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Background: White matter hyperintensities of presumed vascular origin (WMH) are a

common finding in elderly people and a growing social malady in the aging western

societies. As a manifestation of cerebral small vessel disease, WMH are considered

to be a vascular contributor to various sequelae such as cognitive decline, dementia,

depression, stroke as well as gait and balance problems. While pathophysiology

and therapeutical options remain unclear, large-scale studies have improved the

understanding of WMH, particularly by quantitative assessment of WMH. In this

review, we aimed to provide an overview of the characteristics, research subjects and

segmentation techniques of these studies.

Methods: We performed a systematic review according to the PRISMA statement.

One thousand one hundred and ninety-six potentially relevant articles were identified via

PubMed search. Six further articles classified as relevant were added manually. After

applying a catalog of exclusion criteria, remaining articles were read full-text and the

following information was extracted into a standardized form: year of publication, sample

size, mean age of subjects in the study, the cohort included, and segmentation details

like the definition of WMH, the segmentation method, reference to methods papers as

well as validation measurements.

Results: Our search resulted in the inclusion and full-text review of 137 articles.

One hundred and thirty-four of them belonged to 37 prospective cohort studies.

Median sample size was 1,030 with no increase over the covered years. Eighty studies

investigated in the association of WMH and risk factors. Most of them focussed on

arterial hypertension, diabetes mellitus type II and Apo E genotype and inflammatory

markers. Sixty-three studies analyzed the association of WMH and secondary conditions

like cognitive decline, mood disorder and brain atrophy. Studies applied various methods

based on manual (3), semi-automated (57), and automated segmentation techniques

(75). Only 18% of the articles referred to an explicit definition of WMH.

Discussion: The review yielded a large number of studies engaged in WMH research. A

remarkable variety of segmentation techniques was applied, and only a minority referred

to a clear definition of WMH. Most addressed topics were risk factors and secondary

clinical conditions. In conclusion, WMH research is a vivid field with a need for further

standardization regarding definitions and used methods.

Keywords: white matter hyperintensities, white matter lesions, systematic review, large-scale studies, white

matter hyperintensity segmentation, segmentation, cerebral small vessel disease
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INTRODUCTION

Cerebrovascular disease represents a major burden on an
individual as well as societal level, with growing importance
in the aging western societies. Stroke as the most prominent
example is the second most frequent cause of death in the world
and the most frequent cause of acquired permanent disability
(1). Vascular dementia represents another manifestation of
cerebrovascular disease and is the second most frequent type
of dementia following Alzheimer’s disease (2). In Alzheimer’s
disease, cerebrovascular pathology is also a frequent finding (3).
Among other causes, these disease entities are considered to
be associated with cerebral small vessel disease (CSVD). CSVD
comprises different structural changes observed in post-mortem
or in-vivo brain imaging, all of them related to alterations of
small brain arteries. These include small subcortical infarcts,
lacunes, dilated perivascular spaces, cerebral microbleeds, and
particularly white matter hyperintensities of presumed vascular
origin (WMH).

According to the Standards for Reporting Vascular changes
on nEuroimaging (STRIVE)—an international consensus on
the definition of cerebral small vessel disease—WMH are
hyperintensities on T2-weighted magnetic resonance images
(MRIs), which are located in the white matter and of varying
size (4). Affecting preferentially the elderly, WMH are associated
with cognitive impairment, mortality, increased risk of stroke
and play a role in the development of late-onset depression (5–
7). They are further considered to worsen gait (8), balance (9),
and urinary function (10). Common cardiovascular risk factors
associated with WMH (11), include hypertension (12), smoking
(13), and diabetes (14). Nevertheless, the exact etiology and
pathogenesis ofWMH, as well as their role in neurodegeneration,
is not fully understood. Therefore, further research on WMH is
necessary to clarify these questions and guide future treatment
and preventive interventions.

For epidemiological research, quantitative assessment of
WMH is a crucial requirement for adequate analysis of
associated risk factors and clinical deficits. Semi-quantitative
assessments using visual rating scales (15, 16) carry certain
disadvantages such as limited accuracy, high intra- and inter-
rater-variation (17), low comparability (18), and inadequate
depiction of longitudinal changes (19). Moreover, visual rating
scales usually do not reflect precise localization of observed
WMH. Although correlating with visual rating scales (20),
quantitative measurements based on WMH segmentation
offer a more reliable, sensitive, and objective alternative
(21), which also enables the anatomical analysis. Technically,
WMH segmentation is the process of subdividing image
voxels into subgroups based on predefined features such as
signal intensity. Figure 1 illustrates representative results of
different segmentation techniques for exemplary purposes. Since
segmenting brain lesions by hand is a highly demanding
process, the vivid research field produced various automated
and semi-automated segmentation techniques (24). Nevertheless,
there are no standardized approaches to quantitative or semi-
quantitative WMH segmentations. Also, inconsistent definitions
of WMH (4) and differing standards for the qualitative

evaluation and quantitative comparison of the results to a
so-called gold standard exist, not to mention the reporting
of these. The research community has recognized these
problems and addressed them over the last years, with the
STRIVE as a major milestone achieved in 2013: in this
position paper, experts in the field provided an unification
of cerebral small vessel disease definitions including a clear
definition of white matter hyperintensities of presumed vascular
origin (4).

