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Repetitive focal muscle vibration (rMV) is known to promote neural plasticity and

long-lasting motor recovery in chronic stroke patients. Those structural and functional

changes within the motor network underlying motor recovery occur in the very first hours

after stroke. Nonetheless, to our knowledge, no rMV-based studies have been carried out

in acute stroke patients so far, and the clinical benefit of rMV in this phase of stroke is yet

to be determined. The aim of this randomized double-blind sham-controlled study is to

investigate the short-term effect of rMV on motor recovery in acute stroke patients. Out

of 22 acute stroke patients, 10 were treated with the rMV (vibration group–VG), while

12 underwent the sham treatment (control group–CG). Both treatments were carried

out for 3 consecutive days, starting within 72 h of stroke onset; each daily session

consisted of three 10-min treatments (for each treated limb), interspersed with a 1-min

interval. rMV was delivered using a specific device (Cro®System, NEMOCO srl, Italy).

The transducer was applied perpendicular to the target muscle’s belly, near its distal

tendon insertion, generating a 0.2–0.5mm peak-to-peak sinusoidal displacement at

a frequency of 100Hz. All participants also underwent a daily standard rehabilitation

program. The study protocol underwent local ethics committee approval (ClinicalTrial.gov

NCT03697525) and written informed consent was obtained from all of the participants.

With regard to the different pre-treatment clinical statuses, VG patients showed significant

clinical improvement with respect to CG-treated patients among the NIHSS (p < 0.001),

Fugl-Meyer (p = 0.001), and Motricity Index (p < 0.001) scores. In addition, when the

upper and lower limb scales scores were compared between the two groups, VG patients

were found to have a better clinical improvement at all the clinical end points. This study

provides the first evidence that rMV is able to improve the motor outcome in a cohort

of acute stroke patients, regardless of the pretreatment clinical status. Being a safe and

well-tolerated intervention, which is easy to perform at the bedside, rMV may represent a

valid complementary non-pharmacological therapy to promote motor recovery in acute

stroke patients.

Keywords: stroke, acute stroke, focal muscle vibration, motor recovery, stroke rehabilitation, neural plasticity

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://www.frontiersin.org/journals/neurology#editorial-board
https://doi.org/10.3389/fneur.2019.00115
http://crossmark.crossref.org/dialog/?doi=10.3389/fneur.2019.00115&domain=pdf&date_stamp=2019-02-19
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:massimiliano.toscano@uniroma1.it
https://doi.org/10.3389/fneur.2019.00115
https://www.frontiersin.org/articles/10.3389/fneur.2019.00115/full
http://loop.frontiersin.org/people/519046/overview
http://loop.frontiersin.org/people/466263/overview
http://loop.frontiersin.org/people/609943/overview
http://loop.frontiersin.org/people/639139/overview
http://loop.frontiersin.org/people/631287/overview
http://loop.frontiersin.org/people/132715/overview
http://loop.frontiersin.org/people/453180/overview
http://loop.frontiersin.org/people/167521/overview


Toscano et al. Focal Muscle Vibration in Acute Stroke

INTRODUCTION

Stroke is the leading cause of long-term disability (1), mostly
because of incomplete functional recovery post-stroke with more
than half of stroke survivors aged 65 and over exhibiting reduced
mobility (2).

Furthermore, it remains unclear which is the most effective
training protocol for rehabilitation of a paretic limb, as
do the factors underlying recovery of motor function.
A growing body of evidence from neuroimaging (3) and
neurophysiological studies (4) indicate that a focal brain lesion
resulting from stroke may trigger structural and functional
changes in perilesional and remote brain regions. In fact,
a stroke lesion can directly damage the motor pathways
as well as alter the balance of excitatory and inhibitory
influences within the motor network, both in the affected
and unaffected hemisphere. Therefore, a modulation of
this network, by acting on brain plasticity and network
relearning, may be crucial for the recovery of motor function
after stroke.

From this point of view, one of the most effective
modulators of cortical motor and somatosensory structures
is repeated sensory input (5). Muscle vibration is a
strong proprioceptive stimulus, which, at low amplitudes,
preferentially produces Ia fiber afferent input and reaches
both the SI and M1 directly. The specific pattern of direct
connections linking SI and M1 cortices may provide
the anatomical substrate for the role muscle vibration
plays in reorganizing the motor and somatosensory
cortices (6–9).

