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Normal appearing white matter (NAWM) damage develops early in multiple sclerosis (MS)

and continues in the absence of new lesions. The ratio of T1w and T2w (T1w/T2w ratio),

a measure of white matter integrity, has previously shown reduced intensity values in MS

NAWM. We evaluate the validity of a standardized T1w/T2w ratio (sT1w/T2w ratio) in

MS and whether this method is sensitive in detecting MS-related differences in NAWM.

T1w and T2w scans were acquired at 3 Tesla in 47 patients with relapsing-remitting MS

and 47 matched controls (HC). T1w/T2w and sT1w/T2w ratios were then calculated. We

compared between-group variability between T1w/T2w and sT1w/T2w ratio in HC and

MS and assessed for group differences. We also evaluated the relationship between the

T1w/T2w and sT1w/T2w ratios and clinically relevant variables. Compared to the classic

T1w/T2w ratio, the between-subject variability in sT1w/T2w ratio showed a significant

reduction in MS patients (p < 0.001) and HC (p < 0.001). However, only sT1w/T2w

ratio values were reduced in patients compared to HC (p < 0.001). The sT1w/T2w

ratio intensity values were significantly influenced by age, T2 lesion volume and group

status (MS vs. HC) (adjusted R2
= 0.30, p < 0.001). We demonstrate the validity

of the sT1w/T2w ratio in MS and that it is more sensitive to MS-related differences

in NAWM compared to T1w/T2w ratio. The sT1w/T2w ratio shows promise as an

easily-implemented measure of NAWM in MS using readily available scans and simple

post-processing methods.

Keywords: magnetic resonance imaging techniques, multiple sclerosis, normal appearing white matter, T1w/T2w

ratio, relapsing-remitting
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INTRODUCTION

Multiple sclerosis (MS) is an inflammatory and
neurodegenerative CNS disease characterized by focal lesions
with demyelination, axonal loss, and reactive gliosis in white
matter (WM) and gray matter (GM) (1–5). MRI plays a critical
role in the diagnosis and monitoring of MS patients through
detection of lesions in WM and GM (6). Although tissue
damage in the WM beyond lesions is frequently found in
neuropathological examinations of MS, it is not detectable in
routine clinical MRI scans. This has led to the term normal-
appearing WM (NAWM) for WM that appears normal on
routine MRI but may contain neuropathologically detectable
tissue damage. NAWM damage can be demonstrated using
advanced MRI techniques such as diffusion tensor imaging (7–9)
or other quantitative approaches (10). Using these approaches, it
has been shown that NAWM alone can discriminate MS patients
from healthy subjects (10), indicating the high prevalence
and sensitivity of NAWM in MS. A clear draw-back of such
techniques is the need for time-intensive additional scans and
expertise in image post-processing. Glasser and Van Essen
proposed that the ratio of T1w and T2w images (T1w/T2w ratio)
in the GM can be used to create an estimate of cortical myelin
content in the healthy population (11–13). The T1w/T2w ratio
has also been applied to the whole brain and WM (14, 15).
Although the sensitivity of the T1w/T2w ratio to myelin has been
contested, there is growing consensus that the T1w/T2w ratio
is a marker of general WM microstructure (15–17). Recently,
reduced T1w/T2w ratio intensity values have been found in the

cortex and NAWM of MS patients compared to HC (15, 17).
However, the T1w/T2w ratio has technical limitations. It is

long established that qualitative T1w and T2w intensity values are
variable and depend on numerous technical and methodological
factors, such as field strength and scanner manufacturer, leading
to problems in comparing these values (and quantitative

parameters derived from these, such as volume) between different
scanners and time-points (18–21). This may limit a reliable
and valid comparison of T1w/T2w ratio intensity values across
subjects. Recently, Misaki et al. showed that standardizing the
T1w/T2w ratio can lead to enhanced delineation of tissue classes
(22). They standardize the T1w/T2w based on the median GM
intensity in the T1w and T2w images and produce intensity
values in the range of−1 to 1, where WM intensity values are
positive, cerebrospinal fluid (CSF) intensity values are negative
and GM intensity values are between −0.01 and 0.01. This
standardized T1w/T2w ratio (sT1w/T2w ratio) reduces the
between-subject variability of intensity values and may overcome
the described limitation of the T1w/T2w ratio therefore allow a
more valid comparison of intensity values in NAWM.