Currently, there is accumulating evidence pointing to a
clinical relevance of WMH, substantially driven by large-scale
studies. Thus, standardization of methodological approaches for
WMH characterization in these studies is of crucial importance.
In this systematic review, we provide an overview of large-scale
studies assessing WMH quantitatively over the past 14 years.
We describe their characteristics, research subjects, approaches
on WMH segmentation, and the study-specific and general
development of segmentation techniques. Furthermore, we
continue the discussion about the heterogeneity issues in this
particular field of research. By this, we aim to contribute to
the unification work of the field started previously by other
research groups.

METHODS

We conducted a systematic review according to the Preferred
Reporting Items for Systematic Reviews and Meta-Analysis
(PRISMA) Statement (25). The review protocol was not
registered in advance, the completed PRISMA checklist can be
found in the Supplementary Material.

Search Strategy and Study Selection
The methods of study selection, including searched data
sources and selection criteria, were determined in advance.
Two reviewers (BF, MP) carried out the literature research in
December 2018 by searching the online-database Pubmed for
eligible records. Search terms and applied filters are presented in
the Supplementary Material.

Study selection was performed by both reviewers
independently by screening abstracts or if necessary full-
text papers for exclusion criteria. Exclusion criteria were
specified as follows: (1) sample size <500, (2) a publication
date earlier than 01.01.2005, (3) age <18 years, (4)
written in another language than English, (5) no WMH
segmentation has been performed, (6) review articles, (7)
investigation of WMH of non-vascular origin (studies on
WMH occurring in inflammatory or neurodegenerative
conditions like multiple sclerosis, lupus, Sneddon syndrome,
Huntington-like diseases, neurofibromatosis, leukodystrophies,
cerebral autosomal dominant arteriopathy with subcortical
infarcts and leukoencephalopathy, Fabry disease, sickle
cell disease, progressive multifocal leukoencephalopathy,
cerebral amyloid angiopathy, posterior leukoencephalopathy
syndrome). Studies were included if no exclusion criteria
were met.

Frontiers in Neurology | www.frontiersin.org 2 March 2019 | Volume 10 | Article 238

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Frey et al. WMH in Large-Scale MRI-Studies

FIGURE 1 | Example of segmentation of white matter hyperintensities (WMH) using different approaches The figure shows an example from an own unpublished

dataset: (1) FLAIR showing typical distribution of WMH, (2) manual segmentation rater 1 (MP), (3) manual segmentation rater 2 (CM), (4) automated segmentation via

Lesion growth algorithm (LGA) of LST toolbox version 2.0.15 (22), (5) automated segmentation via Lesion prediction algorithm (LPA) also of LST toolbox, (6)

automated segmentation via the Brain Intensity AbNormality Classification Algorithm (BIANCA) implemented in FSL (23).

Data Extraction and Analysis
Data extraction was conducted independently by both reviewers
reading the full-text articles. Resulting data were cross-checked
afterwards. Extracted information included the name of the
population study the articles belong to, year of publication,
sample size, mean age of subjects in the study, the cohort
included, and segmentation details like the definition of WMH,
the segmentation method, reference to methods papers as well
as validation measurements. Additionally, referenced methods
papers were surveyed for further details on segmentation
methods. All descriptive results are given by the mean ± the
standard error of the mean. Data that was not available is
reported as missing as long as there was no possibility to
compute it.

In accordance with previous work in this field, the methods
underlying the image segmentation were categorized into
manual, semi-automated, and automated (24). A method was
considered “manual” if the researcher annotates all lesion
voxels himself; “semi-automated,” if the researcher intervenes in
certain situations and “automated,” if there is no necessity of
human intervention in the computing process. The latter was
again classified in supervised and unsupervised depending on
whether or not the classification algorithm requires a previously
produced reference segmentation dataset, defining the affiliation
of voxels to a particular group, e.g., WMH or non-WMH.

