integrin-β1expression
in astrocytes and structural reactivity apart from proliferation

(97). Other studies indicate that integrin-β1 also directly interacts
with the intermediate filament vimentin and is important for
mediating proliferation in conjunction with GFAP (98, 99). There
is evidence for a similar role for N-cadherin in modulating the
reactive astrocyte response after traumatic insult as well (100).
Together, these results indicate multiple mechanisms by which
astrocyte networks may become mechano-activated in response
to their altered adhesion state. It should be noted that no changes
were observed in gene expression of the intermediate adaptor
protein vinculin. Vinculin is widely expressed as part of the
intermediate complex between the cytoskeleton and anchoring
junctions. In 2D cell culture, decreased vinculin expression would
support development of the migratory phenotype in cells (101).
Studies have shown that expression profiles of integrin-β1 and
intermediate filaments tend to be distinct in proliferating cells as
compared to migrating (98).

The second portion of this study was directed at identifying
autologous signal transduction activation in reactive astrocytes
relative to mechano-stimulation alone. Cellular signaling
mechanisms instigated by growth factor and cytokine receptors
are known to influence astrocyte outcomes and often involve
neuroinflammation and signals from damaged neurons
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FIGURE 7 | EMSA results for binding efficiency of nuclear proteins to ICAM-1 promoter sequence. (A) Assay optimization was conducted for specificity of protein

binding to the NF-κB binding sequence of interest. The same sample was incubated with and without unlabeled DNA sequence to ensure competitive binding. The

first lane contains both labeled and unlabeled DNA while the second contains only labeled. (B) Representative DNA: protein shifts for sham and overpressure groups

are shown. Quantification of bound to free DNA determined that overpressure induced a significantly higher association of nuclear proteins with the NF-κB binding site

on the ICAM-1 promoter. *p < 0.05, Data are represented as mean ± SEM, n = 6–8/group.

FIGURE 8 | Normalized gene and protein expression of ICAM-1. (A) qPCR results indicated no change in mRNA expression of ICAM-1 at 24 h post-overpressure but

a significant increase at 48 h as compared to sham. (B) Subsequent Western blot results confirmed elevated ICAM-1 protein levels at 48 h compared to sham.

*p < 0.05, Data are represented as mean ± SEM, gene: n = 7–9/group, protein: n = 8–9/group.

FIGURE 9 | Global DNA methylation as assessed by fluorescent labeling of 5-methylcytosine. Hypermethylation occurred at 24 h post-overpressure exposure as

compared to sham. No changes in methylation were observed at 48 h. *p < 0.05, Data are represented as mean ± SEM, n = 10–12/group.
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FIGURE 10 | A simplistic overview of potential signaling feedback mechanisms for the regulation of junctional changes and structural reactivity in mechano-activated

astrocytes. Multiple of these targets coincided with features of classical reactivity observed in this model of high-rate overpressure exposure.

(5, 28, 46). However, cell adhesion is another important
component to signal transduction and may represent a
critical constituent by which autologous signaling in astrocyte
networks contributes to cell phenotype. In the complex TBI
pathophysiology it is likely that all of these initiators contribute
to astrocyte responses. Connexins, cadherins and integrins
can each directly or indirectly influence ubiquitous signal
transduction like MAPK and NF-κB activity via initiator proteins
such as FAK (102–104). Phosphorylation of FAK can be the result
of mechanical stimulation or altered cell junction properties.
In the brain, FAK affects glial cell morphology and adhesion
in physiological and pathological environments (105–109).
One study indicated increased phosphorylated FAK (Y397)
levels in reactive astrocytes following TBI (109), while another
showed that inhibition of FAK phosphorylation affected reactive
astrocyte migration (110). FAK is associated with initiation
of adhesion signaling transduction pathways and can have a
reciprocal influence on the expression and function of junctional
proteins as well (111, 112). This protein kinase is phosphorylated
at tyrosine-397 when the pathway is activated by integrin
and other cellular adhesion stimulation at the membrane
level. In response to mechanical stress, phosphorylation of

FAK can often be observed very rapidly as a reaction to cell
shearing (113, 114). Additionally, multiple models of the CNS
insult have implicated FAK in gliosis and chronic astrocyte
pathology (102, 115, 116).

