
MINI REVIEW
published: 22 February 2019

doi: 10.3389/fneur.2019.00131

Frontiers in Neurology | www.frontiersin.org 1 February 2019 | Volume 10 | Article 131

Edited by:

Antonio Orlacchio,

Fondazione Santa Lucia (IRCCS), Italy

Reviewed by:

Andrea Martinuzzi,

Eugenio Medea (IRCCS), Italy

Henna Tyynismaa,

University of Helsinki, Finland

*Correspondence:

Emanuele Panza

emanuele.panza@unibo.it

Marco Seri

marco.seri@unibo.it

†These authors share first authorship

‡These authors share senior

authorship

Specialty section:

This article was submitted to

Movement Disorders,

a section of the journal

Frontiers in Neurology

Received: 01 October 2018

Accepted: 31 January 2019

Published: 22 February 2019

Citation:

Panza E, Martinelli D, Magini P,

Dionisi Vici C and Seri M (2019)

Hereditary Spastic Paraplegia Is a

Common Phenotypic Finding in ARG1

Deficiency, P5CS Deficiency and HHH

Syndrome: Three Inborn Errors of

Metabolism Caused by Alteration of

an Interconnected Pathway of

Glutamate and Urea Cycle

Metabolism. Front. Neurol. 10:131.

doi: 10.3389/fneur.2019.00131

Hereditary Spastic Paraplegia Is a
Common Phenotypic Finding in
ARG1 Deficiency, P5CS Deficiency
and HHH Syndrome: Three Inborn
Errors of Metabolism Caused by
Alteration of an Interconnected
Pathway of Glutamate and Urea
Cycle Metabolism
Emanuele Panza 1*†, Diego Martinelli 2†, Pamela Magini 3, Carlo Dionisi Vici 2‡ and

Marco Seri 1*‡

1Medical Genetics Unit, S. Orsola-Malpighi Hospital, Department of Medical and Surgical Sciences, University of Bologna,

Bologna, Italy, 2Division of Metabolism, Bambino Gesù Children’s Research Hospital, Rome, Italy, 3Medical Genetics Unit,

Policlinico S. Orsola-Malpighi, Bologna, Italy

Hereditary Spastic Paraplegias (HSPs) are a clinically and genetically heterogeneous

group of neurodegenerative disorders characterized by a progressive rigidity and

weakness of the lower limbs, caused by pyramidal tract lesions. As of today,

80 different forms of HSP have been mapped, 64 genes have been cloned,

and new forms are constantly being described. HSPs represent an intensively

studied field, and the functional understanding of the biochemical and molecular

pathogenetic pathways are starting to be elucidated. Recently, dominant and recessive

mutations in the ALDH18A1 gene resulting in the deficiency of the encoded

enzyme (delta-1-pyrroline-5-carboxylate synthase, P5CS) have been pathogenetically

linked to HSP. P5CS is a critical enzyme in the conversion of glutamate to

pyrroline-5-carboxylate, an intermediate that enters in the proline biosynthesis and that

is connected with the urea cycle. Interestingly, two urea cycle disorders, Argininemia

and Hyperornithinemia-Hyperammonemia-Homocitrullinuria syndrome, are clinically

characterized by highly penetrant spastic paraplegia. These three diseases represent

a peculiar group of HSPs caused by Inborn Errors of Metabolism. Here we comment on

these forms, on the common features among them and on the hypotheses for possible

shared pathogenetic mechanisms causing the HSP phenotype.
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INTRODUCTION

Hereditary Spastic Paraplegias (HSPs) represent a heterogeneous
group of neurodegenerative conditions characterized by a
progressive inability to walk due to length-dependent axonal
degeneration of the pyramidal tract (1). A simple clinical criteria
to classify HSPs is based on the presence of spastic paraplegia
as the only clinical sign (“Pure” forms) or the co-presence of
additional symptoms (“Complicated” forms) (2).

Despite the fact that more than 80 forms have been mapped,
many patients remain without a genetic diagnosis, suggesting
that more genes or undefined causes are involved with HSP (3).

Among the Inborn Errors of Metabolism (IEM), spasticity
represents a common finding inmany forms with pyramidal tract
involvement (4). Indeed, the neurons that form these tracts have
extremely long axons, and they can be selectively vulnerable to
metabolic deregulation resulting in neurodegenerative diseases.