Furthermore, papers were characterized by the type of
the underlying research question related to WMH, i.e.,
whether they studied the association of risk factors and
WMH, the influence of WMH on a certain pathology,
both directions of causation, or neither of them. All
research subjects (e.g., IL-6 or CRP) were extracted and
assigned to subcategories defined by umbrella terms (e.g.,
Inflammatory markers). Since age and sex are regularly
control variables, they are not mentioned as distinct
research subjects.

RESULTS

Search Results
A flowchart summarizing the search and selection process is
provided in Figure 2. Applying the aforementioned search terms
and filters, the PubMed search yielded 1,196 potentially relevant
records. We ruled out 1,065 of them as they met the exclusion
criteria. Six further articles classified as relevant were added
manually. A total of 137 articles fitting the criteria remained
and were included in this systematic review. An overview of
the six studies with most included articles is also part of the
results section, encompassing study characteristics and their
segmentation approach.
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FIGURE 2 | Flowchart of the search and selection process: the Pubmed research yielded 1,196 articles at baseline. No other sources for article identification were

used. After application of exclusion criteria, 137 articles remained.

Study Characteristics
The main characteristics of the studies incorporated in this
review are shown in Table 1. 137 articles were included, whereas
134 belonged to 37 large-scale prospective cohort studies Box 1
delineates the 5 cohort studies that contributed the most articles
to this review. The median sample size was 1,030, ranging from
501 to 9,361. Mean study sample size did not increase over
the 14 years investigated (Figure 3). The mean age of subjects
in the studies ranged from 46 to 83 years with a total mean
of 67 ± 0.8 years. Regarding sample characteristics, 88 of the
137 studies described investigations in a standard population,
while 32 included patients with a specific pathology. Seventeen
studies compared their pathological cohort with a healthy
control group. Concerning the underlying research question,
80 studies analyzed the relationship of risk factors and WMH,
which could be categorized into 50 different thematic groups
(Table 2). Sixty-four studies examined the link of WMH to
diseases and vice versa, covering 25 different thematic groups
(Table 3). Two papers did not fit this way of categorization.
Their research subjects were “White matter hyperintensities
and normal-appearing white matter integrity in the aging
brain” (121) and “Incidental Findings on MRI” (122). Two

studies, the Leukoaraiosis And DISability Study (LADIS) and the
Genetics of Microangiopathic Brain Injury (GMBI) study, were
originally established especially for research in WMH and their
associations, not for other or more general topics.

Segmentation
Definition of White Matter Hyperintensities
Only 24 (17.5%) articles contained an explicit definition of
WMH. The remaining studies either gave an implicit explanation
through their segmentation method or had no specific definition
of WMH. Of the studies included in our review, 72 were
published since 2014, i.e., after publication of the STRIVE paper.
Of these, 15 defined WMH explicitly, 10 of them according
to STRIVE. Forty-seven studies did not refer to any explicit
definition of WMH at all.

Segmentation Types and Segmentation Techniques
The largest proportion of studies applied automated
segmentation techniques: supervised and unsupervised
segmentation were used in 60 and 15 articles, respectively.
Fifty-seven articles described a semi-automated segmentation
technique, while only 3 papers relied on manual segmentation

Frontiers in Neurology | www.frontiersin.org 4 March 2019 | Volume 10 | Article 238

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Frey et al. WMH in Large-Scale MRI-Studies

TABLE 1 | Characteristics of large-scale study-samples incorporated in this review.

Cohort study Incorporated

articles

Years

published

Mean

sample size

Mean

age

Sample Segmentation method Gold standard Methods

paper

3C 15 2008–2017 1493 72 HS Bayesian classifier,

supervised, intensity

thresholding,

semi-automated

Visual rating scales,

none

(26, 27)

ADNI 3 2010–2015 752 75 MS: MCI/AD Markov random field,

semi-automated

Semi-automated

segmentation

(28)

AGES-

Reykjavik

7 2009–2015 3975 76 HS Artificial neural network,

supervised

Manual segmentation (29)

ARIC MRI 4 2013–2016 1193 65 HS Intensity thresholding,

unsupervised

Manual segmentation (30)

ARIC-NCS 1 2017 1713 75 MS: Atherosclerosis

Risk

Intensity thresholding,

unsupervised

Manual segmentation (30)

ASPS 1 2016 762 65 HS Intensity thresholding,

semi-automated

None None

ASPS/ASPFS 1 2014 584 67 HS Region growing,

semi-automated

None None

CDOT 1 2013 713 70 MS: DM II Watershed transformation,

unsupervised

Manual segmentation (31)

CHAP 2 2010-2014 573 80 MS: dementia Intensity thresholding,

semi-automated

Manual segmentation (32, 33)

