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Abnormal oscillatory activity in the subthalamic nucleus (STN) may be relevant for motor

symptoms in Parkinson’s disease (PD). Apart from deep brain stimulation, transcranial

magnetic stimulation (TMS) may be suitable for altering these oscillations. We speculated

that TMS to different cortical areas (primary motor cortex, M1, and dorsal premotor

cortex, PMd) may activate neuronal subpopulations within the STN via corticofugal

neurons projecting directly to the nucleus. We hypothesized that PD symptoms can be

ameliorated by a lasting decoupling of STN neurons by associative dual-site repetitive

TMS (rTMS). Associative dual-site rTMS (1Hz) directed to PMd and M1 (“ADS-rTMS”)

was employed in 20 PD patients treated in a blinded, placebo-controlled cross-over

design. Results: No adverse events were noted. We found no significant improvement

in clinical outcome parameters (videography of MDS-UPDRS-III, finger tapping, spectral

tremor power). Variation of the premotor stimulation site did not induce beneficial effects

either. A single session of ADS-rTMS was tolerated well, but did not produce a clinically

meaningful benefit on Parkinsonian motor symptoms. Successful treatment using TMS

targeting subcortical nuclei may require an intervention over several days or more

detailed physiological information about the individual brain state and stimulation-induced

subcortical effects.

Keywords: Parkinson’s disease, TMS, dual-site, hyperdirect tract, coordinated reset, paired associative

stimulation

INTRODUCTION

Bradykinesia and tremor impair quality of life in patients suffering from Parkinson’s disease (PD),
(1). Dopamine replacement therapy is limited by dyskinesia and its symptomatic benefit may
be insufficient. Although some motor symptoms can successfully be ameliorated by deep brain
stimulation (DBS) of the subthalamic nucleus (2), many patients are reluctant to undergo invasive
procedures or are not eligible. In those patients, add-on therapies based on noninvasive brain
stimulation techniques may be a promising alternative.

A key element in Parkinsonian pathophysiology is an alteration of information
processing within cortico-basal ganglia networks. In particular, the off-motor state has
been linked to abnormal beta-oscillatory neuronal activity in a network comprising
basal ganglia and motor cortical regions, with the strength of these oscillations being
correlated to motor impairment (3–7) and dopamine replacement therapy (8–12).
Abnormal beta oscillations within the STN circuitry likely depend on neuronal coupling
and synchronized activity. Tass (13) and Popovych and Tass (14) have hypothesized that
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pathogenic STN oscillatory activity may be dampened using
a stimulation protocol tailored to the oscillatory properties
which they termed “co-ordinated reset” (CR). In their model,
STN neurons may be desynchronized using specific stimulation
patterns. Evidence in favor of this approach has been provided in
Parkinsonian monkeys (15). An important feature of CR-based
DBS is the notion that effects substantially outlasted the duration
of the stimulation. This raises the possibility that long-term
depression (LTD) has been induced by a Hebbian mechanism
in synapses interconnecting STN neurons. In a pilot study the
possible efficacy of the method has also been demonstrated in
humans (16).

In a systematic review of therapeutic approaches that were
based on non-invasive transcranial magnetic brain stimulation
(TMS) Chou et al. (17) concluded that TMS was effective
in ameliorating bradykinesia when either the primary motor
cortex (M1) was stimulated at high (≥5Hz) frequencies, or
more frontal motor regions outside M1 were stimulated at low
frequencies (≤1Hz). Although these therapeutic effects might
be mediated by induction of changes in cortical excitability
another possibility may be a modulatory effect on subcortical
structures connected to the cortex via a direct cortico-basal
ganglia projection, known as the “hyperdirect tract” (18). This
tract has also been discussed as the decisive structure activated
by STN-DBS (19–21) and may constitute an interesting target
for TMS. Furthermore, evidence exists for a direct short-latency
effect of TMS on STN neurons (22, 23) which may have been
propagated by the hyperdirect tract. Targeting this tract with
TMS may open up a pathophysiologically founded therapeutic
stimulation approach targeting pathological oscillatory activity
in the STN using TMS. Importantly, as TMS can be timed
very precisely it may be able to induce spike-timing dependent
plasticity effects in neuronal synaptic connections. Indeed,
paired-associative stimulation (PAS) protocols (24, 25) which
involve time and location specific activation of neuronal inputs
by TMS have been shown to induce LTD-like effects outlasting
the intervention for tens of minutes. Plasticity resembling
spike-timing dependent plasticity can be induced in cortical
neurons by directing timed TMS pulses to two cortical regions
(26–28) and subcortically, at the level of the spinal cord,
by pairing TMS to M1 with appropriately timed peripheral
stimulation (29).