The current study aimed to evaluate the validity of the
standardization of the T1w/T2w ratio in MS patients. We
hypothesized that (1) the sT1w/T2w ratio would significantly
reduce the between subject variability in NAWM in MS patients
compared to the T1w/T2w ratio, and (2) that NAWM group
differences between healthy controls (HC) and MS patients
would be more pronounced using the sT1w/T2w ratio. In
addition, we evaluated clinically relevant covariates of sT1w/T2w.

MATERIALS AND METHODS

Patients and Controls
Patient and HC data were taken from an observational
study, approved by the institutional review board (EA1/163/12,
EA1/189/13). HC matching patients for sex and age (+/−6
months) were identified using in-house python scripts using
Python 3. Overall, 47 patients and 47 HC were included in the
study (Table 1).

All patients and HC provided written informed consent. MS
patients had a diagnosis of relapsing remitting MS (RRMS)
according to 2010 McDonald criteria (23). Clinical assessment
was performed by experienced neurologists and included the
Expanded Disability Status Scale (EDSS) (24).

MRI Acquisition
MRI acquisition was performed on a 3 Tesla MRI (Tim
Trio, Siemens Medical Systems, Erlangen, Germany). The MRI
protocol included a 3D MPRAGE (T1w, TR = 1,900ms,
TE = 2.55ms, TI = 900ms, 1mm isotropic resolution), a
3D T2SPACE (T2w, TR = 5,000ms, TE = 502ms, 1mm
isotropic resolution) sequence and a 3D FLAIR (TR= 6,000ms,
TE= 388ms, TI= 2,100ms, 1mm isotropic resolution).

MRI Analysis
Before calculation of the T1w/T2w and sT1w/T2w ratio, the
T1w, T2w and FLAIR images were preprocessed as follows:
All images were bias field corrected using non-parametric non-
uniform intensity normalization (25), changed to a robust
field of view and oriented to MNI space using FSL tools.
The T2w and FLAIR images were then co-registered to the
corrected T1w image and these three images were then registered
to standard MNI space. Co-registration and registration to
standard space was performed using a spline interpolation
with FSL FLIRT (26, 27). Lesion segmentation was done semi-
automatically on FLAIR using the lesion prediction algorithm
[LPA (28)] as implemented in the Lesion Segmentation Toolbox
version 2.0.15 (www.statistical-modelling.de/lst.html). Lesion
masks were subsequently manually corrected using ITK-SNAP
(29) (www.itksnap.org). Generation of a brain mask and tissue
segmentation into GM, WM, and cerebrospinal fluid (CSF) was
achieved using the Computational Anatomy Toolbox version
11.09 (30) implemented in SPM12 version 7219. Each lesion

TABLE 1 | Demographic and clinical characteristics.

RRMS HC

N 47 47

Sex 30 female 30 female

Mean age (yrs) (sd) (range) 37.69 (9.22)

(21.5–60.2)

36.23 (9.73)

(20.5–63.7)

Median EDSS (range) 2.00 (0.00–6.00) NA

Mean disease duration (months) (sd) 24.6 (57.57) NA

Mean T2 lesion volume (ml) (sd) 5.07 (6.86) 0.07 (0.09)

Mean T2 lesion count (sd) 59.23 (46.75) 3.09 (3.58)
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mask was subtracted from the WM and GM masks, to create a
normal-appearing GM (NAGM) and NAWMmask, respectively.
Median intensity values in the T1w and T2w were extracted in
NAGM, NAWM, and CSF for each subject.

T1w/T2w Ratio and sT1w/T2w Ratio
Calculation
The T1w/T2w ratio was calculated using the FSL stats tool (31) by
dividing the processed 3D T1w image by the spatially registered
3D T2w image.

In order to calculate the sT1w/T2w ratio, a scaling factor was
found by dividing the median NAGM intensity value in the T1w
image by the median NAGM intensity value in the T2w image.
The T2w image was then multiplied by the scaling factor to
create a scaled T2w image (sT2). The sT1w/T2w ratio was then
calculated using the equation fromMisaki et al. (22):

sT1w

T2w
ratio =

T1w− sT2

T1w+ sT2

Finally, median T1w/T2w and sT1w/T2w values were extracted
from the NAGM, NAWM, and CSF for each subject.

Statistical Analysis
Statistical analysis was conducted in R (32). t-tests and χ

2 tests
were used to assess group differences in age and sex, respectively.
All figures shown were created using the tidy verse and ggpubr
(33, 34).