The identification of ALDH18A1 as new HSP-disease gene
(SPG9) (5, 6) pointed toward the identification of a common
biochemical pathway where two other well-known IEM-disease-
genes (SLC25A15 in HHH syndrome and ARG1 in Argininemia)
cause syndromes where spastic paraplegia is present and highly
penetrant. This metabolic pathway involves the metabolism
of glutamate connected to the urea cycle, thus identifying a
subgroup of HSP caused by IEM affecting a common metabolic
pathway (Figure 1).

From a clinical point of view, it is important to promptly
identify these conditions since for some IEM therapeutic
options are available. Furthermore, from a scientific perspective,
studying this group of diseases may give a deeper understanding
of possible converging mechanisms resulting in the spastic
paraplegia phenotype, allowing to design a tailored therapy.

PHENOTYPES

Delta-1-pyrroline-5-carboxylate-
synthetase (P5CS)
Deficiency
TheALDH18A1 genemaps on chromosome 10 and it encodes for
delta-1-pyrroline-5-carboxylate synthetase (P5CS), an enzyme
that localizes in the mitochondria inner membrane.

Mutations in this gene cause P5CS deficiency, a condition first
described in 1998 and molecularly characterized in 2000 (7–9).

P5CS is a bifunctional ATP and NADPH dependent enzyme,
converting glutamate into L-glutamate-5-semi-aldehyde (GSA)
in two steps, catalyzed sequentially by the L-glutamate 5-kinase
domain (G5K) (EC2.7.2.11) and by the L-glutamyl-5-phosphate
reductase domain (G5PR) (EC1.2.1.41). GSA is in tautomeric
equilibrium with delta-1-pyrroline-5-carboxylate (P5C) and is
then converted into proline by pyrroline-5-carboxylate reductase
or it is directed toward the urea cycle where it is involved in the
biosynthesis of ornithine, arginine and citrulline (Figure 1).

Two transcriptional variants of this gene have been described,
differing only by two amino acids on protein level. The long
form is expressed in several tissues, while the short form is highly
expressed in the intestine and it is inhibited by ornithine (10).

Despite the variable clinical presentations among patients
with ALDH18A1 mutations (“ALDH18A1-Related Disease”), at
least two distinct conditions exist.

ALDH18A1 RELATED HEREDITARY
SPASTIC PARAPLEGIA

Mutations in ALDH18A1 can cause dominant (SPG9A,
MIM#601162) and recessive (SPG9B, MIM#616586) forms of
HSP. These forms are mainly characterized by spasticity of the
lower limbs, and the clinical picture can be complicated by
low plasma levels of proline, arginine, citrulline, and ornithine
associated with hyperammonemia, developmental delay,
persistent vomiting, hypotonia, early cataracts and connective
tissues abnormalities (5, 6, 11).

ALDH18A1 RELATED CUTIS LAXA

Mutations in ALDH18A1 can cause forms of cutis laxa, inherited
as autosomal dominant (AD3, MIM#616603) or autosomal
recessive (ARIIIA, MIM#219150) disease. Clinical features
may include early cataracts, connective tissues abnormalities,
progeroid features, vessels tortuosity, and neuropathy. So far,
only two residues have been found mutated in the dominant
form (12–14) while, for the recessive form, mutations have been
identified in different parts of the protein.

A clear genotype-phenotype correlation for the distinct
ALDH18A1conditions is not yet apparent.

HYPERORNITHINEMIA-
HYPERAMMONEMIA-
HOMOCITRULLINURIA SYNDROME (HHH
SYNDROME)

The association of hyperornithinaemia, hyperammonaemia,
and homocitrullinuria is pathognomonic for HHH syndrome
(MIM#238970), an autosomal recessive disease caused by biallelic
mutations in SLC25A15 gene (alias ORNT1,MIM#603861). This
gene maps on 13q14.11, and it encodes for the mitochondrial
ornithine/citrulline antiporter ORC1. Mutations in this
gene result in a defect of ornithine transport through the
mitochondrial membrane (Figure 1), causing a functional
deficiency of the urea cycle. This mechanism results in the
increase of ornithine levels in cytosol (and in plasma), while
causing ornithine deficiency inside mitochondria, affecting the
urea cycle. The latter situation leads to the accumulation of
carbamoylphosphate, which is shifted to the formation of orotic
acid by an alternative pathway, and induces the formation of
homocitrulline from lysine by ornithine transcarbamylase.