CHARGE 1 2011 9361 70 MS: Miscellaneous None None

EVA 1 2011 780 69 HS Bayesian classifier,

supervised

Visual rating scales (27)

FHS 1 2017 1527 60 HS Intensity thresholding,

semi-automated

Manual segmentation (32, 33)

FOS 13 2007–2018 1398 62 HS Intensity thresholding,

semi-automated

Manual segmentation (32, 33)

FOS/FHS 1 2005 2081 62 HS Intensity thresholding,

semi-automated

Manual segmentation (32, 33)

GEN III 1 2016 1995 46 HS Intensity thresholding,

semi-automated

Manual segmentation (32, 33)

GeneSTAR 2 2014–2015 654 51 MS: Relatives of

early onset CHD

patients

Manual segmentation None None

GENOA/GMBI 4 2007–2017 1182 62 MS: Siblings of

hypertensive

patients,

antihypertensive

medication

Intensity thresholding,

unsupervised

Manual segmentation (30)

HUNT MRI 1 2018 862 59 HS Manual segmentation and

freesurfer

None None

ILAS 1 2018 802 59 HS Region growing,

unsupervised

None (22)

LADIS 5 2007–2016 594 74 PS: WMH Region growing,

semi-automated

None (18)

LBC 1936 6 2014–2018 676 73 HS Multispectral coloring

modulation and variance

identification, unsupervised

Semi-automated

segmentation

(34)

MCSA 1 2016 1044 78 HS Region growing,

semi-automated

None (35)

NACC UDS

(Databank)

1 2018 694 73 MS: AD, MCI Intensity thresholding,

semi-automated

Manual segmentation (32, 33)

No specific

cohort study

3 2010–2016 1703 65 MS, PS: Stroke Intensity thresholding,

semi-automated

None (26, 36, 37)

NOMAS 7 2011–2018 1216 70 HS Intensity thresholding,

semi-automated

Manual segmentation (32, 33) None

(Continued)
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TABLE 1 | Continued

Cohort study Incorporated

articles

Years

published

Mean

sample size

Mean

age

Sample Segmentation method Gold standard Methods

paper

PoP/Sunnybrook 1 2018 820 71 MS: AD, MCI,

Dementia

Adaptive local thresholding None (38)

PROSPER 2 2006 541 75 PS: Vascular

disease or high

cardiovascular risk

Fuzzy inference system,

unsupervised

None (39)

RS 10 2007–2018 2378 62 HS k-Nearest neighbor,

supervised

Manual segmentation (40, 41)

SHIP 1 2016 2367 52 HS Support vector machine,

supervised

Manual segmentation (42)

SHIP/BLSA 1 2018 2143 74 HS Not specified None None

SMART-MR 22 2008–2015 818 58 PS: Symptomatic

atherosclerotic

disease

k-Nearest neighbor,

supervised

Manual segmentation (43, 44)

SNAC-K 1 2016 501 71 HS Manual segmentation None None

TASCOG/Sydney-

MAS

1 2014 655 75 HS Intensity thresholding,

unsupervised

Visual rating scales (45)

UK Biobank 2 2018 8439 62 HS, PS: WMH k-Nearest neighbor,

supervised

Manual segmentation (23)

WHICAP 10 2008–2018 831 77 HS Intensity thresholding,

semi-automated, fuzzy

inference system,

unsupervised, region

growing, unsupervised

Manual segmentation,

Semi-automated

segmentation

(46–48)

WHICAP/ESPRIT 1 2014 1233 81 HS Region growing,

unsupervised

Semi-automated

segmentation

(47)

WHIMS-MRI 1 2014 729 83 HS Support vector machine,

supervised

Manual segmentation (42)

3C, Three-City Study; ADNI, Alzheimer’s Disease Neuroimaging Initiative, AGES-Reykjavik, Age, Gene/Environment Susceptibility-Reykjavik Study; ARIC, Atherosclerosis Risk in

Communities; ARIC-NCS, Atherosclerosis Risk in Communities Neurocognitive Study; ASPS, Austrian Stroke Prevention Study; ASPFS, Austrian Stroke Prevention Family Study; BLSA,

Baltimore Longitudinal Study of Aging; CDOT, Cognition and Diabetes in Older Tasmanians; CHAP, Chicago Health and Aging Project; CHARGE, Multiple studies in CHARGE Consortium;

ESPRIT, European/Australasian Stroke Prevention in Reversible Ischemia Trial; EVA, Epidemiology of Vascular Aging; FOS, Framingham Offspring Study; FHS, Framingham Heart Study;