First, the between-subject variation in NAWM in T1w/T2w
and sT1w/T2w was measured using the coefficient of variation
(CoV) and compared using the Feltz & Miller test with the
cvequality package (35). We then compared group differences
of each measure (T1w, T2w, T1w/T2w, sT1w/T2w) between
MS patients and HC in NAGM and NAWM intensity using t-
tests. The relationship between T1w/T2w and sT1w/T2w ratio
intensity values was also investigated using Pearson’s correlation.

In order to evaluate relevant covariates of each measure in
NAWM, we analyzed the median intensity values of T1w, T2w,
T1w/T2w, and sT1w/T2w using linear models with a backwards,
stepwise method: Amodel was built for each tissue intensity, with
group, age, and sex included as predictors. This model was then
reduced, removing one non-significant predictor at a time until
the model contained only significant predictors. Model fit was
assessed using the Akaike Information Criteria (36), where lower
values signify better fit, and the best-fitting model was selected.
Following the recommendations of Rippon et al. (37), sex was
not included on its own, but rather as an interaction term with
head size [V-scaling factor from SIENAX (38)].

Finally, we investigated the clinically relevant covariates of
measures in NAWM of patients using the same method to
build linear models. Age, the interaction between sex and head
size, T2 lesion volume and count, EDSS, and disease duration
were included as predictors in the initial model. The interaction
between disease duration and age was also included. The stepwise
linear regression for both analyses was conducted using the
Modern Applied Statistics with S package (39).

Each linear regression was also tested for effects of extreme
values by assessing Cook’s difference. Cook’s difference of >1

would indicate that an extreme value was overly influencing
the regression model. The significance threshold for all analyses
was set at p < 0.004, using Bonferroni correction for
multiple comparisons.

RESULTS

Demographics
MS patients and HC were well-matched in regard to sex
(χ2

= 0.00 [1.00] p = 1.000) and age (t = −0.75, [91.74]
p= 0.456), shown in Table 1.

Intensity Value Distribution
Figure 1 shows the distribution of NAGM, NAWM and
CSF intensity values in each of the four image types (T1w,
T2w, T1w/T2w, and sT1w/T2w). An example T1w/T2w and
sT1w/T2w ratio intensity map for two patients and two healthy
controls is shown in Figures 2, 3. The CoV of NAWM intensity
values was significantly reduced in sT1w/T2w compared to
T1w/T2w in both patients and controls (Table 2). As expected,
T1w/T2w and sT1w/T2w ratio intensity values were found to
significantly correlate (adjusted R2

= 0.23).

Group Analysis
Figure 4 shows the results of the group comparisons of each
tissue type in each of the T1w, T2w, T1w/T2w, and sT1w/T2w
images. Differences between MS patients and HC were only
found in sT1w/T2w ratio intensity values of the NAWM. Table 3
shows the results of the original and (where applicable) best-
fitting regression models for NAWM intensity values in T1w,
T2w, T1w/T2w, and sT1w/T2w images. Variation in neither T1w,
T2w nor T1w/T2w NAWM intensity values showed significant
associations to age, sex, or group (MS/HC) surviving multiple
comparison correction. MS diagnosis and age explained variation
in sT1w/T2w ratio NAWM intensity values (adjusted R2

= 0.23).
No model contained extreme values according to the Cook’s
distance criteria.

Clinically Relevant Covariates of NAWM
Table 4 shows the results of the original and (where applicable)
best-fitting regression models for NAWM intensity values in
T1w, T2w, T1w/T2w, and sT1w/T2w images. Patients’ sT1w/T2w
ratio NAWM intensity values were explained by T2 lesion count
(adjusted R2

= 0.47). No variation in the patient NAWM
T1w, T2w, or T1w/T2w ratio was significantly accounted for by
any parameters after correcting for multiple comparisons. No
model contained extreme values according to the Cook’s distance
criteria.

DISCUSSION

Our study evaluated the validity of the standardization of the
T1w/T2w ratio in MS. We showed that (1) CoV of NAWM was
reduced in the sT1w/T2w ratio compared to the T1w/T2w ratio,
and (2) that NAWM group differences were more pronounced
between HC andMS using the sT1w/T2w ratio. We also show the
clinically relevant covariates of NAWMT1w/T2w and sT1w/T2w
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FIGURE 1 | Histograms showing the distribution of intensity values for all patients and healthy controls in NAGM, NAWM, and CSF in (A) T1w, (B) T2w, (C) T1w/T2w,

and (D) sT1w/T2w images. It can be seen that the T1w/T2w ratio reduces overlap in tissue intensity values but not to the same extent as sT1w/T2w, where all NAGM

values are around 0, all NAWM values range from 0 to 1, and all CSF values range from −1 to 0.