HHH can occur at any age (15–17). The clinical presentation
of HHH syndrome covers a broad spectrum of symptoms,
including protein intolerance, vomiting, seizures, confusion,
and developmental delay. The most severe forms have been
reported with neonatal onset of lethargy, hypotonia, and
seizures developing into coma and even death (18). There
are also slowly/chronic progressive forms, characterized by the
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FIGURE 1 | Biochemical pathway.

patients aversion to food rich in proteins, variable intellectual
disabilities and/or cognitive regression, and signs of motor
deficit (18).

Most patients develop neurological dysfunction mainly
characterized by pyramidal tract signs with spastic gait,
associated with cerebellar symptoms (Table 1).

ARGINASE DEFICIENCY (ARG1
DEFICIENCY)

Arginase deficiency (MIM#207800) is a recessive condition
caused by mutations in ARG1, a gene mapping on chromosome
6q23.2. This gene encodes for arginase, the last enzyme of
the urea cycle, which is necessary for the transformation of
arginine into urea and ornithine (EC3.5.3.1) (Figure 1). Arginase
protein is a homotrimer in physiological state, and several
detrimental mutations have been identified. Arginase deficiency
results in hyperargininemia, with elevated levels of arginine in
plasma and other fluids. The accumulation of arginine leads
to the use of alternative pathways for arginine metabolism.
Some of these alternative pathways are not fully understood.
Accumulation of metabolites as guanidine compounds, nitric
oxide and homoarginine concentration have been observed.
As a consequence, these metabolites could have a pathological
role (19).

Usually urea cycle disorders present symptoms at birth, but
in case of arginase deficiency, first symptoms are often noted
between 2 and 4 years of age and consist of a variable association
of progressive spastic paraplegia, intellectual disability and
seizures (20, 21). Short stature and failure to thrive may also be
present. In some cases, paraparesis may appear in adolescents

or young adults (20, 22). Only a minority of patients show
signs of protein intolerance, and ammonia is often normal or
mildly increased.

ANIMAL MODELS

Engineered organisms are indispensable tools to model genetic
conditions in order to dissect their pathological mechanism
and to test innovative therapies at the entire organism
level (23).

MODEL ORGANISMS FOR HHH AND P5CS
DEFICIENCY

As for HHH syndrome, the disease does not seem to be only an
exclusive prerogative of the human species, since a spontaneous
animal model exists. A report describes two consanguineous
weanling foals, presenting a subacute encephalopathy in the early
post-weaning period (24). The clinical and biochemical picture
strikingly resembled those of human HHH syndrome, with
anorexia, poor growth, abnormal behavior, bilateral forelimb,
and hindlimb ataxia, and circling. The biochemical profile was
characterized by hyperammonemia, liver dysfunction, reduced
blood urea nitrogen, elevated levels of ornithine and glutamine
in serum and increased orotic acid excretion in urine.

To this day, engineered animal models for HHH syndrome
have not been reported, and models for ALDH18A1-related
disease have not yet been described. The research in the field
would greatly benefit from the generation and characterization
of such models.

Frontiers in Neurology | www.frontiersin.org 3 February 2019 | Volume 10 | Article 131

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Panza et al. A New Pathogenetic Mechanism for HSPs

TABLE 1 | Main features found in P5CS deficiency, ARG1 Deficiency, and HHH

syndrome.

P5CS deficiency HHH ARG1

deficiency

HSP CL

Inheritance AR/AD/de novo AR AR

MAJOR CLINICAL FEATURES

Intellectual disability + + + +

Retina degeneration + – ±* –

Cataract + + – –

Persistent vomiting + ± + +

Developmental delay/MR + + + +

Seizures ± – + +

Cerebellar ataxia ± – + –

Thin corpus callosum ± – – –

Pyramidal signs/spastic

paraparesis

+ ± + +

Dysmorphisms ± + – –

Progeroid appearance – + – –

Microcephaly ± - – –

Lax and wrinkled skin – + – –

Visible vein – + – –

Joint laxity + + – –

Liver dysfunction – – + –

Episodic lethargic coma – – + +

BIOCHEMICAL ALTERATIONS

Plasma ammonia ↑± (fasting) – ↑+ (fed) ↑+ (fed)

Plasma ornithine ↓± ↓± ↑+ –

Plasma arginine ↓± ↓± – ↑+

Plasma citrulline ↓± ↓± ↓± –

Plasma proline ↓± – – –

Homocitrullinuria – – + –

Orotic aciduria – – + +

HSP, Hereditary Spastic Paraplegia; CL, Cutis Laxa.
*one report only.