GEN III, Third Generation Cohort; GeneSTAR, Genetic Study of Aspirin Responsiveness; GENOA, Genetic Epidemiology Network of Arteriopathy; GMBI, Genetics of Microangiopathic

Brain Injury; HUNT, Nord-Trøndelag Health study; LADIS, Leukoaraiosis and DISability Study; LBC1936, Lothian Birth Cohort 1936; MCSA, Mayo Clinic Study of Aging; NACC UDS,

National Alzheimer Coordinating Center databank; NOMAS, Northern Manhattan Study; PoP, proof-of-principle cohort; PROSPER, PROspective Study of Pravastatine in the Elderly

at Risk of cardiovascular disease; RS, Rotterdam Study; SHIP, Study of Health in Pomerania, SMART-MR, Second Manifestations of Arterial Disease-Magnetic Resonance; SNAC-K,

Swedish National study on Aging and Care in Kungsholmen; Sunnybrook, Sunnybrook Dementia study; Sydney-MAS, Sydney Memory and aging study; TASCOG, Tasmanian Study

of Cognition and Gait; Sydney MAS, Sydney Memory and Aging Study; WHICAP, Washington Heights-Hamilton Heights-Inwood Community Aging Project; WHIMS, Women’s Health

Initiative Memory Study; mean age in years; SP, Standard Population; MS, Mixed Sample; PS, Patient Sample; CHD, Coronary heart Disease.

and 2 papers described a miscellaneous approach. Studies using
fully automated methods had a significantly higher sample size (p
= 0.002; Student’s t-test) compared to semi-automated methods
(mean 1017.0 vs. 1650.8). Figure 3 shows the distribution of the
segmentation types over the years. The peak of published articles
on WMH was in 2014. We identified 17 different segmentation
techniques used in the studies included in our review (Table 1).
Box 2 delivers an introductory explanation for the 5 most
employed techniques.

Validation Methods
Methodological validation was done by application of accuracy
and reproducibility measurements. Of 60 articles with semi-
automated or manual segmentation techniques, 18 (30.0%)
validated their results with reproducibility metrics, namely the
intraclass-correlation coefficient and intra-rater repeatability. Of
132 articles using semi-automated and automated segmentation
techniques, 112 (84.8%) reported accuracy metrics like Dice

similarity index, intraclass-correlation coefficient, mean absolute
error, Pearson’s correlation, Cronbach’s alpha, Spearman’s
correlation coefficient, ANOVA, and ANCOVA to validate their
results. The gold standard the segmentation techniques were
tested against was manual segmentation in 84 studies, while 16
and 13 tested against visual rating scales and semi-automated
techniques, respectively.

DISCUSSION

In this systematic review, we identified 137 papers from large-
scale studies applying a quantitative analysis of WMH over the
past 14 years. With 134 of these being part of a longitudinal
prospective cohort study, this indicates to the relevance of these
studies in this particular field of research. The large number
of studies included in this review reflects the current scientific
relevance of WMH in cerebrovascular research. The sample
size of these studies ranged from 501 to more than 9,000,
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BOX 1 | The Big 5: Cohort studies with the most contributing articles in this work.

SMART-MR

With 22 articles the Second Manifestations of ARTerial disease—Magnetic Resonance Study (SMART-MR) made up the biggest proportion of all included studies.

Localized in the Netherlands, SMART-MR had initially been designed to investigate the brain changes on MRI in patients with symptomatic atherosclerotic disease,

namely, manifest coronary artery disease, cerebrovascular disease, peripheral artery disease, and abdominal aortic aneurysm. Recruitment took place from May

2001 until December 2005 and resulted in a baseline sample size of 1,309 subjects (49, 50).

3C

Established in the three French cities Bordeaux, Dijon, and Montpellier, the objective of the 3C-study was the assessment of risk of dementia and cognitive impairment

attributable to vascular factors. 9294 older adults form the original sample size, recruited from March 1999 to March 2001 (51).

Framingham Offspring Cohort

The Framingham Offspring Cohort contains the offspring of participants from the original Framingham Heart Study. Founded in requirement of a young study sample,

the enrolment phase in 1971 supplied an initial study sample of 5,124. The study’s purpose is described as the identification of common factors contributing to

cardiovascular disease (52, 53).

WHICAP

The Washington/Hamilton Heights-Inwood Columbia Aging Project, located in New York, investigates in Alzheimer’s Dementia and Aging in a cohort of multiple

ethnicities. The original cohorts size counts 3,452 members (54).

Rotterdam Study

Situated in the Netherlands, the enrolment of the Rotterdam study started in 1990 with the baseline sample size of 7,983 participants. Having a broader approach, the

study covers multiple diseases of elderly people in its investigations, i.e., cardiovascular, neurological, ophthalmological, endocrinological, and psychiatric diseases

(55).