FIGURE 2 | An example T1w/T2w image from one patient (A) and one healthy subject (B).

ratio intensity values. Group (MS vs. HC), age and T2 lesion
volume explained variation in the sT1w/T2w ratio intensity
values, whereas the T1w/T2w ratio was only sensitive to sex.

Benefits of the sT1w/T2w Ratio
The sT1w/T2w ratio method proposed by Misaki et al. (22)
uses a scaling factor derived from median GM intensity values

in T1w and T2w images to standardize the T1w/T2w ratio.
This method improves the T1w/T2w ratio by creating scaled
intensity values: GM intensity values are scaled to 0, WM
values are scaled between 0 and 1, and CSF values are scaled
between 0 and −1. We propose that this scaling results in values
that can be more meaningfully compared between subjects,
scanners and time-points. As discussed above, the T1w/T2 ratio

Frontiers in Neurology | www.frontiersin.org 4 April 2019 | Volume 10 | Article 334

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Cooper et al. sT1w/T2w Ratio in MS

FIGURE 3 | An example sT1w/T2w image from one patient (A) and one healthy subject (B).

TABLE 2 | Comparison of NAWM intensity value CoV in T1w/T2w and sT1w/T2w.

T1w/T2w sT1w/T2w Significance

MS 22.04 9.82 p < 0.001

HC 17.02 7.06 p < 0.001

produces variable intensity values that may be affected by a
number of technical and methodological parameters, such as
field strength and scanner manufacturer. Scaling the T1w/T2w
ratio intensity values according to a non-varying value should
overcome these limitations, increasing the reliability of the
method and presenting a more informative bio-marker.

In the context of MS, where lesions or subtle changes within
the GM could alter T1w and T2w intensity values and could
influence the scaling, it is necessary to control for these factors.
Therefore, median values were extracted from GM not affected
by lesions, i.e., NAGM. In addition, we found that T1w and T2w
NAGMvalues do not significantly differ betweenMS patients and
HC. The standardization method was also shown to significantly
reduce the CoV in NAWM in both HC and MS patients. As
such, the sT1w/T2w ratio is a promising measure of NAWM in
MS patients, which can be meaningfully compared between MS
patients and HC. It is important to note that the standardization
of the T1w/T2w ratio also acts as a bias field correction, reducing
the heterogeneity of mean intensity values (22). To allow a fair
comparison of the T1w/T2w-ratios against the T1w and T2w
images, a bias field correction of the T1w and T2w images is
included in our preprocessing.

Normal Appearing White Matter in MS
NAWM is a relevant and important aspect of pathology that
has been demonstrated to influence cognitive impairment in
MS (40, 41). Although the T1w/T2w ratio has been criticized
for a lack of specificity to myelin, it should be emphasized
that NAWM pathology is not limited to myelin damage.
Similar to lesional WM, NAWM is subject to axonal injury,

demyelination, inflammation, and gliosis (42–44). Damage in
NAWM is widespread and ongoingmicrostructural changes were
shown even in RRMS patients who showed no evidence of disease
activity (no new lesions and no increased EDSS score) at follow-
up (45). Myelin water loss of up to 8%, indicating reduced myelin
in NAWM, has been demonstrated in a 5-years longitudinal
study of RRMS patients (46). Reflecting the non-myelin-specific
nature of NAWMdamage, axonal injury in NAWMhas also been
demonstrated in RRMS patients using kurtosis imaging (47). It is
currently unclear whether NAWM damage is a direct result of
lesions, a general neurodegenerative process in the WM, or both
(44, 46). NAWM damage has been detected from the onset of
disease and prior to lesions (48), which would indicate a general
degenerative process. On the other hand, NAWM damage has
been shown to correlate with lesions in T2w images (49). Here, we
show that NAWM damage, as measured by the sT1w/T2w ratio,
is correlated with lesions in T2w images.

