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Background: Seizure clusters and “bursts” are of clinical importance. Clusters are

reported to be a marker of antiepileptic drug resistance. Additionally, seizure clustering

has been found to be associated with increased morbidity and mortality. However, there

are no statistical methods described in the literature to delineate bursting phenomenon

in epileptic seizures.

Methods: We present three automatic burst detection methods referred to as precision

constrained grouping (PCG), burst duration constrained grouping (BCG), and interseizure

interval constrained grouping (ICG). Concordance correlation coefficients were used

to confirm the pairwise agreement between common bursts isolated using these

three automatic burst detection procedures. Additionally, three graphical methods were

employed to demonstrate seizure bursts: modified scatter plots, staircase plots, and

dropline plots. Burst detection procedures are demonstrated on data from continuous

intracranial ambulatory EEG monitoring in a patient diagnosed with drug-refractory

focal epilepsy.

Results: We analyzed 1,569 seizures, from our assigned index patient, captured on

ambulatory intracranial EEG monitoring. A total of 31, 32, and 32 seizure bursts were

detected by the three quantitative methods (BCG, ICG, and PCG), respectively. The

concordance correlation coefficient was ≥0.99 signifying considerably stronger than

chance burst detector agreements with one another.

Conclusions: Bursting is a quantifiable temporal phenomenon in epilepsy and seizure

bursts can be reliably detected using our methodology.

Keywords: EEG, bursts, seizure cluster, prediction, epilepsy, interseizure interval

INTRODUCTION

Epileptic seizures tend to congregate at certain time points of the temporal course in some patients
and this phenomenon is broadly defined as seizure clustering (1–3). Identifying patients with
seizure clusters is of practical importance as it appears to be a marker of intractable epilepsy (4).
However, there is no uniform agreement among investigators, either in the definition or in the
quantification of seizure clustering. Furthermore, clustering generally refers to clinical seizures and
it has been well-demonstrated that patients underreport their seizures while there may be many
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subclinical seizures only detected on the EEG (5). Hence,
the temporal congregation of seizure activity is much broader
than clinical seizure clustering and we have identified this
phenomenon as seizure bursts (6).

Patterns of human epileptic seizures and neuronal spike
trains share similarities such as specific durations of events
(seizures or spikes) and inter-event intervals. Therefore, useful
insights can be gleaned from studies on neuronal spikes. For
many years, and for good reasons, “burst event complexes”
have preoccupied investigations into neuronal spike trains (7).
The main motivations for this have been the desire to translate
visible features of spike trains into distinct subpopulations
and to explore whether clinical or biochemical forces play a
role in spike patterns (7). Turnbull et al. (7) offer compelling
justifications for the investigation of bursts ranging from their
significance in signal encoding to their potential importance
as a regulatory mechanism. For neuronal bursting, it has
been suggested that inhibitory safeguards may impose an
overwhelming accumulation of corrections or adjustments,
possibly in association with regional neural structures (7). In
conjunction with this, an array of ingenious burst detection
methods for neuronal spike trains has been proposed by several
researchers (7–10). However, these methods have not yet been
translated for the analysis of epileptic seizures and discharges.

At the heart of most burst detectionmethods is the notion that
“if bursts exist amongst neuronal spike trains, then their presence
will be highlighted by abrupt changes in spike rate patterns
(e.g., shortening of the interspike intervals) distinguishing them
from the background” (10). The challenge is to find a way of
locating the points (onsets) and the extents (durations) of these
abrupt changes. Some key quantitative features of bursts need
to be specified before using automated detection methods and
there is no consensus on values for these features. Such features
have been delineated in previous research and typically include
the number of firings per burst and the maximum interspike
interval (7, 10, 11).