Considering these facts, we aimed to develop a new TMS
treatment protocol. We based our protocol on the assumption
that different groups of STN neurons may be targeted by TMS
mediated by the parts of the hyperdirect tract that originate
from premotor and primary motor cortex. As STN neurons
oscillate together in the Parkinsonian state, decoupling of these
different populations could perhaps be achieved by targeting
them with TMS applied in such a way that pulses act on
these populations at different times during their oscillatory
cycles. We hypothesized that a TMS protocol targeting both
primary and premotor areas in a coordinated fashion may
achieve this and thus be capable of attenuating pathogenic
oscillatory activity in STN neurons which may outlast the
stimulation due to LTD-like plasticity effects as shown in CR and
PAS protocols.

MATERIALS AND METHODS

All procedures were approved by the local Ethics Committee
(University of Leipzig, file-no.: 351-13-26082013) and written
informed consent was obtained from each participant.

Patients and TMS Protocol
PD patients were recruited through the outpatient clinic of
the Department of Neurology, University Hospital of Leipzig.
Inclusion criteria were: age of 18–75 years, Hoehn and Yahr stage
1–3 and a baseline MDS-UPDRS-III of ≥8 points. Exclusion
criteria were relevant cognitive impairment (Mini-Mental State
Examination <24), manifest depression (Beck Depression
Inventory ≥18), atypical Parkinsonian disorder, other severe
illness interfering with safe participation, participations in other
studies at the moment of inclusion and known contraindications
to TMS (epilepsy, medication with antidepressants, neuroleptics,
benzodiazepines, antibiotics, and implanted electrical/metal
devices near the head).

Patients received two interventions—VERUM (supposedly
effective) and SHAM (control)—in a cross-over design following
overnight withdrawal of their PD medication. They were
randomized to receive either VERUM or SHAM as the first
intervention, then they received the complementary procedure
at least 1 week later (Figure 1A). Subjects were blinded to the
condition and told that “one of two different interventions”
would be used. At the day of the intervention, subjects
were assessed before (BASELINE), immediately after (POST0H)
and 1 h after (POST1H) the intervention (30), comparable
to a standardized Levodopa test. Administered tests are
detailed below.

We devised an associative dual-site repetitive TMS (“ADS-
rTMS”) protocol inspired by CR stimulation (15, 16) and
paired associative stimulation (24, 26, 27, 31) protocols. Our
TMS protocol included stimulation of a premotor and the
primary motor area (M1) (32) to activate distinct regions
within STN. We used two coils targeting the hemisphere
corresponding to the clinically more impaired body side of
the patient (right body side in 12 cases, left side in 8
cases). As a premotor area we primarily targeted the dorsal
premotor cortex which we identified physiologically in a localizer
experiment (see Supplementary Material). Additionally, we
conducted experiments with different premotor sites (see
Supplementary Material). One thousand pairs of stimuli were
applied in 40 blocks of 25 stimuli each with 5 s pause between
each block. Stimuli (double TMS pulses) were delivered at a
stimulation frequency of 1Hz. This frequency ensured rapid
completion of the intervention and rendered it unlikely that
beneficial stimulation effects were induced by each stimulation
site alone (17). Assuming an oscillatory frequency of 20Hz
(8, 33) within the targeted STN, the interstimulus interval (ISI)
between premotor and motor TMS pulses was set to 25ms,
with motor cortex stimulation leading premotor stimulation
(Figure 1B). This ISI corresponds to a half wave of an oscillation
of 20Hz and, therefore, is supposed to optimally disturb coupled
oscillators at this frequency (13). As both stimulation targets
are located very close to each other on the scalp, it was not
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FIGURE 1 | Study design and experimental procedures. (A) The general study design is depicted in the panel. PD patients were randomized to receive VERUM or

SHAM intervention. A week later each subject received the complementary procedure. At each day of an intervention, motor performance was assessed using

MDS-UPDRS-III videography, tapping and tremor analysis prior to the intervention (BASELINE), immediately after the intervention (POST0H) and 1 h later (POST1H).