In particular, a repetitive focal muscle vibration (rMV)
at a fixed low frequency of 100Hz rMV, applied during a
voluntary contraction, may induce both prolonged changes in the
excitatory/inhibitory state of the primary motor cortex in healthy
subjects (10), and long-term changes of motor performance in
patients as well (11).

A recent study using transcranial magnetic stimulation
showed that rMV therapy, combined with physiotherapy, helped
to reduce abnormalities of both the corticospinal excitability and
the intracortical inhibitory systems in the damaged hemisphere
of chronic stroke patients (12). Interestingly, the clinical and
neurophysiological changes lasted for at least 2 weeks after
the end of rMV treatment and were related to a decrease in
spasticity and increase in motor function. In chronic stroke
patients, two different studies demonstrated that rMV treatment
may improve the functional ability of the upper (13) and lower
limb (14).

The structural and functional changes within the motor
network that underlie motor recovery occur in the immediate
few hours after stroke; thus, it seems to be crucial to understand
if it is possible to act on them during the acute phase of stroke,
in order to improve stroke rehabilitation. Very few studies have
been carried out on acute stroke patients so far, and none of those
used rMV in the acute stage of stroke.

The aim of the present randomized double-blind sham-
controlled study is to investigate the effects of rMV on motor
recovery in acute stroke patients.

MATERIALS AND METHODS

Subjects
We prospectively examined consecutive patients admitted to our
Stroke Unit for ischemic or hemorrhagic stroke within 72 h from
symptom onset. Inclusion criteria were: age>18, first ever stroke
detected by Magnetic Resonance Imaging (MRI) or Computer
Tomography (CT) scan, motor deficit of the upper and/or lower
limb; ability to perform at least a minimal isometric voluntary
contraction of the affected limb. We excluded patients with
TIA, or rapidly improving stroke, cerebral venous thrombosis or
presenting with aphasia, neglect, or apraxia. Those patients who
were on drugs active at the central nervous system level at the
time of the recruitment have been excluded as well.

The study protocol underwent local ethics committee
approval (“Policlinico Umberto I of Rome” Ethics committee);
the clinical trial was registered in the ClinicalTrial.gov database
(NCT03697525). Written informed consent was obtained from
all of the participants. The study was conducted in conformity
with the ethical standard, according to the Declaration
of Helsinki.

Experimental Design
This is a prospective randomized double-blind sham-controlled
study. After enrollment (T-0), patients were randomly placed into
the vibration group (VG) or the control group (CG), by using
a computer-generated randomization list. VG patients received
rMV treatment while those of CG received the sham one. Both
treatments were carried out during the 1st, 2nd, and 3rd day
after enrollment. Physio kinesitherapy (PT) was carried out in
all patients every day, starting soon after T-0 clinical evaluation.
Patients were re-evaluated after 4 ± 1 days (T-1), at the end of
treatment (see Figure 1 for the study flow chart).

Clinical Evaluation
Upon admission, all participants’ demographic details and
medical history were recorded. All patients underwent a clinical
examination, performed at all time-points by an experienced
investigator, blinded to the group assignment and different from
the recruiting one. Clinical evaluation consisted of stroke severity
evaluation, by means of NIH Stroke Scale (15); motor and
functional limbs abilities were evaluated by using both the Fugl-
Meyer scale (16–18), and the Motricity Index (19); spasticity
was assessed with Ashworth scale, modified by Bohannon and
Smith (20).

Physiotherapy (PT)
All participants underwent a 1-h daily rehabilitation session (for
each treated limb), which included passive/active movements,
mobilization, and proprioceptive neuromuscular facilitation of
the affected limb.

Before treatment, the physical therapist was instructed about
duration, frequency, and content of therapy in order to ensure
uniformity in treatment procedures and blinded to patients’
treatment allocation.
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FIGURE 1 | Study flow chart.

Repetitive Focal Muscle Vibration (rMV)
rMV was delivered using a specific device that consisted of
an electromechanical transducer, a mechanical support, and an
electronic control device (Cro R©System, NEMOCO srl, Italy).
A mechanical arm permitted the transducer to be placed on
the treatment site and to deliver the vibration at bedside, with
patients placed supine; the support was rigidly anchored to the
floor to guarantee good mechanical contact with tissue.