Similar to clustering, the bursting of epileptic seizures may
have clinical implications. Therefore, further characterization
and analysis of seizure bursts in humans is warranted. We
have previously presented a demonstration of seizure bursts
in a cohort of drug-resistant focal epilepsy (6). However, this
previous work did not detail the statistical methodology of
different techniques for the selection of bursts as being distinct
from other seizures and epileptic activity. To ensure further
accounts of seizure bursts are robust, it is necessary to present
a suite of statistical measures to quantify and detect bursting
which remains the focus of the current study. Using intracranial
ambulatory EEG data in drug-resistant focal epilepsy, we present
qualitative and quantitative methods to identify, characterize,
and quantify seizure bursts.

MATERIALS AND METHODS

Subjects and Data
We have previously presented an analysis of the bursting
phenomenon in a dataset of continuously recorded intracranial
EEG from 15 subjects (6). The aim of the current work is to

provide a detailed statistical account and comparative analysis
of burst detection methods. The following sections outline the
burst detection algorithms. For the purposes of demonstration,
burst detection methodology is discussed in detail with reference
to a single subject from the previous analysis. Additionally, in
order to display the wider applicability of our methodology,
we will present the burst-detection graphs of all subjects with
demonstrable seizure bursts in the cohort. In view of space
limitations though, tables will only be presented in regard to data
from our index case.

We used data from a clinical trial of an implantable seizure
advisory device as detailed in a previous publication (5). In
brief, all subjects in the study suffered from drug-resistant focal
epilepsy. Two intracranial electrode arrays with a total of 16
platinum-iridium contacts were implanted over the epileptogenic
zone enabling long-term ambulatory EEG data acquisition
with wireless transmission to an external device. The EEG
seizure detection was automated using an algorithm based
on an unsupervised learning approach and all seizures were
subsequently verified by expert investigators in conjunction with
seizure diaries and audio recordings of the device. The reader
is referred to Cook et al. (5) for more details. The current
analysis used seizure-onset times marked by this previous study.
We wish to emphasize that our burst detection methodology
is not designed for automated seizure detection. In order to
apply our technique of burst detection, seizure onsets have to be
pre-marked by another method, either automated or manual.

Seizures were classified into three groups based on clinical
symptoms and EEG characteristics: type 1, 2, and 3. Type 1 events
were characterized by clinical symptoms, verified by the seizure
diary, accompanied by an electrographic ictal rhythm. In type
2 events, the EEG ictal rhythms were identical to type 1, but
without any verified clinical symptoms. Type 3 events were not
accompanied by clinical symptoms and the EEG demonstrated
an ictal rhythm dissimilar to types 1 and 2.

We selected the subject with the highest meanmonthly seizure
rate from the study cohort to demonstrate our methods of
burst detection. We hypothesized that such a patient is more
likely to have seizure bursts given the known association of
seizure clusters and refractory epilepsy. We analyzed all clinical
(type 1), clinically equivalent (type 2), and subclinical (type 3)
seizures captured on the continuous intracranial ambulatory
EEG monitoring.

This study was approved by the Human Research Ethics
Committee of St. Vincent’s Hospital, Melbourne, Australia.
Written informed consent was obtained from all the participants
of this study. All data were analyzed using Stata software version
14.2 (StataCorp, Texas, USA).

Burst Detection Methods
In the absence of previous work on seizure bursts, our
methodology was heavily influenced by the research on
neuronal spike bursts. The burst detection in neuronal spike
trains described in previous research belongs to four classes,
quantitative methods for the detection of sudden changes
in the spike rate (7, 8, 10–13), graphical methods (7, 8,
12, 14), non-parametric methods (9), and methods developed
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around electrophysiology and inter-neuronal communication as
opposed to empirical methods (15, 16).

We adopted three graphical methods to demonstrate the
presence of bursts in seizure patterns and three quantitative
methods to detect, characterize, and quantify seizure bursts.
Additionally, we adopted two approaches to assist with
confirmation of the validity of our burst detection methods: one
to illustrate the agreement between our bursts with graphical
evidence, and one to demonstrate the concordance of pairs of our
burst predictors.

