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Impulse control and related disorders (ICDs-RD) encompasses a heterogeneous group of disorders that involve pleasurable behaviors performed repetitively, excessively, and compulsively. The key common symptom in all these disorders is the failure to resist an impulse or temptation to control an act or specific behavior, which is ultimately harmful to oneself or others and interferes in major areas of life. The major symptoms of ICDs include pathological gambling (PG), hypersexualtiy (HS), compulsive buying/shopping (CB) and binge eating (BE) functioning. ICDs and ICDs-RD have been included in the behavioral spectrum of non-motor symptoms in Parkinson's disease (PD) leading, in some cases, to serious financial, legal and psychosocial devastating consequences. Herein we present the prevalence of ICDs, the risk factors, its pathophysiological mechanisms, the link with agonist dopaminergic therapies and therapeutic managements.
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DEFINITION

Impulse control and related disorders (ICDs-RD) encompass a heterogeneous group of disorders that involve pleasurable behaviors performed repetitively, excessively, and compulsively (1–8).

The common key symptom in all of these disorders is the failure to resist an impulse or temptation to control an act or specific behavior (1, 3, 9), which is ultimately harmful to oneself or others and interferes in major areas of life functioning (1, 3, 6, 10, 11).

The American Psychiatric Association's Diagnostic and Statistical Manual (DSM-5) included impulse control disorders (ICDs) in the chapter of “Disruptive, Impulse-Control, and Conduct Disorders” as a dysregulation of self-emotional and behavioral control (8).

ICDs have recently been sub-classified as ICD groups and ICD-related disorder (ICDs-RD) groups (1, 3, 6, 7).

The major symptoms of ICDs include pathological gambling (PG), hypersexuality (HS), compulsive buying/shopping (CB) and binge eating (BE) (1–4, 8, 9, 12–21).

However, PG was moved from the category of ICDs to a new category of “Substance-Related and Addictive Disorders” in the DSM-5 (1–3, 6, 7), taking into account the similarities to drug addiction (risk factors, clinical features, cognitive changes, neurobiological substrates, and treatment approaches) (2, 6). This modification highlights the variability of reward-driven behaviors (2, 6, 16, 22).

The spectrum of ICDs-RD also includes punding, hobbyism, walkabout, hoarding, and compulsive medication use.

ICDs and ICDs-RD have been included in the behavioral spectrum of non-motor symptoms in Parkinson's disease (PD), leading in some cases to serious financial, legal and psychosocially devastating consequences with a greater impact on the quality of life. Moreover, in recent years we have noticed that PD patients are at increased risk of developing more than one of the major ICDs.

Along these lines, although it is not the focus of the present paper, some authors have suggested that the increased drive or motivation to certain behaviors cannot be harmful but rather beneficial (1). Therefore, it remains under discussion whether artistic productivity or hypercreativity should be included in ICDs or in ICDs-RD, or if it might represent an innate–skill that emerges in PD patients on dopaminergic therapy (8, 12, 13, 23, 24).

COMPONENT ASPECTS

Three main aspects that characterize ICDs groups and ICD-related disorders in relation to reward-driven activities are:

1. The presence of impulsive aspects (lack of forethought or consideration of consequences) (1, 3, 9).

2. The presence of compulsive aspects (repetitive behaviors with a lack of self-control) (1, 3, 9).

3. A negative or harmful behavior to oneself or to others (1, 3, 6).

The four major ICDs include:

Pathological Gambling (PG) characterized by an excessive and uncontrollable “preoccupation with gambling and the excitement that gambling with increasing risk provides” despite financial loss and social problems (3, 7, 22, 25–27). PG was one of the earliest recognized ICDs in PD (3). It was recently moved to the category of “Substance-related and addictive disorders” in the DMS-5, since substance abuse and PG activate brain reward areas and this bears similarities to drug addiction (7, 28).

Hypersexual disorder (HS) included in “The Sexual and Gender Identity Disorders Workgroup” of DSM-5 (7). It could be described as an excessive amount of time consumed by sexual fantasies and by planning for engaging in sexual behavior which interferes with important activities and obligations in ordinary life (3, 7). Other behaviors that might often occur are fetishism and voyeurism (7). As in substance abuse, patients with HS pursue a short-term reward and may develop tolerance and withdrawal-like syndromes (7). This condition is more common among adult men, and it may additionally occur with erectile failure (6, 7, 9, 17, 29).

Binge eating has been included in “Feeding and Eating Disorders” in DSM-5 (3, 6, 7). It is “a persistent disturbance of eating or eating-related behavior that results in the altered consumption of food, which significantly impairs physical health or psychosocial functioning” (7). The specific criteria proposed are:

1. Episodes of recurrent binge eating in the absence of any maladaptive compensatory behaviors.

2. Sense of lack of control over eating during the episodes.

3. Intake, in a discrete period of time (within any 2 h period), of an amount of food that is much larger than most people would eat in a similar period of time under normal circumstances.

The difference between binge eating and bulimia is that the former tends to be fluctuating while the latter is permanent (3, 7).