(B) During the intervention two stimulation sites (a premotor area and M1) of the hemisphere contralateral to the clinically more affected body side of the patient were

stimulated. M1 stimulation was delivered 25ms before premotor stimulation. Forty blocks of 25 double pulses were applied. Intensity during VERUM stimulation was

95% of the resting motor threshold of the abductor pollicis brevis muscle, 20% during SHAM stimulation.

possible to conduct the experiment using conventional figure-
of-eight coils. Therefore, we used two custom built D-shaped
coils (“Cool-D50 research coils,” external diameter 80 × 59mm,
active cooling) together with two MagPro X100 TMS devices
which allowed stimulation of the same cortex area (coils and
device MagVenture, Willich, Germany). Despite the different
coil geometry, the efficiency of D-shaped coils was comparable
to conventional figure-eight coils as indicated by the fact that
stimulator outputs for suprathreshold stimulation of M1 were
only marginally higher compared to those customarily required
with figure-eight shaped coils.

At the start of the TMS intervention we identified the hot
spot for stimulation of the abductor pollicis brevis muscle (APB)
employing low frequency (<0.2Hz) stimulation at multiple sites
supposedly overlying M1 while recording MEPs using surface
EMG from the APB. We then used threshold hunting (34) to
identify the APB resting motor threshold (APB-RMT). This
was done for both coils. VERUM stimulation was applied at
an intensity of 95% APB-RMT at each coil. For the SHAM
stimulation everything was kept identical except we used
only 20% APB-RMT. We chose a marginally subthreshold
stimulation intensity to stay within safety limits. At 95% APB-
RMT corticospinal volleys can be recorded epidurally in patients
undergoing spinal surgery (35). This indicates that although this
stimulus intensity is insufficient to generate action potentials
in spinal motor neurons, it is sufficient to activate corticofugal
projection neurons. Additionally, previous studies using TMS
to treat PD have successfully used subthreshold intensities (17).
We used the BrainSight 2 Neuronavigation (Brain Products,
Gilching, Germany) system to control coil positioning. During
the intervention subjects were comfortably seated in a reclining
position with cushions for their arms and instructed to relax but
stay alert and attentive to the tasks. We refrained from testing
bradykinesia during the ongoing intervention because LTD-like
effects need time to build up and because we aimed to avoid
interference by voluntary activity with the intervention.

Tests and Endpoints
MDS-UPDRS-III, finger tapping performance and tremor
activity were recorded for VERUM and SHAM interventions at
BASELINE, POST0H, and POST1H as markers for PD motor
symptom severity.

MDS-UPDRS-III
Global endpoint was improvement in the third part of the
Unified Parkinson’s Disease Rating Scale of the Movement
Disorder Society (MDS-UPDRS-III). The MDS-UPDRS-III was
videotaped and later rated by two experienced and certifiedMDS-
UPDRS-III raters (C.F. and T.B.W.) in a randomized order,
blinded for condition and time of the recording. As we could
not effectively record rigidity on video we excluded this item.
We determined the inter-rater agreement using Pearson’s and
intraclass correlations.

Other clinical, lateralized endpoints were (i) change in a
hemibody akinesia score of the treated side (MDS-UPDRS-III
items 4–8, range 0–20), (ii) change in a hand akinesia score of
the treated side (sum of MDS-UPDRS-III items 4–6, range of
0–12), and (iii) total tremor score (sum of items 15–18) for the
treated hand. We hypothesized that VERUM intervention would
reduce MDS-UPDRS-III or lateralized MDS-UPDRS-III scores
compared to SHAM and/or BASELINE.