The transducer was applied perpendicular to the target
muscle’s belly (flexor carpi radialis and the biceps brachii for
the upper limb, and/or over the rectus femoris for the lower
limb treatment), near its distal tendon insertion. It generated
a sinusoidal displacement of 0.2–0.5mm (peak to peak); this
parameter were used since small vibration amplitudes are
effective for stimulating Ia afferents and for avoiding tonic
vibration reflex as well (21, 22). Considering that Ia afferents can
fire synchronously with vibration frequencies up to 80–120Hz
(23, 24), vibration characteristics were set to 100Hz.

The rMV treatment was delivered for 3 consecutive days by
two trained physiatrists; each daily session consisted of three 10-
min vibration treatment (for each treated limb), separated with a
1-min interval. Otherwise, sham rMV was carried by positioning
the vibrator close to the tendon but without touching the skin.
In this condition, patients were only subject to the faint buzzing
sound of the vibrator (13). In those patients who had a motor
deficit of both the upper and the lower limb, the interventions
(i.e., rMV and sham) were applied separately and in succession
(1-min interval) to both limbs.

To increase response to vibration, during both the treatments
(i.e., rMV and sham), patients were required to make a mild

voluntary contraction (22, 25) of the treated muscle. On the
other hand, during the intervals, patients were asked to relax
the muscle.

Statistical Analysis
We assessed the normality of the distributions with the
Shapiro-Wilk Normality Test. According to the result of
normality analysis, Student’s T-test for paired samples or
Wilcoxon test for paired samples were used to analyze
clinical and neuroradiological difference between the two
groups (i.e., VG e CG).

To investigate differences over time (from T-0 to T-1) between
the two groups concerning clinical end-points (i.e. NIHSS, Fugl-
Meyer, Motricity Index, and Ashworth scales score), we adopted
two different analyses: the analysis of variance (ANOVA) allowed
to compare the two groups in terms of clinical improvement
expressed as difference between T-1 and T-0 scales score (1T-
1-T-0). Moreover, by means of the analysis of variance for
repeated measures (ANOVA-RM) with Tukey post-hoc analysis,
we also analyzed clinical improvement expressed as over time
repeated measures.

The P-value level of significance throughout the statistical
analysis was set at 0.05, considering Bonferroni correction.
Statistical analysis was conducted with the SPSS software package
for Windows, release 22.0.

RESULTS

We recruited 22 patients (14 males, mean age 67 ± 13 years) in
the acute phase of stroke (mean time from stroke: 43.9± 18.9 h).
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FIGURE 2 | Diagram showing the flow of participants.

All patients were right-handed. None of them were treated
with mechanical thrombectomy nor received any thrombolytic
treatment. Twelve patients were treated with antiplatelet agents.
None of the patients had sensory deficit as assessed by the NIHSS.

After the randomization, 10 patients were treated with the
rMV (VG), while 12 underwent the sham treatment (CG) (see
Figure 2 for the diagram showing the flow of participants). None
of the treated patients complained side effects during (e.g., pain)
or after the vibration treatment.

Two patients (1 VG, 1 CG) were treated only on the upper
limb, 4 patients (2 VG, 2 CG) only on the lower one, and the
remaining 16 patients (6 VG, 8 CG) on both the limbs.

Differences between VG and CG in term of demographic data,
stroke characteristics and clinical features are shown in Table 1.

The two groups of stroke patients did not differ for age (p =

0.39), sex (p = 0.16), stroke type (p = 0.39), lesion side (p =

0.23), stroke localization (p= 0.23), and for the presence of major
cerebrovascular risk factors. Univariate analysis did neither show
any difference between the two groups regarding both the stroke
severity upon admission, (NIHSS score–VG: 12.4 ± 4.09; CG:
10±3.22; p = 0.13), and the mean time between rMV treatment
and stroke (VG: 45± 20.4 h; CG 43±18.4 h; p= 0.8).

Analysis of variance (ANOVA) showing difference between T-
1 and T-0 scores (1T1-T0) for each clinical variable (i.e., NIHSS,
Fugl-Meyer, Motricity Index e Ashworth Modified) is reported
in Figure 3. Patients treated with rMV (VG) had a significant
clinical improvement with respect to those treated with a sham-
rMV among the NIHSS (p< 0.001), Fugl-Meyer (p= 0.001), and
Motricity Index (p < 0.001) scores.