We characterized bursts in terms of the number of seizures
per burst, the type of seizures (clinical, clinically equivalent, or
subclinical) within the bursts, the interseizure interval (ISI), and
the duration of the bursts per se. Events that constituted a burst
(e.g., seizure) were termed “burst elements”. We examined the
impact of detection method on statistical summaries of these
features. Technical and operational details of our burst detection
methods are summarized in Appendix 1.

Graphical Methods
Three plot styles were developed to help with our analysis of burst
detection by exposing their presence in plots.

Modified scatter plot
The modified scatter plot allows us to see the degree to which
burst elements align along study time (x-axis) in terms of seizure
durations and ISIs (two distinct y-axes). If our speculation about
bursts being comprised of homogeneous elements occurring in
close proximity to one another, we should see (near) vertical lines
with each line representing a burst.We have labeled those vertical
assemblies of observations (seizures/ISI’s) as “Palisades”.

Staircase plot
Our second display is the “staircase plot” where we plot
seizure onset time vertically (y-axis) vs. the sequence of seizure
occurrence (x-axis) and if bursts exist they will be represented by
horizontal plot lines. Conversely, vertical lines with few points
(seizures) will coincide with relatively quiescent periods during
the study. When bursts and non-burst periods alternate in a
subject during the total period of EEG recording, we expect
to see a “Staircase pattern” created by alternating vertical and
horizontal lines.

Dropline plot
Thirdly, we present the plot of seizure duration (y-axis) vs. time
into the study when the seizure took place (x-axis). Note that the
duration of each seizure is portrayed by the height of the vertical
lines. In keeping with the method described by Turnbull et al.
(7), we should see dense areas across the plot (“Density bands”)
where bursts exist due to the congregation of short, close seizures
of similar duration around certain time points.

Quantitative Methods
Three automatic burst detection methods were developed and
were referred to as precision constrained grouping (PCG), burst
duration constrained grouping (BCG), and interseizure interval
constrained grouping (ICG).

In all methods, 10 seizures were defined as the lower limit of
events per burst. There are two major reasons for our selection of
10 seizures as the smallest permitted composition of bursts. First,
previous researchers have indicated numbers of event counts
near to this value as the lower limits of spike bursts (7, 10,
11, 13). Second, for statistical analysis of the composition of
bursts, 10 events would be ideally placed as the entry level for
characterization of the burst “ingredients”.

Precision constrained grouping method
This automated grouping method deploys a precision controlled
transformation of seizure onset times to achieve their grouping.
By this, we mean that when seizure onsets are sufficiently close in
time, the transformation of the times may lead to groups of them
being judged to appear, computationally, as occurring at the same
actual points in time thus rendering bursts.

Burst duration constrained grouping method
The second approach to automating burst detection used integer
“floored” division to produce limited value (by flooring the
calculation) quotients. In this process, the numerator and
denominator of the quotient were, respectively, the seizure onset
time and themaximumburst duration. The quotients then served
as the basis for seizure grouping.

Interseizure interval constrained grouping method
Turnbull et al. (7) proposed a dual constraint method for
burst detection in the investigation of spike trains. Constraint
1: a minimum number of spikes required for a sequence of
spikes to comprise a burst, and constraint 2: a maximum
interspike interval to allow blockage of “remote” spikes from
being admitted into a burst, at either its beginning or its end. Our
implementation of this approach for seizures follows Turnbull
et al.’s suggestion with constraint values adjusted to match the
seizure setting, as opposed to spikes.

Methods to Examine the Agreement Amongst Burst

Detectors
We describe two methods to address the agreement among (1)
quantitative isolation of bursts and the Palisades in the scatter
plots, and (2) the pairwise concordance of the burst onset
predictions amongst the three quantitative procedures.

Burst-Palisade plot
If the Palisades in our modified scatter plots actually coincide
with our predicted burst onsets from the quantitative methods
we should be able to conceive a plot showing the two structures
overlapping.