Finger Tapping Analysis
Subjects performed a finger tapping task during BASELINE,
POST0H, and POST1Hwith tapping performance as a lateralized
endpoint. Finger tapping was done on a force transducer (Grass
Instruments, West Warwick, USA) which was mounted on a
wooden box (size 50 × 30 × 5 cm3) with the level of the
transducer slightly above the surface of the box. Subjects were
instructed to “tap as quickly as possible” on the force transducer
following a go-signal by the experimenter until they were told to
stop (after 30 s). The task was performed twice with each hand,
starting with the clinically better (untreated) side.
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Data pre-processing is described in the
Supplementary Material. In order to determine relevant
parameters we employed a linear mixed effects model predicting
the MDS-UPDRS-III akinesia hand score (sum of items 4–6)
from the extracted parameters, which were modeled as fixed
effects, while we included the subject specific average tapping
force as a random effect. The latter was done to account for
individual tapping forces which scale for each subject but are
also expected to be different between the clinically worse and
the clinically better hand. Significant fixed effect coefficients (p
< 0.05) were considered relevant parameters for the prediction
of the MDS-UPDRS-III hand akinesia score. We hypothesized
that VERUM intervention would improve tapping on the treated
side. We had to exclude one dataset due to technical issues with
the recording devices.

Tremor Analysis
Tremor was recorded using triaxial wireless accelerometers
(Noraxon, Scottsdale, USA) mounted to either the proximal
phalanx of either thumb or index fingers (depending on which
finger showed a larger tremor amplitude) of both hands.
First, subjects were asked to sit with their hands resting in a
semipronated position in their lap (resting tremor). Data was
recorded for 30 s, then subjects were given a command to raise
both arms and hold them extended in front of them for another
30 s (postural tremor).

Data pre-processing is described in the
Supplementary Material. We compared the spectral power
of the peak tremor frequency separately for resting and postural
tremor analogous to the analysis employed for MDS-UPDRS-III.
We hypothesized that tremor power was reduced in response to
VERUM stimulation, which was regarded as another lateralized
endpoint of the study. We had to exclude one dataset due to
movement artifacts.

Statistical Analysis
We used custom written software in Matlab in combination
with the Statistics Toolbox (MathWorks, Natick, USA) for
offline data analysis and statistical testing. Presence of normal
distributions for outcome parameters was assessed using one-
sample Kolmogorov-Smirnov tests, which were non-significant
for each parameter. Thus, parametric tests were used for
evaluation of all outcome parameters. Primarily, repeated-
measures analysis of variance (rmANOVA) in a 2 × 3
within subject design with factors CONDITION (VERUM vs.
SHAM stimulation) and TIME (BASELINE vs. POST0H vs.
POST1H) or—for baseline-normalized data—in a 2 × 2 within
subject design with factors CONDITION (VERUM vs. SHAM
stimulation) and TIME (POST0H vs. POST1H) were employed
to evaluate effects of VERUM stimulation. We hypothesized that
the VERUM but not the SHAM intervention would improve
the clinical and technical outcome parameters (MDS-UPDRS-
III, tapping performance, tremor power) resulting in a significant
CONDITION × TIME interaction and/or a significant main
effect for CONDITION. Bonferroni-corrected post-hoc t-tests
were used to further analyze rmANOVA results. One-sample t-
tests were used for normalized data to test against unity (with

null-hypothesis that test distributions are centered at 1 after
normalization). Statistical significance was defined at an alpha
level of below 0.05. Average values are usually reported together
with their standard deviation in the text while the standard error
of the mean is displayed in the figures.

RESULTS

Twenty PD patients (age 58.5 ± 14.1 years; 15 male, 5 female,
Table 1) were included in the experiment (right-handed 16 out
of 20). All patients tolerated the procedure well and no adverse
events were noted.

Effects on MDS-UPDRS-III
Inter-rater agreement was high with respect to MDS-UPDRS-
III throughout the experiments (Figure 2A, Pearson’s correlation
of MDS-UPDRS-III scores: r = 0.925 p < 0.001; intraclass
correlation ICC(3,k)= 0.952, 95%-CI 0.931–0.967).

With respect to TMS efficacy repeated measures ANOVA
revealed neither a significant main effect of CONDITION
[VERUM vs. SHAM, rmANOVA, F(1,19) = 0.652, p= 0.430], nor
an interaction CONDITION ∗ TIME [F(2,38) = 0.872, p= 0.427],
nor a strong numeric trend in favor of or against the VERUM
intervention (Figure 2B). After normalization of POST0H and
POST1H MDS-UPDRS-III scores to BASELINE we also found
no significant main effect for CONDITION [VERUM vs. SHAM,
rmANOVA, F(1,19) = 1.432, p= 0.246] nor a significant effect for
the interaction CONDITION ∗ TIME [F(2,38) = 0.071, p= 0.794].
POST0H and POST1H average values did not differ significantly
from unity after normalization to BASELINE neither in the
VERUM nor in the SHAM condition (one-sample t-tests, p ≥

0.212, Bonferroni-corrected). Thus, VERUM stimulation had no
influence on the global endpoint of the study.