In relation to NAWM evaluation in MS, the major finding
of the current study is that the sT1w/T2w, and not T1w/T2w
ratio intensity values, are significantly reduced in the NAWM
of MS patients compared to HC. Previous work has shown
significant reduction in NAWM T1w/T2w ratio intensity values
(15). There are a number of differences between the study by Beer
et al. and the current study. One explanation for the difference
in findings may be or the decision to use median values in
the current study [in comparison to mean values, which are
more susceptible to effects of outliers (50)]. Beer et al. had a
larger sample size (244MS patients and 78 healthy subjects),
suggesting they may have had more power to find an effect. An
alternative explanation for the disparity in findings relates to
the discussed variability in T1w and T2w ratio intensity values.
We propose that, in addition to the demonstrated enhanced
sensitivity of the sT1w/T2w ratio, the standardization of intensity
values also increases the reliability of comparisons between
groups, overcoming the variability of raw intensity values. This
should be investigated in future work using different scanners or
longitudinal data.
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FIGURE 4 | Group comparisons for the median NAGM and NAWM intensity values in T1w, T2w, T1w/T2w, and sT1w/T2w images. No significant differences were

found between MS and HC in any image except sT1w/T2w using a t-test.

While the finding of differences in NAWM in MS patients
is not new, the majority of previous studies reporting this
have used advanced MRI techniques, such as myelin water
imaging approaches (e.g., multi-echo T2mapping) and diffusion-
based imaging approaches (diffusion tensor imaging (DTI)
and diffusion kurtosis imaging) (51, 52). DTI measures
microstructural integrity and has been used to demonstrate
abnormalities in NAWM tracts in MS (45, 53). Similarly, the
myelin water fraction has been shown to be decreased in MS
patients compared to HC (46, 54). The myelin fraction is
proposed to be the most sensitive MRI measure of myelin to
date (55). A clear drawback of the myelin water fraction and DTI
is that they are not commonly acquired as part of the standard
clinical MRI protocol and they require expertise in image post-
processing. We show similar results using the sT1w/T2w ratio,
which requires only T1w and T2w scans and a very simple post-
processing procedure. As such, this technique can be readily
incorporated into the clinical routine and extends the amount
of clinically-relevant information that can be obtained from
these scans.

Limitations of the sT1w/T2w Ratio
The standardization approach normalizes intensity values using
NAGM intensity values as a reference (scaling factor). This
reduces NAGM values to 0, which results in poor applicability of

the sT1w/T2w ratio in the NAGM. However, as discussed above,
the use of NAGM as a scaling factor also ensures that sT1w/T2w
ratios are comparable between patients and HC, as previous work
has shown detectable cortical pathology in GM (17).

One important limitation of the T1w/T2w ratio that also limits
the sT1w/T2w ratio is the non-specificity of this marker and
the lack of a clear biological/pathological substrate for changes
in values. T1w and T2w intensity values (and, by extension,
T1w/T2w and sT1w/T2w ratio values) are affected by a range of
microstructural components such as paramagnetic hemoglobin,
iron accumulation and tissue calcification (56), not simplymyelin
and axonal content. As such, the underlying theory of the
T1w/T2w ratio proposed by Glasser and van Essen (12), may be
too simple and does not necessarily reflect myelin specifically.
Evidence for the non-specificity of the T1w/T2w ratio to myelin
also comes from imaging studies; the myelin water fraction,
which has been validated as a specific marker of myelin (46,
57), has been shown to have no correlation with T1w/T2w
ratio intensity values in WM of healthy subjects (54). Further,
pathological investigations of T1w/T2w ratio intensity values
show mixed results and have focused on cortical myelination.
Glasser and van Essen demonstrated that the T1w/T2w ratio is
visually comparable to myeloarchitectonic maps of the cortex,
suggesting a relationship with myelin (11). In support of Glasser
and van Essen, Nakamura et al. compared myelinated and

Frontiers in Neurology | www.frontiersin.org 6 April 2019 | Volume 10 | Article 334

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Cooper et al. sT1w/T2w Ratio in MS

TABLE 3 | Regression equation results for the NAWM intensity in each image (T1w, T2w, T1w/T2w ratio, and sT1w/T2w ratio).