FIGURE 3 | Segmentation types and mean sample size of studies on WMH between 2005 and 2018. (A) The blue graph represents the median sample size of the

according studies. (B) The blue bars represent the number of large-scale studies for each year included in our review with the specific segmentation type.

which demonstrates the feasibility of WMH segmentation in
large samples resulting from the scalability of largely automated
image analysis techniques. However, although the past years have

brought ongoing improvements in automated image analysis
techniques, we did not observe a clear increase of sample size over
time. This may either reflect the typical delay until new analysis
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TABLE 2 | Overview of supposed risk factors for WMH in large-scale studies.

Risk factors Studies

Ad-genetics (56)

Adiposity (58)

Angiotension converting enzyme (59)

Antihypertensive treatment (60)

Aortic stiffness (61)

ApoE genotype (148, 178, 182, 74, 91, 58)

Arterial stiffness (191, 132, 171, 141)

Atherosclerosis (183, 49, 179)

Atrial fibrillation (138, 163)

Blood pressure variability (62)

Cardiac stress markers (63)

Cardiovascular risk factors (143, 158, 56)

Common risk factors (152, 98, 187, 135, 176, 193, 79)

Conjougated equine estrogen (64)

Diabetes mellitus type II (136, 165, 192, 175, 14, 153, 144)

Diet quality (167, 150)

Dysglycemia (65)

Exhaled carbon monoxide (66)

Extracellular vesicle protein levels (67)

FGF23 elevation (68)

Folate (69)

Genetic loci (70, 71)

Hba1C (72)

Homocystein (69, 72, 142, 161)

Hyperlipidemia (73)

Hypertension (75, 182, 173, 187, 132, 149, 174,

146)

Inflammatory markers (115, 85, 159, 186, 168, 57)

Leisure activity (74)

Lipoproteins (75)

Metabolic syndrome (76)

Metalloproteinases (77)

Midlife obesity (78)

Nocturnal blood pressure (79)

Parathyroid hormon (80)

Parental longevity (81)

Parental stroke (82)

Perceived stress (83)

Physical activity (84)

Plasma beta-amyloid (85, 86)

Red blood cell omega-3 fatty acid (87)

S100B (88)

Sleep duration (89)

Sulfur amino acids (69)

Thyroid function (90)

Tomm40 523 genotype (91)

Uric acid (92)

VCAN snps (93)

Vitamin B12 (69)

Vitamin D (94)

Vo2Max (95)

Common risk factors are age, sex, gender, and ethnicity. Significant associations with

WMH indicated in bold.

TABLE 3 | Overview of supposed sequelae of WMH in large-scale studies.

Sequelae Studies

Alzheimer’s disease (96–99)

Antidepressant Use (100, 101)

Apathy symptoms (102)

Brain atrophy (181, 182, 184, 56, 172,

145)

Brain volumetric changes (32, 162, 189)

Callosum atrophy (103, 104)

Cerebral blood flow (105)

Cognitive function (21, 56, 62, 95, 153, 79,

104, 134, 140, 143, 155,

156, 160, 164, 166, 169,

170, 180, 188–190, 194,

195)

Death (106)

Depressive symptoms (100, 101, 154,133,147,

151, 177, 139)

Falls (107)

Functional status (108)

Grief (109)

Headache (110–112)

Immobility (57)

Manual dexterity (113)

Migraine (110, 112)

Mild cognitive impairment (98, 137, 185, 157)

Olfactory function (114)

Perivascular spaces (115)

Restless-Legs-syndrome (116)

Retinal Microvasculature (117)

Study-drop-out (118)

Subjective memory

Impairment

(119)

Tract Integrity (120)

Significant associations with WMH indicated in bold.

methods are implemented in large epidemiological studies, which
usually are running over a long period. This may also be
explained by other factors limiting sample size in large-scale
studies beyond factors related to image analysis, e.g., recruitment,
or limited capacity of study centers for clinical or imaging studies.
Mean age of study subjects across all studies was 67 years, which is
likely due to the fact of cerebrovascular diseases being aggregated
primarily in the elderly.

The research questions addressed in the studies included in
our review could be divided into two groups: the association
of risk factors with WMH and supposed clinical or other
consequences of WMH. The five most frequently investigated
risk factors studied with regards to their association with
WMH were hypertension, common risk factors, diabetes, ApoE
genotype and inflammatory markers. The majority represents
risk factors or markers of atherosclerosis (123).