We have termed this graphical approach the Burst-palisade
plot and here we show seizure duration in seconds (y-axis)
against time into the study in days (x-axis). Because we have
already shown that the ISI and durations align there is no
advantage of plotting ISI, hence the selection of only seizure
duration for our plot. In the burst palisade plot, we portray
our quantitatively determined burst onsets as thin vertical lines
emanating from the x-axis at each predicted burst.
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Concordance correlation coefficient
Concordance correlation coefficient allows us to confirm the
pairwise agreement between common bursts isolated using
our three automatic burst detection procedures. For example,
comparing PCG and BCG burst onset predictions then, using the
approach of Lin (17), if both methods predict the same bursts, we
would anticipate their concordance correlation coefficient to be
relatively high (i.e., close to “1”) (17).

RESULTS

Subject Characteristics
A total of 15 subjects underwent intracranial EEG monitoring
in the original study (5). Six subjects displayed seizure bursts
when tested with our methods. To detail the methodology,
we selected one patient (identification number 3) with drug-
resistant focal epilepsy who underwent ambulatory intracranial
EEG monitoring for 523 days and a total of 1,569 seizures were
captured (type 1= 160, type 2= 137, type 3= 1,272).

Evidence of Bursts Using Graphical
Methods
Figures 1–3 present plot segments using each of the three burst
exposure plot styles. In Figure 1 (modified scatter plot) for ID 3,
we see that there are around 20 heavy vertical point assemblies
comprising seizure durations (represented by blue dots) and
ISIs (represented by red dots) coinciding with data palisades
(“Palisade pattern”) representing seizure bursts for this subject.
In the same figure, we also present the modified scatter plots
of the other five patients demonstrating the palisade pattern
indicative of seizure bursts.

Figure 2 (Staircase plot) displays, for the selected patient (ID
3), around five segments of dotted horizontal lines and around
five vertical lines (“Staircase pattern”). The horizontal lines
coincide with bursts. The vertical lines coincide with quiescent
periods with few seizures and long ISIs. Staircase plots from the
other five subjects are additionally included in this figure.

Lastly, Figure 3 (Dropline plot) illustrates consistency with
the conjecture of Turnbull et al. (7) that plot density in such
a graphic is evidence of bursting. The low lying, high dense
horizontal region (“Density band”) represents seizure bursts, and
it is particularly evident in the plots for subjects seven and nine.

We show that, in combination, the burst evidence plots
complement one another as shown by the close delineation of a
number of seizure bursts in the study (Figure 1) and proximity
of bursts (Figure 2). Features from these plots help with burst
onset isolation using our quantitative methods as detailed in the
next section.

Evidence of Bursts Using Quantitative
Methods
We present data from the patient ID 3 to expose key
characteristics of bursts. Table 1 highlights two aspects of bursts;
(1) their typical composition in regard to seizure count, and (2)
the diversity of seizure types within bursts. The implication of the
burst detection method in regard to these aspects is also shown.

Of particular note is that there are relatively few type 1 and 2
seizures amongst the burst elements (<1 and <5%, respectively)
and that the mean seizure count number in regard to type 3
seizures is closely reflected by each detection method. We also
infer that for each detectionmethod, each type 1 seizure occurred
in the same burst (mean seizure precisely integral, and sd =

0), for example, all 5 type 1 seizures detected using the BCG
procedure occurred in a burst containing 20 seizures and further
exploration revealed that all such bursts bymethod were precisely
(temporally) adjacent to one another.

Table 2 shows statistics relating to the features (duration and
ISI in seconds) of seizures within the burst (burst elements) and
it is evident that there is good agreement amongst the different
detectors. It would be representative to state that the typical
burst element (seizure within a burst) has a duration of 6 s and
an ISI of 110 s with durations up to almost a minute and ISIs
of 14min. The constraint of the ICG detection method (ISI <

600 s) precluded from reporting the same maximum ISI as the
other methods.