Only five patients (3 VG, 2 CG) had post-stroke spasticity,
with a maximummodified Ashworth scale (MAS) score of 1 (i.e.,
very slight increase in the muscle tone); no difference in the MAS
score were found between groups (p= 0.668).

TABLE 1 | Univariate Analysis: significant demographic data, medical history,

clinical and neuro-anatomical characteristics according to the type of treatment.

rMV SHAM p-value

N = 10 n(%) N = 12 n(%)

Age (Mean ± SD) 64.70 ± 17.24 69.50 ± 7.3 0.39

Sex Male 8 (80) 6 (50) 0.16

Female 2 (20) 6 (50)

Time from stroke (Hours) 45 ± 20.4 43 ± 18.4 0.81

Stroke Type Ischemic 4 (40) 8 (66.7) 0.39

Hemorrhagic 4 (40) 2 (16.7)

Both 2 (20) 2 (16.7)

Stroke Cortical 3 (30) 4 (33.3) 0.80

Localization Subcortical 4 (40) 4 (33.3)

Brainstem 1 (10) 0

Cortico-

subcortical

2 (20) 4 (33.3)

Stroke Side Right 6 (60) 4 (33.3) 0.23

Left 4 (40) 8 (66.7)

Bilateral 0 0

CAD (Coronary

Artery disease)

7 (70) 10 (83.3) 0.13

Smoke 2 (20) 6 (50) 0.16

Hypertension 8 (80) 8 (66.7) 0.51

Diabetes 2 (20) 4 (33.3) 0.51

Hypercholesterolemia 4 (40) 6 (50) 0.66

Atrial Fibrillation 2 (20) 0 0.11

Previous No 8 (80) 8 (66.7) 0.89

Stroke Ischemic 1 (10) 4 (33.3)

Hemorrhagic 1 (10) 0

Cardiac Failure 1 (10) 0 0.28

NIHSS (T0) (Mean ± SD) 12.4 ± 4.09 10 ± 3.22 0.13

By comparing the Fugl-Meyer and Motricity Index scales
scores separately for the upper and the lower limb, VG patients
were found to have a better clinical improvement at all the
clinical end points (Arm: Fugl-Meyer p < 0.001, Motricity
Index p < 0.001; Leg: Fugl-Meyer p = 0.013, Motricity Index
p < 0.001) (Figure 4).

Analysis of variance for repeated measures (ANOVA-RM)
with Tukey post-hoc analysis, allowed us to analyze the clinical
improvement expressed as over time repeated measures for
each clinical end-point (Figures 5, 6). VG patients showed
a better clinical improvement with respect to CG patients
in terms of stroke severity assessed by NIHSS (p < 0.001),
and of Fugl-Meyer (p = 0.001) and Motricity Index scale
score (p < 0.001). The better motor outcome of the rMV-
treated patients was confirmed for the upper and the lower
limb, separately (Arm: Fugl-Meyer p = 0.005, Motricity
Index p = 0.003; Leg: Fugl-Meyer p < 0.001, Motricity
Index p < 0.001).

Tukey post-hoc analysis showed that ANOVA-RM significance
was only due to rMV patients clinical improvement from T-0 to
T-1 (rMV T-0-T-1: NIHSS p < 0.001; Fugl-Meyer tot p < 0.001;
Fugl-Meyer Arm p < 0.001; Fugl-Meyer Leg p < 0,001; Motricity
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FIGURE 3 | Box plot with Interquartile Range (IQR) distribution of the difference between T1 and T0 scales values (NIHSS, total Fugl-Meyer, total Motricity Index,

Ashworth modified) in patients treated with rMV and in those treated with sham-rMV. ANOVA’s p-value for comparison of the variable between the two groups is

reported on the top of each the figure.

Index tot p < 0.001; Motricity Index Arm p < 0.001; Motricity
Index Leg p < 0.001), but the Fugl-Meyer Arm (sham-rMV T0-
T1: Fugl-Meyer Arm p = 0.02). In fact, this analysis did not
show any difference between groups regarding the pre-treatment
clinical status (NIHSS: p= 0.36; Fugl-Meyer Tot: p= 0.09; Fugl-
Meyer Arm: p= 0.08; Fugl-Meyer Leg: p= 0.99; Motricity Index
Tot: p = 0.18; Motricity Index Arm: p = 0.21; Motricity Index
Leg: p= 0.62).