With regard to clinical manifestations of WMH, there were
two areas of interest in the focus of the reviewed studies:
a large number of studies looked at WMH in the context
of cognitive decline, mild cognitive impairment, or brain
volumetric changes and brain atrophy, which are considered as
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BOX 2 | Top 5 most used methods for WMH-segmentation in large-scale studies.

Intensity thresholding—DeCarli et al. (32, 35)

The semi-automated method is based on the work of DeCarli et al. Taking the dataset with unclassified voxels, the examiner models a gaussian curve based on the

voxel intensity values. Afterwards a threshold value of 3.5 standard deviations above the mean is set. Every voxel with an intensity value higher than the threshold

value is defined as a white matter hyperintensity voxel.

Region Growing—Brickman et al. (47)

Similar to the approach by DeCarli, the approach by Brickman and colleagues starts with an intensity thresholding step (2.5 standard deviations) to determine seed

voxels for each hemisphere. The seeds are the origin of region growing processes. Every seed voxel intensity value serves as calculation base of an interval (±5%).

The algorithm determines class membership of every adjacent voxel by looking whether its intensity value falls into that interval. The algorithm moves further by

considering every new WMH defined voxel as a seed with its own interval.

k-Nearest Neighbors—Anbeek et al. (43, 44) and de Boer et al. (40)

Utilized by the Rotterdam study as well as SMART-MR, k-NN is a supervised machine learning algorithm that aims to classify objects based on multiple features, e.g.,

voxel intensities in T1-w, IR, PD, T2-w, and FLAIR as well as spatial information. For every preclassified voxel a certain location in a multi-dimensional feature space

is calculated. Subsequently, a probability is allocated to every voxel of unknown classification based on the labels of its k nearest neighbors in the feature space.

Naïve Bayesian Classifier—Maillard et al. (27)

The Naïve Bayesian Classifier is a machine learning algorithm utilizing Bayesian statistics. As a learning step a preclassified dataset is consigned. The algorithm takes

this dataset and calculates its baseline probabilities: simple probabilities like the likelihood of choosing a WMH through a random pick [P(WMH)] and conditional

probabilities like the likelihood of a choosing a WMH through a random pick under the assumption of certain features [P(WMH|Features)]. Next, unclassified voxels

are handed over to the algorithm. Based on the baseline probabilities the algorithm delivers probability values of group membership given certain features for every

voxel. Finally, those membership values are compared and the voxel is assigned to the group with the highest (24).

Artificial Neural networks—Zijdenbos et al. (29)

Artificial neural networks are algorithms inspired by the architecture of biological neural networks, containing neurons and in-between connections. The network

established by Zijdenbos and colleagues consists of three layers: an input layer counting consisting of six nodes/neurons where the spatial and intensity information

is handed over to the algorithm, a hidden layer with 10 nodes that processes information the input layer delivers and an output layer with two nodes determining the

classification of non-WMH and WMH.

biomarkers of neurodegeneration. This research focus appears
obvious, as cerebral small vessel disease is a known risk factor
for vascular cognitive impairment and vascular dementia (3).
Depressive symptoms were the second clinical focus, as well-
thematized in multiple studies. This is in line with the vascular
depression hypothesis which proposes an association between
the disruption of frontostriatal pathways by WMH and late-life
depression (124, 125).

The lack of studies addressing e.g., the association of WMH
and ischemic stroke and intracerebral hemorrhage (37, 126)
might represent a bias in our search criteria.

Our review focused on the methods utilized for WMH
characterization. To some parts, the heterogeneity and lack of
standardization seem not only to be a problem of imaging
analysis but also of the definition and nomenclature of findings
related to cerebral small vessel disease. In an analysis of 1,144
studies dealing with WMH research, 275 used a variant term
to “white matter hyperintensity” in their titles or abstracts (4).
Efforts to overcome this lack of consensus on terminology and
definition of white matter hyperintensities led to publishing
the STRIVE consensus criteria in 2013, defining standards
for research into cerebral small vessel disease (4). We also
wanted to see, whether this initiative and publication of research
standards had an impact on scientific studies of WMH in
large cohorts. Still, a lot of unifying potential remains here,
harboring the problem of arbitrary WMH segmentation and
contributing another aspect to the discussion. These numbers
suggest that there is still much room for the unification
of scientific standards in this research area. In line with
this, a recent contribution to the discussion suggested that
the descriptive nature of most definitions of white matter
hyperintensities is accountable for low-quality segmentation
(127). The authors propose a statistical definition as a solution

due to its better measurability and provide competitive results
with it.