Improvement in the MDS-UPDRS-III hemibody and hand
akinesia scores of the treated side as well as MDS-UPDRS-
III-tremor scores were assessed as lateralized endpoints.
Again we found no significant effect of the intervention—
hemibody akinesia score of treated side (Figure 2B): main
effect of CONDITION [F(1,19) < 0.001, p = 0.999], interaction
CONDITION ∗ TIME [F(2,38) = 2.610, p= 0.087], hand akinesia
score of treated side: main effect of CONDITION [F(1,19) =

0.092, p = 0.765], interaction CONDITION ∗ TIME [F(2,38) =
0.267, p = 0.767], tremor score: main effect of CONDITION
[F(1,19) = 3.401, p = 0.081], interaction CONDITION ∗ TIME
[F(2,38) = 1.570, p= 0.221].

In summary, there was no significant effect of the VERUM
intervention on MDS-UPDRS-III and selected subscores.

Effects on Tapping Performance and
Spectral Power of Tremor Movements
Tapping performance was assessed as another lateralized
endpoint. A mixed model analysis was used to identify
tapping parameters that optimally predicted the MDS-UPDRS-
III akinesia score of the corresponding arm.

The MDS-UPDRS-III hand akinesia scores were well-
predicted by the model (r² = 0.755, r = 0.875, p < 0.001;
Figure 2C). Out of 8 parameters we determined (i) mean tapping
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TABLE 1 | Patient characteristics.

Subject no. Age (years, range) Disease duration (years) H&Y stage Clinically worse side L-Dopa ED (mg/d) MMSE BDI

1 70–80 2 2 Left 550 30 5

2 70–80 4 2 Right 0 30 2

3 50–60 7 2 Right 310 30 6

4 50–60 10 2 Right 560 29 2

5 40–50 11 2 Left 1,092 29 7

6 70–80 10 2 Left 550 30 3

7 60–70 9 2 Right 1,220 28 4

8 40–50 9 2 Right 730 28 10

9 50–60 5 3 Left 580 28 17

10 70–80 6 3 Right 600 29 7

11 40–50 3 2 Left 600 30 14

12 60–70 10 2 Right 845 28 0

13 60–70 5 2 Right 500 29 3

14 20–30 10 2 Right 275 30 12

15 70–80 17 3 Left 450 28 3

16 20–30 14 1 Right 300 30 13

17 60–70 19 2 Left 240 28 1

18 60–70 4 2 Right 610 29 7

19 60–70 9 2 Left 880 24 4

20 50–60 1 1 Right 254 30 3

M ± SD 58.5 ± 14.1 12.8 ± 20.9 557 ± 297 28.9 ± 1.4 6.2 ± 4.7

H&Y stage, Hoehn and Yahr stage; ED, equivalence dose; MMSE, Mini-Mental State Examination; BDI, Beck Depression Inventory. Units, disease duration and age in years; L-Dopa

ED in mg/d. M, mean; SD, standard deviation.

force (p = 0.021), (ii) mean interval between taps (p = 0.034),
(iii) standardized tapping force (p= 0.007), and (iv) standardized
tapping interval (p < 0.001) as significant for MDS-UPDRS-III
prediction. The effect of ADS-rTMS intervention on this set of
informative parameters was then evaluated, for the treated hand
only, using repeated measures ANOVA. For the mean tapping
force, there was a trend for CONDITION [F(1,18) = 4.409, p =

0.050], but no interaction CONDITION ∗ TIME [F(2,36) = 0.536,
p= 0.590; Figure 2C]. The effect of CONDITION was driven by
a slightly higher tapping force throughout the day of the VERUM
intervention. For the remaining parameters, we found neither
a significant main effect of CONDITION [F(1,18) ≤ 2.182, p ≥

0.157] nor an interaction CONDITION ∗ TIME [F(2,36) ≤ 0.817,
p ≥ 0.450].