DISCUSSION

Focal repetitive muscle vibration (rMV) is a safe and well-
tolerated intervention which is easy to perform at the bedside,
and promotes neural plasticity and long-lasting motor recovery
in chronic stroke patients (12).

Although much evidence exists of the efficacy of focal muscle
vibration in the chronic phase, the clinical benefit in the very
acute phase of stroke is yet to be determined. From a clinical point
of view, the reason why this issue is crucial, is that those structural
and functional changes within the motor network that underlie
the motor recovery after stroke occur in the very first hours after
stroke. To our knowledge, no studies have been carried out to
investigate the effect of rMV onmotor recovery in the acute phase
of stroke so far.

Our data show that the rMV intervention can consistently
improve motor outcome in a cohort of acute stroke patients.
In fact, patients with stroke treated with rMV (VG) had a
significant clinical improvement compared to those treated with
a sham-rMV as shown by improved NIHSS (p < 0.001), Fugl-
Meyer (p = 0.001), and Motricity Index (p < 0.001) scores,
regardless the different baseline clinical status, or the different
stroke characteristics (stroke type, side or localization of stroke
lesion and so on).

The neural substrates underlying motor recovery in the acute
phase of stroke are still a matter of debate. Despite the role of
the hyperactivation of several cortical areas in both the affected
and in the unaffected hemisphere being still unclear, ipsilesional
M1 is widely thought to represent the most effective target for
rehabilitation therapy (26, 27). This has become a milestone
since pioneering studies described how the integrity and or over-
activation of the lesioned hemisphere’s motor cortex (ipsilesional
M1) related to better post-stroke motor recovery (28–30).

Thus, in our opinion, the primary mechanism by which rMV
may improvemotor recovery after acute stroke is through a direct
action on the ipsilesional motor cortex. In detail, the repeated
muscle vibration produces a repeated sensory input that reaches
M1 directly, via Ia fiber afferent input (6–9), thereby leading to an
improvement of functional ability of the affected limb by means
of an intrinsic plasticity-related mechanism (11, 13).
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FIGURE 4 | Box plot with Interquartile Range (IQR) distribution of the difference between T1 and T0 scales values (Fugl-Meyer arm, Fugl-Meyer leg, Motricity Index

arm and Motricity Index leg) in patients treated with rMV and in those treated with sham-rMV. ANOVA’s p-value for comparison of the variable between the two groups

is reported on the top of each the figure.

FIGURE 5 | ANOVA for Repeated Measures (ANOVA-RM) with Tukey post-hoc analysis: T0 and T1 mean values (NIHSS, total Fugl-Meyer, total Motricity Index,

Ashworth modified) in patients treated with rMV (blue line) and in those treated with sham-rMV (green line).
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FIGURE 6 | ANOVA for Repeated Measures (ANOVA-RM) with Tukey post-hoc analysis: T0 and T1 mean values (Fugl-Meyer arm, Fugl-Meyer leg, Motricity Index arm

and Motricity Index leg) in patients treated with rMV (blue line) and in those treated with sham-rMV (green line).

An additional mechanism that may be involved in the
rMV-induced motor recovery in acute stroke, probably
concurrent with the direct action on ipsilesional M1, entails
the changes in perilesional brain regions triggered by the
focal brain lesion and their connections to the spinal cord
motor neurons.

The recruitment of secondary brain structures, due to the
capability to establish and consolidate new neural networks in
response to a change in the environment (i.e., neuroanatomical
plasticity), has been described in the acute phase, especially
in those patients with greater motor impairment. This
compensative recruitment (i.e., increased activity) is not
“maladaptive” because the effects of TMS disruption have
demonstrated that their activity is functionally significant (31);
nevertheless, it leads to an incomplete recovery (32). The main
reason is that the projections from ipsilateral non-primary motor
areas to spinal cord motor neurons are less numerous and less
efficient at exciting spinal cord motor neurons than those from
M1 (30, 33, 34).

Considering that the focal muscle vibration represents
a strong proprioceptive stimulus which is able to produce
substantial neurophysiological changes also at a peripheral

level, it is probably also able to induce synaptic plasticity
at the Ia-motoneuron synapse level, thereby increasing the
effectiveness of these cortical-spinal connections. In light
of this, it is intriguing that a recent study reported that
rMV was able to induce long-term depression-like plasticity
in specific spinal cord circuits, depending on the muscle
vibrated (22).