Table 3 captures the statistics of burst duration (in seconds).
A good agreement between the BCG and PCG detectors can be
seen, but the ICG detector has a wider range of values. Typically,
a burst lasts for about 25min and the duration ranges from about
12min to 40min. Whereas, the BCG detector constraint became
active here, this seems to have actually brought the BCG and PCG
detectors closer together.

Evidence of Agreement Among Different
Burst Detection Methods
Using our operational methods for burst detection, as detailed in
Appendix 1, in subject ID 3, we found that for the detectors BCG,
ICG, and PCG, the numbers of bursts detected were, respectively
31, 32, and 32 (an agreement of better than 95%). However,
there is no assurance that the methods should each find specific
bursts in precisely the same order. Indeed, to achieve this was
not included amongst our detection design criteria. To address
this in regard to corroboration of bursts across the methods, we
developed a “soft sentinel seeking” approach where for each burst
located using any one of the detection methods, we scanned the
entire array of bursts found using the othermethods for a “match”
(to <1% tolerance) to the “reference” burst (i.e., sentinel). The
scanning match element (or burst sentinel) was based on the
mean of the actual seizure onset times in each burst, thus offering
the most rigorous basis for the agreement being dependent on all
seizures within each burst. The sentinel units were expressed as
day (i.e., to the precision of a fraction of a day) of the seizure into
the study following the day after the first seizure during the study.

Burst-Palisade Plots
In Figures 4–6, we present plots showing the agreement between
the modified scatter plot and three quantitative methods: the
burst-palisade plots. Figure 4 is for the PCG burst detector, 5 for
the BCG detector, and 6 for the ICG detector. The overlapping
of Palisades of the modified scatter plot and vertical lines of the
quantitative method indicates good agreement between the two
methods in burst detection.

Frontiers in Neurology | www.frontiersin.org 4 February 2019 | Volume 10 | Article 156

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Seneviratne et al. Detection of Seizure Bursts

FIGURE 1 | Modified scatter plots. Note there are vertical assemblies of data points constituting seizure durations (blue points) and interseizure intervals (red points).

These vertical assemblies referred to as “Palisades” represent the bursting phenomenon. Each plot represents data from an individual patient and the number on top

is the unique identification number of the subject. The x-axis represents time into study (in days) whereas the y-axis on the left indicates seizure duration (seconds) and

the y-axis on the right represents interseizure interval (seconds). (ISI, interseizure interval; Ln, logarithmic normal).

Concordance Correlation Coefficient
For all concordance analyses, the concordance correlation
coefficient was ≥0.99 signifying considerably stronger than
chance burst detector agreements with one another.

DISCUSSION

We have described graphical and quantitative methods to detect,
characterize, and quantify seizure bursts. The graphical methods
have revealed three patterns to identify bursts with visual
analysis: the Palisade pattern, the Staircase pattern, and the
Density band pattern. The quantitative methods have provided
burst-detection algorithms to define and quantify bursts. We
have also demonstrated agreement among different methods
indicating the robustness of our approach. We tested our
methodology in a group of 15 patients with drug-refractory
focal epilepsy who underwent intracranial ambulatory EEG
monitoring and detected six subjects with seizure bursts
demonstrating the applicability of our methods (6). We present
a comprehensive analysis of a single subject in this paper to
highlight the details of our methodology so that it can be
replicated and retested by researchers in the future.

Several authors have noted that seizures tend to cluster around
certain time points, but there is no universal agreement on
a definition of this phenomenon. The reported prevalence of
seizure clustering ranges from 13 to 76% depending on the
definition, the methodology of cluster detection (e.g., seizure
diaries vs. video-EEGmonitoring), and the cohort characteristics

(1). The recognition and detection of seizure clusters have
important implications for routine clinical practice. Seizure
clustering has been reported to be a marker of antiepileptic
drug resistance (4). Additionally, seizure clustering has been
found to be associated with frequent hospital admissions, higher
risk of postictal psychosis, and increased morbidity as well as
mortality (1). Seizure clustering is perhaps an under-recognized
phenomenon. Canine epilepsy is known to resemble human
epilepsy and prolonged intracranial EEG recordings in dogs with
focal epilepsy have demonstrated a tendency for most seizures to
cluster (18).