Resting and postural tremor power were also evaluated as
lateralized endpoints (Figure 2D). For resting tremor there was
a significant main effect for spectral power of the treated
hand for CONDITION [F(1,18) = 7.541, p = 0.013] and TIME
[F(2,36) = 6.111, p = 0.005], but no significant CONDITION
∗ TIME interaction [F(2,36) = 1.686, p = 0.200]. The effect for
CONDITIONwas driven by a lower spectral power after VERUM
intervention (p= 0.031, uncorrected, Figure 2D), while the effect
of TIME was driven by a lower spectral power at POST0H
and POST1H (p ≤ 0.045, Bonferroni-corrected). For postural
tremor we found no main effect of CONDITION [F(1,18) =

1.321, p = 0.265] nor for the interaction CONDITION ∗ TIME
[F(2,36) = 3.070, p = 0.059], but again a significant main effect
of TIME [F(2,36) = 10.305, p < 0.001]. Post-hoc t-tests revealed
that the main effect of time was driven by a significant decline

in spectral tremor power following the intervention at POST0H
and POST1H for both conditions (p ≤ 0.024, Bonferroni-
corrected). As there was no significant interaction CONDITION
∗ TIME we interpret the decrease in tremor power following
both interventions as an unspecific effect (e.g., anxiety before
the intervention).

In summary, there were neither meaningful beneficial nor
detrimental effects of the intervention on either tapping
performance or tremor.

We conducted additional experiments involving stimulation
of M1 and either SMA or M1+50 as a premotor site as
detailed in the Supplementary Material. These interventions
did not yield any beneficial effect either (for details, see
Supplementary Material).

DISCUSSION

We designed a TMS intervention aiming to ameliorate
Parkinsonian motor symptoms by employing principles of
associative stimulation. The protocol was well-tolerated. None of
the tested variants of this stimulation protocol had any significant
impact on motor parameters. Our experimental strategy was
based on a variety of assumptions. Below, we examine possible
violations of these assumptions and additional reasons explaining
why results were negative, and outline consequences for future
attempts of non-invasive treatment protocols.

The anatomical basis for a short latency effect of motor
cortical stimulation on STN neurons is the presence of a
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FIGURE 2 | Effects of associative dual-site rTMS on PD motor symptoms. (A) MDS-UPDRS-III was videotaped and rated by two certified and blinded

MDS-UPDRS-III raters. There was high inter-rater agreement between both raters (C.F. and T.B.W.) as demonstrated in the scatter plot. (B) MDS-UPDRS-III was

similar for VERUM (filled bars) and SHAM (empty bars) interventions at BASELINE and did not change significantly after the stimulation (left panel). There was also no

significant effect on the MDS-UPDRS-III hemibody akinesia score (sum of items 4–8) of the treated side (right panel). (C) MDS-UPDRS-III hand akinesia scores (sum of

items 4–6) were modeled using a linear mixed model from tapping performance parameters. The model was highly predictive for the MDS-UPDRS-III hand akinesia

score when employing mean tapping force, mean interval between taps, standardized tapping force and standardized interval between taps (Left). These parameters

were further analyzed (see results section). Tapping force for the treated side is depicted as an example (Right). We found a significant effect for CONDITION

(BASELINE, POST0H, POST1H) without an interaction with TIME. Thus, no effect of the VERUM intervention can be inferred. (D) Resting tremor power tended to be

reduced after VERUM intervention, but it decreased significantly after both interventions (*p < 0.05).

hyperdirect tract connecting cortex and STN monosynaptically.
This tract has been shown to exist in animal studies (18) and
there is increasing evidence of a hyperdirect tract in humans (36–
38). A small number of studies showed that TMS directed to
motor cortical areas induces STN activity (22, 23). The ability to
activate this tract may, on the other hand, be compromised in PD
patients as there is evidence for some degree of degeneration in
the tract (39).