Thus, our hypothesis is that rMV could drive motor recovery
by also acting on spinal cord plasticity, namely by making
the projections from secondary motor areas to spinal motor
neurons more active and efficient. This mechanism could be of
particular relevance in patients with higher motor impairment.
Moreover, considering that the secondary motor areas (e.g.,
PMd) have prominent bilateral connections to the spinal cord
(32), one might speculate that this mechanism is able also to
act on interhemispheric imbalance involving hyperexcitability
of the contralesional hemisphere, whose modulation may have
a pivotal, although still unclear, role in motor recovery after
stroke (27, 33).

Finally, a possible role of rMV in reducing spasticity when
applied to the spastic muscles of hemiplegic limbs in post-
stroke patients as also been suggested (13, 35, 36). Among the
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whole population of recruited patients, we found a mild increase
in muscle tone in 5 patients, with no difference between the
two groups in Ashworth modified score changes. A possible
explanation of this datum is that we evaluated stroke patients
in the very acute phase of stroke, whereas spasticity usually
develops after several weeks after stroke.Moreover, the very slight
increase (with a maximum MAS score of 1) probably did not
allow finding a statistical difference between groups. Anyway,
there are evidences of spasticity development in the early time
course of stroke (37). It would be therefore intriguing to perform
a follow-up study to investigate whether this datum is merely due
to the timing of spasticity assessment, or if we somehowwere able
to prevent the spasticity by stimulating the proprioceptive system
since the very acute phase (38).

A limitation of the study is that, due to the peculiar emergency
setting of the acute Stroke Unit, patients were asked to perform
a mild voluntary contraction without measurement of the
performed contraction with visual EMG feedback. Moreover, due
to the relatively low number of patients, we were not able to
perform a multivariate analysis to avoid all stroke-related clinical
bias. That notwithstanding, to have further evidences of the role
of an intrinsic mechanism more than one linked to patients’
clinical characteristic (as already demonstrated in the chronic
phase), we evaluated motor outcome by separately analyzing
the 1T1-T0 Fugl-Meyer and Motricity Index scales scores of
the upper limb and those of the lower limb. Also, in this, case
SG patients were found to have a better clinical improvement
at all the clinical end-points (Arm: Fugl-Meyer p < 0,001,
Motricity Index p < 0.001; Leg: Fugl-Meyer p = 0.013, Motricity
Index p < 0.001).

With the same goal in mind, we also analyzed clinical
improvement expressed as over-time repeated measures by
means of the analysis of variance for repeated measures
(ANOVARM) with Tukey post-hoc analysis. We found that, for
all the clinical end-points analyzed except Fugl-Meyer Arm, the
significance of patients’ clinical improvement from T0 to T1
was exclusively due to rMV treatment (rMV T0-T1: NIHSS
p < 0.001; Fugl-Meyer Tot p < 0.001; Fugl-Meyer Arm p <

0.001; Fugl-Meyer Leg p < 0.001; Motricity Index Tot p <

0.001; Motricity Index Arm p < 0.001; Motricity Index Leg p
< 0.001); this is important because a minimal improvement is
somehow expected because of the PT treatment and because

of the stroke natural clinical history as well. Moreover, also
when expressed as over-time repeated measures, VG better
clinical outcome was independent from the different initial

clinical status; interestingly, rMV-related recovery was evenmore
consistent in patients with a more severe stroke in terms of
NIHSS, which supports the hypothesis of a plasticity-based
intrinsic mechanism being responsible for the better motor
recovery of stroke patients treated with rMV in the acute phase
of stroke.

However, addressing the plasticity-based mechanisms
underlying the rMV-induced motor recovery after stroke does
however, go beyond the main clinical purpose of our study.
Thus, further RCTs are needed to draw conclusions on this
specific issue.

Regarding the main outcome of our study, our data provides
the first evidence that the rMV intervention can improve motor
outcome in a cohort of stroke patients regardless the different
baseline clinical status, or the different stroke characteristics.

CONCLUSIONS

This study provided the first evidence that repetitive focal muscle
vibration (rMV), when combined with physiotherapy, is able
to improve motor outcome in a cohort of stroke patients,
even when performed in the very acute phase of stroke. As a
safe and well-tolerated intervention, which is easy to perform
at bedside, rMV may represent a valid complementary non-
pharmacological therapy to promote motor recovery in acute
stroke patients.
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