Furthermore, clustering and bursting of seizures can
potentially pose challenges in the presurgical evaluation due to
inadequate sampling. When the subject has multiple seizure
foci, as a result of clustering tendency, a series of seizures may
originate from a single focus. If the video-EEG monitoring is not
continued for a sufficient length of time, seizures from other foci
may not be captured and inaccurate conclusions might be drawn
regarding the localization as well as the suitability for epilepsy
surgery. This pitfall is particularly relevant in drug-refractory
epilepsy where clustering is a well-known association.

In keeping with theoretical concepts of spike bursts, we have
introduced the term “seizure burst” to identify aggregation of
seizures in the temporal domain. Conceptually and statistically
bursts and clusters demonstrate some differences as well as
similarities. Seizure bursts consist of both clinical as well as
subclinical seizures, whereas seizure clusters include only clinical
seizures. Conceptually, bursts are intrinsically connected with
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FIGURE 2 | Staircase plots. Note there are segments of dotted horizontal lines and around five vertical lines (“staircase pattern”). The horizontal lines coincide with

bursts. Similar to Figure 1, plots from six subjects are included here. The x-axis represents the occurrence of seizures in the chronological sequence whereas the

y-axis indicates the date of the study.

FIGURE 3 | Dropline plots. Note the highly dense horizontal region (“density band”) representing seizure bursts in six patients. The y-axis indicates seizure duration

and the x-axis represents time into the study when the seizure took place.
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TABLE 1 | The mean, maximum, and standard deviation of the number of

seizures per burst, and the total number of seizures (n) in all bursts, broken down

by detection method, and by type of seizures.

Method Seizure

type

Mean Maximum Standard

deviation

Total

number

BCG 1 20.0 20.0 0.0 5

2 20.3 24.0 4.8 28

3 14.8 24.0 4.0 405

ICG 1 19.0 19.0 0.0 4

2 20.8 23.0 2.2 27

3 16.4 26.0 4.9 473

PCG 1 11.0 11.0 0.0 3

2 15.9 19.0 4.0 18

3 15.3 24.0 3.9 441

BCG, burst duration constrained grouping; ICG, interseizure interval constrained

grouping; PCG, precision constrained grouping.

TABLE 2 | Mean, median, standard error, minimum, maximum, and, count (N) of

all burst-related seizures, for seizure duration (upper 3 rows) and for interseizure

interval (lower 3 rows), for each detection method.

Method Mean Median SE of mean Minimum Maximum N

BCG 6.32 5.09 0.18 2.44 55.23 438

ICG 6.43 5.19 0.14 2.44 21.28 504

PCG 5.99 4.85 0.16 2.44 55.23 462

BCG 108.12 74.26 5.45 4.31 843.12 407

ICG 111.78 76.34 4.55 6.01 564.97* 471

PCG 109.29 75.03 5.16 4.31 812.43 430

BCG, burst duration constrained grouping; ICG, interseizure interval constrained

grouping; PCG, precision constrained grouping; SE, standard error. Seizure feature time

units are seconds. An asterisk (*) denotes an active detector, ICG, constraint with the

consequence of a maximum interseizure interval (ISI) limitation (<600 seconds). Note that

for each burst, there is one fewer ISI than duration value, for example, whereas, for the

BCG predictor there are 438 total seizure duration values there are only 407 (=438-31)

ISI values.

both time and rates. Bursts of events happen rapidly and in a
repetitive style. Clusters can be repetitive too but the explicit
context (e.g., time or space) is the unifying descriptor. Bursts
usually occur within a shorter time window (minutes) as opposed
to clusters measured over longer time spans (hours to days).
Statistically, both clusters and bursts imply a memory of event
timings so that interseizure intervals do not follow a Poisson
distribution suggesting that individual seizures within a cluster
or burst are not independent events.