Little is known how cortico-basal ganglia projections may
be specifically activated by TMS and how they would influence
individual STN neurons. Fibers originating from SMA or
PMd (18, 40, 41) may predominantly terminate in non-
motor subregions within STN instead of motor regions. TMS
pulses were intended to induce co-activation in a group of
STN neurons. Although stimulation intensities near the motor
threshold have been shown to induce volleys in descending
fibers (35), stimulation intensities may have been too low to
modulate the activity of a sufficiently large number of neurons,
or to generate action potentials in cortico-fugal projection
neurons targeting the STN in particular. Previous studies also
successfully employed subthreshold TMS in PD patients (17,

42) and variably achieved beneficial effects in single sessions
(43, 44) or only after multiple days of treatment (45, 46).
Therefore, effects may be present after a first session but may
also become apparent only after repeated applications. Hence we
cannot exclude the possibility that ADS-rTMS might have been
effective if higher stimulation intensities or multiple sessions had
been used.

The interstimulus interval (ISI) of 25ms used in our
TMS protocol was based on the theoretical assumption that
pathogenic oscillations are present at about 20Hz. However,
the relevant beta oscillations may peak at any frequency
between 15 and 30Hz (33, 47) or exhibit even two peaks
at distinct frequencies (48). Therefore, an ISI of 25ms may
have been less effective to desynchronize STN neurons. Because
we had no means of assessing individual beta oscillations
in STN, it was not possible to individually adjust the ISI
for optimal effects. Furthermore, studies using PAS found
that synaptic plasticity may be deficient in the absence of
dopaminergic medication in the motor cortex of patients with
PD (49, 50). This has been recently shown to correlate with
motor performance and be in part reversible by dopamine
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replacement (51), suggesting not only a pathophysiological
link between plasticity and dopamine availability, but also
between motor cortical plasticity and akinesia in PD. The
human STN receives dopaminergic projections from midbrain
dopamine neurons (52). Studies in rat striatal slices have shown
dopamine to be an essential component of activity-dependent
synaptic plasticity at the input to the basal ganglia (53).
Therefore, overnight withdrawal of dopaminergic medication
in the present study may have compromised the ability of
neuronal synapses in the STN to undergo long-term depression.
On the other hand, Shirota et al. (46), Strafella et al. (54)
and Strafella et al. (55) have shown that TMS delivered to a
single cortical site, if anything, may facilitate striatal dopamine
release. Therefore, ADS-rTMS is unlikely to have augmented
the dopamine deficiency induced by overnight withdrawal of
dopaminergic medication.

Whether the intended cortical targets have been activated
remains another possible area of uncertainty. PMd or SMA
stimulation effects cannot be verified physiologically as easily
as M1 effects by assessing MEPs. Additionally, physiological
localization of PMd is not trivial as evidenced by the considerable
heterogeneity with respect to PMd stimulation sites used in
previous studies. In the present study we employed TMS
mapping which yielded a possible PMd site 32mm anterior to
M1 (M1+32). This site is near a PMd site at 25mm anterior
of M1 used previously (56–59). More precisely, M1+32 was
based on the absence of significant known effects tied to M1
conditioning and on suggestions of a physiological effect of
conditioning stimulation on M1 excitability whose timing (at
23ms) would be consistent with latencies of effects on M1
excitability observed in STN-DBS (60) suggesting subcortical
processing. Civardi et al. (61) also described conditioning effects
at M1+50mm which we tested in an additional experiment. In
line with reports of another group (62) we could not replicate the
described physiological effects, neither did we find any clinical
effect on PD symptoms at this stimulation site. SMA stimulation
proved difficult due to its deep location in the interhemispheric
fissure as we found that even maximal stimulation intensities
were insufficient to reliably activate the leg-associated motor area
in 2 participants.

Despite the fact that the present study failed to reach a
clinical improvement, we believe that it may stimulate future
attempts at non-invasive treatment of PD by targeting pathogenic
oscillations at subcortical targets. Apart from the limitations
discussed above, our study has certain strengths that may inform
the design of future intervention trials: The assessment of PD
symptoms was based on randomized videography of the MDS-
UPDRS-III and on objective parameters. This ensured that
researcher bias was minimized. Furthermore, a novel coil design

enabled us to stimulate two cortical areas located very close to
each other.

CONCLUSIONS

In summary, associative dual-site rTMS did not generate a
clinically meaningful beneficial effect on Parkinsonian motor
symptoms. The present findings leave us with a very large number
of TMS parameters and other parameters to be optimized.
Although future information may help to constrain this vast
space, a more promising strategy may consist in estimating
parameters individually with optimized parameter estimation
paradigms (e.g., Bayesian optimization) and on brain-state
markers of PD pathology as potentially accessible from EEG.
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