ARG1 DEFICIENCY MODEL ORGANISMS

Two isoforms of arginase exist: ARG1 is the cytoplasmic
form, mainly expressed in the liver. ARG2 is expressed in the
mitochondria and it is expressed mainly in non-hepatic tissues.

Arg1 and Arg2 are the mouse orthologs of the human ARG1
and ARG2 genes.

Arg1-KnockOut (KO), and double Arg1 and Arg2-KO mice
have been described (25–27). One Arg1-KO mouse has been
generated by inserting a Neomycin resistant gene in place of exon
4 of the endogenous Arg1 gene. The resulting homozygous KO
animals completely lacked liver arginase activity, exhibited severe
symptoms of hyperammonemia and died between post-natal day
10 and 14, thus sharing several features of the human condition
(25). Another KO mouse model (27) showed an accumulation of
several guanidino compounds, as direct or indirect metabolites
of arginine metabolism. The very same compounds are elevated
in the blood of uremic patients and in the plasma and

cerebrospinal fluid of hyperargininemic patients, suggesting
that these compounds could represent the neuropathogenetic
agents responsible for neurological complications in Arginase
deficiency. Indeed, the guanidino compounds alpha-keto-delta-
guanidinovaleric acid, alpha-N-acetylarginine, and argininic acid
were increased in brain tissue from the Arg1-deficient mouse
model of hyperargininemia. Several guanidino compounds were
also elevated in plasma, liver, and kidney (27).

Double KO for Arg1 and Arg2 presented with the same
phenotype of Arg1 KO, but showed increased plasma level of
arginine and decreased plasma levels of ornithine. Ornithine
and arginine were altered also in other tissues, indicating that
the deficiency of ornithine has a causative role for the fatal
hyperammonemia in the mice (26).

THERAPY

Drugs are necessary to treat promptly and effectively
the sensitive organs affected in these conditions. The
biochemical characteristics of this group of disorders make
them good candidates to test therapies based on aminoacids
supplementation. Alternative therapies should also be evaluated
and tested. For these reasons, the development of in vitro and
especially in vivomodels is essential.

As for P5CS deficiency, Baumgartner reported on the use
of ornithine supplementation, attempted in a patient of 12
years of age, who was presenting with progressive neurological
deterioration. This approach, in the specific context of the
reported article, did not significantly modify the progression of
symptoms of the patient (9).

Another patient was treated with arginine supplementation,
and this approach was attempted because brain creatine
was decreased, as detected by proton magnetic resonance
spectroscopy (H-MRS) (28). The endogenous synthesis of
creatine is critical for the brain, and a decrease of its rate-
limiting precursor may lead to a suboptimal creatine synthesis.
This therapeutic approach improved metabolic parameters and
an amelioration of the psychomotor symptoms was noted over
the time of the study (28).

Similarly to other urea cycle defects (29), treatment in HHH
syndrome and Arginase deficiency is based on a low-protein diet
combined with the use of ammonia scavengers sodium benzoate,
sodium phenylbutyrate or glycerol triphenylbutyrate. In HHH
syndrome, treatment relies also on the use of citrulline, arginine,
or ornithine supplementation (18).

Pharmacological and dietary treatments are the standard
clinical approach for these disease and reduce the risk
of metabolic decompensation. The progression of spastic
paraplegia, however, is unaffected (18, 21).

PATHOGENETIC MECHANISMS

The pathogenesis of neurological manifestations in patients
with P5CS deficiency, Arginase deficiency and HHH
syndrome, is not completely understood and may be related to
different mechanisms.
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Arginine Imbalance
Arginase deficiency is characterized by very high plasma levels
of arginine and decreased ornithine recycling. Both these
biochemical features can be responsible for the phenotype.
It has been suggested that increased levels of arginine can
be responsible for spasticity and other severe cerebral and
motor neurological signs. Arginine and its metabolites, including
guanidino compounds, are reported to act as neurotoxins
(21). Guanidino compounds can indeed cause demyelination
with consequent upper motor neuron signs, and they can be
responsible for the epileptic crisis (21). In addition, arginine
is the substrate for nitric oxide synthase, generating oxidative
damage that can affect neuronal survival (30). Patients diagnosed
and treated since birth with protein restriction and essential
aminoacid supplementation rarely present with metabolic
decompensation, but they do not have completely normalized
arginine levels, despite normal ammonia in blood (18, 21). This
suggests that chronically elevated levels of arginine may play a
direct role in the neuropathologic manifestations.