Dependent variable

T1w T2w T1w/T2w sT1w/T2w

Original Original Original Original Final

MS diagnosis −1.34 (0.895) 4.36 (0.093) −0.37 (0.256) −0.02 (0.003) −0.02 (0.001)

Age −1.04 (0.059) −0.28 (0.044) 0.01 (0.469) −0.001 (<0.001) −0.001 (<0.001)

Female* −23.48 (0.620) 8.73 (0.466) −3.68 (0.017) 0.002 (0.945)

Male* −45.14 (0.391) 9.74 (0.464) −4.04 (0.019) −0.003 (0.926)

Constant 432.94 (<0.0001) 40.14 (0.020) 13.22 (<0.0001) 0.415 (<0.0001) 0.41 (<0.0001)

Observations 93 93 93 93 94

Adjusted R2 0.06 0.03 0.04 0.22 0.21

Residual SE 48.48 12.26 1.56 0.03 0.03

F statistic (df) 2.38 (4, 88) 1.76 (4, 88) 1.98 (4, 88) 7.34 (4, 88) 13.06 (2, 91)

AIC 992.66 737.02 353.28 −394.12 −396.40

The original model with all variables is presented for each image. If a significant model was found as a result of the backwards stepwise regression with better fit (according to the AIC

criterion), this final model is also presented. The standardized coefficient is shown for each parameter with the p-value in brackets. Parameters significant after correction for multiple

comparisons are highlighted in bold.

*interaction with head size.

TABLE 4 | Regression equation results for patients’ NAWM intensity in each image (T1w, T2w, T1w/T2w ratio, and sT1w/T2w ratio).

Dependent variable

T1w T2w T1w/T2w sT1w/T2w

Original Original Original Original Final

Age −0.163 (0.893) −0.279 (0.3232) 0.006 (0.8776) −0.001 (0.07972) −0.001 (0.0121)

Disease duration 0.414 (0.634) 0.138 (0.4938) −0.021 (0.4776) 0.0001 (0.89587)

EDSS −6.356 (0.291) −1.142 (0.4104) 0.072 (0.7240) −0.002 (0.48957)

T2 lesion volume 0.0004 (0.745) 0.001 (0.0308) 0.00003 (0.4559) 0 (0.53510)

T2 lesion count −0.183 (0.345) −0.050 (0.2684) −0.0005 (0.9436) −0.0004 (0.00142) −0.0004 (<0.0001)

Age* −0.013 (0.472) −0.001 (0.7258) 0.0002 (0.6856) 0 (0.87527)

Female** −74.163 (0.247) 1.690 (0.9083) −5.654 (0.0127) −0.012 (0.75983)

Male** −99.270 (0.157) 2.621 (0.8696) −6.592 (0.0079) −0.018 (0.65231)

Constant 498.225 (<0.0001) 49.772 (0.0300) 16.432 (<0.0001) 0.448 (<0.0001) 0.415 (<0.0001)

Observations 45 45 45 45 47

Adjusted R2 0.130 0.163 0.085 0.419 0.361

Residual SE 43.828 10.124 14.500 0.026 0.027

F statistic (df) 1.821 (8, 36) 2.068 (8, 36) 5.287 (8, 36) 4.961 (8, 36) 13.992 (2, 44)

AIC 477.8878 388.7079 173.9892 −190.8811 −200.2014

The original model with all variables is presented for each image. If a significant model was found as a result of the backwards stepwise regression with better fit (according to the AIC

criterion), this final model is also presented. The standardized coefficient is shown for each parameter with the p-value in brackets. Parameters significant after correction for multiple

comparisons are highlighted in bold.

*interaction with disease duration, **interaction with head size.

non-myelinated tissue of MS patients and found a significant
reduction of T1w/T2w values in non-myelinated tissue (58).

However, as discussed above, myelinated and non-myelinated
tissue inMS are not exclusively based onmyelin levels and hence,
it cannot be directly interpreted as a marker of myelination.
Rather, it has been posited that the T1w/T2w ratio is a general
measure of WM microstructure (16, 54, 59), which may be
more affected by axonal diameter than myelin density(60).
Supporting this, Righart et al. investigated cortical T1w/T2w

ratio values in secondary progressive MS brains and found
that T1w/T2w intensity values were correlated with dendrite
density, not myelin (17). As described above, NAWM pathology
in MS is not limited to demyelinating processes and axonal
loss has been emphasized as an important process in NAWM
(44). Hence, we advise against interpreting sT1w/T2w intensity
values as a marker of myelin and rather suggest that the
sT1w/T2w ratio intensity values are a measure of general NAWM
microstructural integrity.
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CONCLUSION

Wehave demonstrated the validity of standardizing the T1w/T2w
ratio in an MS cohort. The sT1w/T2w ratio reduces CoV
in NAWM of both MS patients and HC and was the only
investigated measure to detect differences in NAWM in MS
compared to HC. We propose that the sT1w/T2w ratio is a
reliable and sensitive measure that can be used to investigate
NAWM changes in MS.
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