It is important to compare the bursting phenomenon with the
clinical concept of seizure clusters, which consist of a series of
seizures, occurring in a group, with shorter than usual interictal
periods. However, there is no universal agreement on the number
of seizures and the time limit to which a cluster may be contained.
The most widely used definition is ≥3 seizures within 24 h
described by Haut (2). Other definitions include ≥3 seizures
within 4 h in the epilepsy monitoring unit (19), an episode of
multiple seizures distinguishable from the usual seizure pattern
occurring within 24 h (in adults) or 12 h (in children) (20), and

TABLE 3 | Mean, median, standard error, minimum, and maximum of the burst

duration for each detection method.

Method Mean Median SE of mean Minimum Maximum

BCG 1521.36 1531.54 21.94 720.62 2351.49*

ICG 1767.29 1420.79 32.25 785.28 3339.06

PCG 1584.29 1495.18 23.48 314.01 2438.08

BCG, burst duration constrained grouping; ICG, interseizure interval constrained

grouping; PCG, precision constrained grouping; SE, standard error. Burst duration units

are in seconds. An asterisk (*) denotes an active detector, BCG, constraint consequence

(<2,400 s).

≥3-fold increase in the perimenstrual period (catamenial seizure
cluster) (21). From a statistical standpoint, previous studies have
considered deviations from the Poisson distribution as evidence
of clustering (2, 3). We have used a wider variety of methods,
both qualitative and quantitative, to delineate and define seizure
bursts. We also emphasize that seizure bursts described by us
is primarily a mathematical delineation and the underpinning
biologic mechanisms remain to be elucidated. Additionally, the
clinical significance of seizure bursts warrants further research
and we speculate, similar to seizure clusters, bursting may be a
potential marker of drug-refractory epilepsy.

An interesting observation in Burst-palisade plots (Figures 4–
6) is the evidence of occasional clustering of bursts, i.e., three
or more bursts within close proximity of one another indicated
by a group of vertical lines. Just as bursts are a congregation
of seizures, bursts themselves seem to have the potential to
exist in “groups” or “clusters.” It is interesting to note that the
clusters of bursts themselves appear to be somewhat specific to
the detectors, or the detectors have clustering specificity in regard
to the detection of burst clusters. For example, around day 200 we
see three bursts for PCG and ICG but four for the BCG detector.
The lone burst after day 300 for both BCG and PCG is clearly two
bursts detected by ICG (Figures 4–6). Given that bursts consist
of both clinical and subclinical seizures, clustering of bursts is
probably a reflection of clustering of clinical seizures (clinical
seizure clusters). Further research is warranted to investigate the
relationship between seizure bursts and clusters.

Using the three quantitative methods (PCG, BCG, and ICG),
in the patient (ID 3), we found a mean burst duration (across all
bursts) of 1,630 s, amean ISI of 109 s, and amean seizure duration
of around 6 s. Thus, on average, we observe approximately 16
seizures per burst in our studies, and our lower cut-off for
the number of consecutive seizures to comprise a burst was
10. These findings can be compared with the literature on the
detection of neural spike bursts. For instance, Legendy posited
that spike bursts could be identified as regions where the local or
regional mean firing rate was significantly higher than the long-
term mean rate (10). The change in rate, termed the Poisson
Surprise, was deemed to arise when the long-term mean rate,
applied (as the Poisson parameter) to a Poisson prediction
model, failed to accurately predict a regional firing level, and
the region was identified as a spike burst. Using the Poisson
Surprise method, Legendy examined spike trains with a view
to isolating bursting regions and found that the bursting spike
rate, was 3–6 times higher (40 sec−1) than the average spike
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FIGURE 4 | Burst-palisade plot of precision constrained grouping detector. The dots represent the observed seizures against time into the study. The vertical lines in

red color represent the predicted burst onsets from burst detection algorithms (PCG). The agreement of the burst prediction algorithms with the modified scatter plot

is reflected by the alignment of the vertical lines and the palisades of dots. Data from six subjects who demonstrated seizure bursts are plotted here. Time into the

study (days) is on the x-axis, whereas the y-axis represents seizure duration (seconds).