Ammonia Toxicity and Deregulation of
Proline Biosynthesis
In HHH syndrome, hyperammonemia occurs due to the inability
to import ornithine from the cytosol into the mitochondria
resulting in a functional impairment of the urea cycle at
the level of ornithine transcarbamoylase. In the absence of
intramitochondrial ornithine, accumulating carbamyl phosphate
either condenses with lysine to form homocitrulline, leading to
homocitrullinuria, or is shunted through the cytosolic pyrimidine
biosynthetic pathway leading to increased excretion of orotic acid
and uracil in the urine (31).

In HHH syndrome, abnormal mitochondria are often seen,
suggesting a role of a functional defect at mitochondrial level.

Hyperammonemia may be involved in CNS pathogenesis,
since it causes neurodegeneration due to increased production
of reactive oxygen species and decreased activities of free radical
scavenging enzymes, representing a link between common
CNS disorders and some IEM. Nevertheless, as in the case
of Argininemia, it is unlikely that hyperammonemia per-se is
solely responsible for the pathophysiology of this disorder, since
also affected individuals who are diagnosed early and maintain
good metabolic control and normal plasma ammonia levels
develop progressive neurological dysfunction years after the
initial diagnosis (32).

Therefore, other metabolic factors including persistent or
acute accumulation of ornithine and homocitrullinemia may
possibly contribute to the neurological symptoms, typical of
patients affected by this disorder (33).

Indeed, the first patient reported with recessive mutations in
ALDH18A1 causing P5CS deficiency had a clear biochemical
phenotype with low levels of plasma ornithine, citrulline,
arginine, proline, and fasting hyperammonemia possibly
reflecting the need of de novo-synthetized ornithine for
ureagenesis under fasting conditions (8, 9, 28).

These manifestations were largely interpreted as being
connected to the deficient biosynthesis of ornithine/arginine and

proline (8). In fact, some aspects of the phenotypic manifestation
can be explained by deficient proline synthesis and in a loss of
proline rich proteins, such as collagen.

Interestingly, PYCR1 deficiency (PYCR1D) presents some
similarities with P5CSD (34). PYCR1 (MIM#179035) is an
enzymes that catalyzes the final step of proline biosynthesis
and reduces pyrroline-5-carboxylate (P5C) to L-proline (EC
1.5.1.2). PYCR1D causes autosomal recessive forms of cutis
laxa (ARCL2B and ARCL3B, MIM#612940 and MIM#614438,
respectively). Common features of P5CSD and PYCR1D include
connective tissues defects (loose inelastic skin, joint laxity,
progeroid features) and developmental delay.

Despite the enzymatic deficiency, PYCR1D patients do not
present plasma aminoacid abnormalities. In particular, plasma
proline levels are normal or slightly toward the lower limit.
The absence of such alterations could be the result of a
compensative effect due to the presence in humans of PYCR2
and PYCRL paralogous genes (34). P5CS and PYCR1 enzymes
localize in the inner membrane of mitochondria. In the case
of PYCR1D, patients show mitochondrial abnormalities as
demonstrated by experiments in patient’s fibroblasts cultured
under oxidative stress conditions (28). However, similar
mitochondrial alterations have not been identified in patients
with P5CS deficiency, supporting a distinct pathogenesis in these
two diseases and pointing toward a block of ornithine/arginine
and proline metabolism as the main mechanism in P5CS
deficiency (34).

Abnormal Creatine Synthesis
A specific decrease in brain creatine peak has been shown
in P5CSD patients (28), by H-RMS. This is an interesting
observation, given the importance of arginine for creatine
synthesis (35) and the association of brain creatine deficiency
with developmental delay, hypotonia, mental retardation, poor
speech development, seizures, and brain atrophy (28, 36).
Possibly, the decrease in brain creatine may reflect the presence
of suboptimal arginine levels in the brain, and this could have
disastrous effects given the importance of endogenous creatine
synthesis in this organ (28). Secondary creatine deficiency has
also been observed in HHH (15, 37) due to low cellular arginine
availability and possibly inhibition of creatine biosynthesis
because of ornithine excess (37). In Argininemia, markedly
elevated arginine levels may result in higher concentrations of
guanidinoacetate and higher rates of creatine synthesis (38).