Moreover, there is significant motivation to understand
the molecular signature which relates initiation of dynamical
adhesion signaling to downstream transduction and specific
influences on gene transcription and phenotype (Figure 10).
Phosphorylation of FAK can lead to subsequent activation of
NF-κB and MAPK pathways, both of which influence shifts in
cellular phenotype andmay be important mediators in mechano-
activation of astrocytes by high-rate insult. No previous studies
have isolated this mechanism in astrocytes, however many
have studied the mechano-regulation of NF-κB and MAPK in
osteocytes, cardiomyocytes, and other uniquely activated cells
(113, 117–120). Results indicated increased phosphorylation
of FAK in conjunction with significantly increased nuclear
localization of transcription-related molecules, p38 and p65.
Upon nuclear localization, MAPK p38 can activate transcription
factors, such as NF-κB p65. NF-κB p65 is a transcription factor
with known binding sites on multiple adhesion genes, including
ICAM-1 (121, 122).
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The data showed that increased localization of p65 was
accompanied by increased affinity of the transcription factor
for ICAM-1 promoter, suggesting a potential pathway for
regulation of adhesion molecules in reactive astrocytes. ICAM-
1 is a glycoprotein that acts as an antagonist for another
class of junction proteins, tight junctions. Astrocytes express
ICAM-1 for pro-inflammatory potentiation as well as binding
to integrin proteins on surrounding infiltrating cells (123, 124).
A recent study by Lutton et al showed that increased ICAM-1
expression in a mouse cortical impact model was associated
with vascular endothelial cells and activated glial cells, likely
astrocytes (125). The study also inhibited ICAM-1 expression to
decrease oxidative stress, blood brain barrier permeability and
microglial co-activation. Other studies have reported ICAM-1
associated with region-specific glial activation in various CNS
pathologies (126, 127), however, this is the first report that links
astrocytic ICAM-1 regulation to high-rate mechanical insult. The
NF-κB pathway is important in mediating neuroinflammation,
structural phenotype and cell survival. Additionally, MAPK and
NF-κB molecules influence the activation of other transcription
factors in the nucleus for broader impacts on cellular phenotype.
Co-activation of transcription factors may provide the molecular
link between structural reactivity, proliferative phenotype, and
adhesion-mediated dynamics. Future studies should exploit these
pathways to understand their specific contributions to outcomes
related to astrocyte reactivity.

Lastly, signal transduction mechanisms can influence and are
influenced by DNA methylation status. Hypermethylation status
corresponds to patterns of gene repression, while the opposite is
true for hypomethylation. Previously, DNA methylation changes
have been observed in blast neurotrauma (17, 128). Results of this
study suggest that DNA hypermethylation may be an important
mediator in the delay of structural reactivity responses observed
here and in in vivo studies of blast neurotrauma. It is also
possible that CX43 overexpression and DNA methylation may
co-exist to mediate proliferative responses andmay be potentially
linked to metabolic and redox state of the cells, but much more
work is needed to understand this relationship. Future work will
exploit methods to understand more specific DNA methylation
patterns related to the features of reactivity obtained in
this study.

It is necessary to consider certain limitations of this model.
The presented in vitro model is a 2D, astrocyte-only system
and therefore may not recapitulate certain aspects of cellular
focal adhesion as found in the native brain tissue. This will be
especially important to consider the non-mechanical instigators
of astrocyte reactivity, notably inflammatory andmetabolic stress
mechanisms, and how they interact with mechanically-derived
signals to cause persistent activation. Additionally, adhesion
organization and activation of signaling molecules such as
FAK are different in 3D as compared to 2D (129, 130). This
relationship should be considered in future studies evaluating
expression of these proteins by cells within a heterogeneous
ECM. Cellular adhesion formation and migration is spatially
dependent on extracellular architecture. However, the purpose of
this study was to establish the ability of high-rate overpressure
to induce both classical reactivity and dysregulated expression

of adhesion molecules simultaneously. Further studies will be
necessary to understand the functionality of these adhesion
proteins as this work only assesses their regulation and expression
profiles in reactive astrocytes. For instance, in 2D, many of
the functions for integrin proteins are conserved, including
anchorage and polarity, but 3D studies will be necessary to
assess focal adhesion formation (131). Secondly, the time course
and persistence of astrocyte activation may be influenced by
the presence of other cells and environmental stimuli (28, 46).
Future studies should also address responses in specific astrocyte
populations within the brain (i.e., hippocampal) to assess changes
in behaviors associated with these particular areas.

This study advances understanding of primary astrocyte
response to high-rate insult and identifies multiple molecular
targets for aberrant astrocyte adhesion. The purpose of this study
was to develop an in vitro model to characterize primary cell
response to high-rate compressive overpressure. In addition,
it creates a platform to further study adhesion dynamics in
advanced 3D cell culture models. Altogether, the presented
results have provided progress toward both fundamental
understanding of initiating mechanisms for astrocyte reactivity
but also into novel considerations for therapeutic modulation
of astrocytes to improve TBI outcomes. This correlative
study established specific profiles of adhesion/junctional protein
regulation which correspond to aspects of astrocyte reactivity.
Moreover, results have identified novel targets at multiple levels
within signaling mechanisms for astrocyte mechano-activation.
Future studies will specifically intervene in pathways associated
with integrin and other cell adhesion molecules to determine
their influences on astrocyte network function with the goal of
interventional modulation of reactive astrocytes for improved
brain repair.
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