Virtually all studies relied on either semi-automated or
fully-automated techniques for WMH segmentation. This
finding reflects the trend toward segmentation automation
resulting from the acknowledgment of limitations of manual
segmentation: it is laborious, thus expensive; is prone to
errors; subjective and shows high intra-rater and inter-rater
variability (36). Since semi-automated segmentation techniques
succumb automated ones regarding human intervention while
showing similar segmentation quality, a further trend from semi-
automated segmentation methods to fully automated techniques
was assumable. Although automated segmentation techniques
constituted the largest proportion over the past 14 years from
observation of the time course of our data a clear trend toward
automated segmentation was not derivable. The significantly
higher sample size of studies using automatedmethods compared
to studies using semi-automatedmethods can be explained by the
fact that with higher sample size approaches requiring interaction
with a human observer become less feasible.

One striking result of our review is the manifoldness
of segmentation techniques used. Almost every cohort study
identified had its own segmentation approach. Our review
was not designed to answer the question, whether any of the
segmentation methods is superior for WMH segmentation. Due
to the inherent complexity of the segmentation task, the research
field’s demand for one proper automated segmentation technique
remains unresolved. However, the diversity of segmentation
approaches used in large-scale studies is remarkable, which
in turn reflect the total lack of any consensus or agreed
methodological standard for WMH segmentation.

The existence of a large variety of segmentation techniques
is not inherently harmful to the field of research, as it may
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also be interpreted as a reflection of its vividness. However, the
multiplicity of methods used for segmentation and quantification
of WMH represents a scientific problem, because it leads
to potential incoherence and incomparability between studies.
Crucial results such as the overall WMH extent may differ
in significant ways depending on the methods used for
WMH segmentation.

As a relevant example of how to address cross-study
heterogeneity, the NeuroCHARGE Consortium (70) used results
of 7 different large-scale prospective cohort studies for a
genome-wide association study (GWAS). Before conducting
their analysis, they assessed the results for comparability,
encompassing WMH segmentation and visual rating scale data,
by examining their quality individually via comparison with
a reference standard. In addition, utilized visual scoring and
volumetric methods were performed on standard image data sets
to test agreement.

Automated segmentation was primarily based on machine
learning algorithms: for instance, k-nearest neighbors, naive
Bayesian classifiers, artificial neural networks and support vector
machines were successfully employed to serve the problem of
quantitative WMH delineation. Since deep learning, namely
convolutional neural networks (CNN), proved themselves for
computer vision tasks they are also a hot contender in the
WMH segmentation problem. First studies and the WMH
segmentation challenge at MICCAI 2017 (http://wmh.isi.uu.nl/)
delivered promising results (128–130).

In the publications analyzed in our review, some validated
their segmentation results against a gold-standard—usually
manual segmentation. This “gold standard,” however, has a
lot of inherent limitations, resulting in a significant degree of
subjectivity in the validation process. This, again, contributes
to incomparability between different methods due to the fact
they have been validated on hardly comparable gold standards.
Moreover, the methods used for validation, also show some
heterogeneity. Many studies use different parameters than the
most common metrics like the Dice similarity index and
thereby contribute to the overall heterogeneity and lead to
aggravated comparison. Again, standardization might provide
a solution. The study field could consent, just in the manner
of the STRIVE, to specific parameters for validation measures
including guidelines of subset selection for specific segmentation
tasks (131).

Regardless of the already discussed problems, there are further
contributors to variation in WMH quantification. In the end,
the quality of the segmentation process depends strongly on
the quality of the underlying MRI-images. Especially clinical
scans are often very heterogeneous in terms of available MRI-
sequences, manufacturer, field strength, signal-to-noise ratio,

additional pathologies visible in the scan like stroke lesions
or tumors, overall quality assurance protocols and sequence
parameters like voxel dimensions, slice gaps, contrast and
automated distortion correction. Therefore, the application of
the discussed algorithms in the clinical routine might be only
possible to a limited extent.

In conclusion, the vast number of large-scale studies reporting
the results of segmentation and quantification of WHM reflects
the fact that cerebral small vessel disease is a research topic of
great interest, especially within the context of epidemiological
studies or large patient cohorts. Both, risk factors associated
with the presence and extent of WMH and possible behavioral
or clinical sequelae are in the focus of research. Approaches to
WMH segmentation used in these studies with large samples rely
on semi-automated or fully automated algorithms. A multiplicity
of methods is used, and clear definitions of WMH are only
provided in a minority of studies, which limits comparability
and reproducibility of results. New technical developments in
segmentation methods may further improve automated lesion
segmentation in the near future. In addition to technical
advancements, there is a clear need for creating and adhering
to reporting guidelines covering both definition of WMH and
description of segmentation approach.
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