Effects on Autophagy
Interestingly, autophagy has been recently linked to ammonia
detoxification (39). Autophagy, moreover, is crucial for the
development of central nervous system and for neuronal
function, and some HSPs are due to genetic defects linked to
autophagy machinery (40). Mutations in one of the four subunits
of the adaptor protein complex 4 (AP4), a heterotetrameric
protein that regulates the transport of membrane proteins,
lead to rare forms of HSP (SPG47, SPG50, SPG51, SPG52)
(41). All these disorders share numerous similarities; therefore,
they are collectively designed as “AP-4 deficiency syndrome,”
which belong to the group of the “Adaptinopathies” (41).
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AP-4 complex is involved in transport between the Trans-
Golgi network and endosomes, contributing to polarized
sorting in neurons and the development/integrity of neural
network (41). In particular, AP4 complex promotes signal-
mediated export from the trans-Golgi network to the peripheral
cytoplasm of ATG9A, a protein critical for the maturation
of preautophagosomal structures (42). Similarities with AP4-
related HSP suggest a potential contribution of autophagy also
to the pathogenesis of neuronal damage in HHH syndrome,
Argininemia and P5CS deficiency, linking their phenotypic
manifestations. A common mechanism could be represented
by arginine level imbalance (usually low in P5CSD and HHH
syndrome, high in Argininemia).Under this respect, post-
translational arginylation of proteins is an important regulator
of many physiological pathways in cells, both in basal condition
and in neurodegenerative processes. Arginylation is involved
in signaling processes of proteins and polypeptides that are
further ubiquitinated and degraded by the proteasome and
is implicated in autophagy/lysosomal degradation pathway
(43). Brain arginine metabolism is dramatically altered in
Alzheimer disease (44). Arginine imbalance, moreover, is a
known modulator of autophagy in cancer cells, and depletion of
ASS1 (argininosuccinate synthetase), the main enzyme involved
in arginine synthesis, led to inhibition of tumor growth and
decreased cell invasion via induction of autophagy-lysosome
machinery (45). It has also been demonstrated in vitro that high
arginine down-regulates ASS1 expression (46).

New Perspectives
The endoplasmic reticulum (ER) is the biggest organelle in
cells and formation and maintenance of ER morphology
are regulated by a series of proteins controlling membrane
fusion and curvature. Some of these regulators have been
demonstrated to be involved in HSPs, in particular Reticulons
(RTNs) family. RTNs are a group of membrane associated
proteins involved in shaping the tubular endoplasmic reticulum
network, membrane trafficking, inhibition of axonal growth,
and apoptosis. (47, 48). Considering the relevance of metabolic
signals in modulating endoplasmic reticulum responses in
normal and stress conditions, we can expect for the future
a crescent evidence of a role of this class of proteins in the
pathogenesis of inborn errors of metabolism associated with
HSPs and axon degeneration.

CONCLUDING REMARKS

The development of a neurological phenotype in HHH
syndrome, ARG1 and P5CS deficiency, can be induced by the

formation of toxic compounds, resulting from the accumulation
of substrates, or alteration in mitochondria, where ornithine
is low or absent in these conditions. These observations
point toward an impairment of the ornithine/arginine
metabolism as a common mechanism for the development
of the neurodegenerative phenotype observed in all three
metabolic HSPs.

Moreover, a link between autophagy and HSP has been
demonstrated (40). Strong evidence support a role of arginine
deregulation and autophagy in cancer and it appears to be
involved also in the pathogenesis of neurodegenerative disorders.
Thus, it is possible that alteration of arginine levels, common in
the three conditions, can deregulate autophagy.

To test this hypothesis it would be ideal to perform a
standardized analysis of these patients including an accurate
clinical evaluation (especially necessary for P5CS deficiency,
where the clinical heterogeneity is high), plasma aminoacid
profile analysis in fasting and non-fasting conditions, and H-
RMS to check for alterations in in vivometabolite concentrations
in the central nervous system.

In order to dissect the pathogenetic mechanism of these
conditions, it will also be essential to generate organisms and
cell models.

In particular, testing and comparing the metabolomics profile
in normal and stress conditions of either patient’s primary
cell lines or engineered cell lines obtained taking advantage
of genome editing technologies will be relevant to understand
deregulated pathways. Through a metabolomic approach, it will
be possible to demonstrate common abnormalities, pinpointing
to a possible therapeutic target.

Finally, the generation of model organisms will be essential
in order to test and evaluate the efficacy of the therapeutic
approach in vivo.
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