FIGURE 5 | Burst-palisade plot of burst duration constrained grouping detector. Similar to Figure 4, the alignment of vertical lines and palisades indicates good

agreement between the graphical method and the BCG detector.

rate, contained 10–50 spikes per burst, and lasted for about a
second. The Poisson Surprise burst prediction method bears
some resemblance to our Precision Controlled Grouping (PCG)
procedure discussed above.

Using a graphical method involving spike scatter plots where
the ordinal spike number (y-axis) and time of spike occurrence
(x-axis) are shown, Turnbull et al. noticed the appearance of
vertical lines (“Strings”) apparently reflecting the “simultaneous
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FIGURE 6 | Burst-palisade plot of interseizure interval constrained grouping detector. Similar to figure 4, the alignment of vertical lines and palisades indicates good

agreement between the graphical method and the ICG detector.

occurrence” of groups of spikes (7). These vertical lines were
identified as bursts of spikes. String plots of neuronal spikes are
essentially the same as our Staircase plots (Figure 2) with the x
and y-axes switched and we have shown how clearly these plots
indicate the presence of seizure bursts.

The underlying mechanisms and dynamics of the bursting
and clustering phenomena in the brain are not well-delineated.
Several mechanisms have been postulated to explain the
generation of seizure clusters. This includes inadequate
postictal inhibition (22), inherent self-triggering capacity
overcoming postictal inhibition (22, 23), and natural clustering
due to scale-free dynamics of interseizure intervals (23).
It is a matter of debate whether the seizures within a
burst are causally related or they represent independent
and distinct events. However, the bursting phenomenon
is in line with the previous research demonstrating
the long-range dependence of seizure timings (24).
Further research to delineate the EEG features associated
with seizure bursts and clusters would be valuable in
clinical practice.

Perhaps the greatest strength of our investigation is that
we have both identified and presented plausible accounts
of novel features of seizure patterns in ambulatory patients
with epilepsy. Ambulatory intracranial EEG monitoring can
be considered the best tool to explore seizure bursts, as
patients tend to miss seizure symptoms and seizure diaries
are less reliable due to under-reporting (5). Allied to this, we
have developed an array of qualitative (graphical) methods
to highlight the presence of these features, and quantitative
methods to automate their precise points of occurrence in the
temporal domain.

We acknowledge some limitations of the study. Our
methodology is described based on drug-resistant epilepsy and
it may not be extrapolated to all epilepsy patients in general.
However, we believe that drug-resistant epilepsy is probably the
best model to study this phenomenon. Long-term ambulatory
intracranial EEG monitoring is a research tool which is not
available in clinical practice at present. Hence, further research
is needed to test the applicability of our methodology to
detect seizure bursts and clusters in routine clinical practice
with common data sources such as seizure diaries and video-
EEG monitoring. The emergence of long-term ambulatory
EEG monitoring using subcutaneous electrodes is likely to
provide better opportunities to apply our methodology in the
future (25).

CONCLUSIONS

Seizure bursts is an underrecognized and underreported
phenomenon with potential clinical implications. Using long-
term intracranial EEG data, we have described both qualitative
and quantitative methods to detect and quantify the bursting
phenomenon. We believe that our methodology will provide a
framework for other investigators to advance their own studies
of burst detection and we hope the tools we have described may
simplify their investigations.
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