Compulsive buying (CB) is characterized by a constant urge to buy that leads to senseless contraction of debts with continuous delay of payment until a catastrophe clears the situation. As other ICDs, the repetitive loss of control over spending and the negative emotional state that emerges when not buying resemble substance use disorders (3, 7).

A prevalence of 5.8% in the general population at risk of CB is described (1, 3).

ICD-RELATED BEHAVIORS (ICDs-RD)

ICDs-RD are classified as related behaviors that have a contrast clinical presentation with respect to the four major ICDs. However, the biological link between both conditions may be identified in the dysregulation or inappropriate regulation of the reward pathways in the mesocorticolimbic network (22, 30). ICDs-RD is characterized by repetitive perseverative behaviors that appear to be more closely linked to pulsatile drugs, such as levodopa or intermittent apomorphine therapy rather than dopaminergic agonist (DA) per se.

ICDs-RD include the following:

1. Dopamine dysregulation syndrome (DDS) is a drug addiction-like state characterized by a compulsive and excessive desire for use of high potency and short-acting dopaminergic medication (L-dopa, subcutaneous apomorphine) (1–4, 6–8, 12, 13, 15, 17–22, 30, 31). DDS is more frequent in early-onset male PD patients with history of mood disorders and family history of psychiatric disorders (26, 31).

2. Punding is characterized by repetitive, purposeless behaviors and excessive preoccupation with specific items or activities, collecting, arranging or taking objects apart (1–4, 6–8, 12, 15, 17–21, 26, 32). It has been reported to occur frequently in conjunction with DDS (32).

3. Hobbyism pertains to higher-level repetitive behaviors (sports, artistic endeavors) (1, 2, 4, 6, 8, 15, 17–21).

4. Walkabout is excessive aimless wandering (1, 2, 4, 7, 8, 12, 15, 17, 19–21, 26).

5. Hoarding is the acquisition of and failure to discard a large number of items with no objective value (1–4, 6, 7, 12), (8, 15, 18, 21).

EPIDEMIOLOGY

ICD in the General Population

The prevalence of ICDs in the general population, which has been underestimated, shows a wide range with variability according to different populations: from 0.2 to 5.3% (1). This enormous variability may be explained not only by different genetic, ethnic and cultural backgrounds, but also by the instruments used to assess these symptoms in the population (3, 18–20) (Table 1).


Table 1. Shows the estimated prevalence of each of the four major ICDs.
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Although the ICDs were initially reported in PD patients on DA therapies, some studies report the occurrence of ICDs in the general population and in novo PD patients (10, 11, 34). It is still under discussion whether PD biology could be a risk factor for ICDs (35).

ICD in de novo PD

As mentioned above, it remains under discussion whether or not PD itself confers an increased risk for developing ICDs (35). Identifying the frequency of this disorder in novo PD patients could contribute to resolving these questions (1). A recent study analyzing data from the Parkinson's Progression Markers Initiative failed to demonstrate an increased risk for the development of ICDs or ICDs-RB in PD patients in the absence of treatment. Nevertheless, some symptoms suggestive of ICD have been reported in 20% of newly diagnosed, untreated PD patients with respect to the appropriately matched controls (36). In recent years, imaging studies have offered relevant insight to this debate (35). However, at the moment, results remain controversial over whether PD itself constitutes a risk factor for the development of ICDS or ICDs-RD (1, 3, 6).

ICDs-RD in PD in Different Populations

ICDRs continue to be under-recognized and under-managed in clinical practice. Determining the true frequency of ICDs in the health population, in PD de novo patients, and in PD patients with and without DA agonist therapies in different populations represents a significant challenge since a number of variables must be analyzed, including assessment tools, DA dose, DA formulations, years of disease, as well as cultural and other factors. Moreover, in many cases more than one ICD has been identified (29). In Table 2 we present a summary of various studies conducted to assess the presence of ICD behaviors over different periods of time and evaluate the risk factors and clinical characteristics.


Table 2. Shows different epidemiologic studies.
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Assessment Tools

Several instruments have been developed to assess and identify ICD symptoms in PD, some of which are summarized in Table 3.


Table 3. Assessment tools.
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Risk Factors

Several studies have been conducted to identify the risk factors for ICD development in PD patients (8). They include:

+ Demographic: young patient, male gender, unmarried (3–8, 14–21, 24, 27, 29, 59, 60).

+ Treatment related: although ICDs have been reported to be associated to different drugs, such as L-dopa, amantadine and rasagiline, DA intake appears as the major risk factor for ICDs (1–5, 7, 8, 13–15, 17–22, 27, 29, 59, 60).

Prevalence of ICDs was compared among different DA drugs (pramipexole, ropirinole) and between extended releases or immediate formulations (1, 3, 6, 29, 60). However, controversial findings from preliminary reports suggest that long-acting DA and patch or pump formulations may reduce the risk for ICDs (8, 15, 61).

It remains under discussion whether there is an association between ICDs and DA dose. The same controversial results were reported regarding DA treatment duration, higher daily dose and DA higher peak dose (3, 7, 29, 60).

+ Personal or family history: history of cigarette smoking, drug abuse, depression, apathy, REM behavior disorders (RBD), tea, coffee and mate consumption, positive personal or family history of alcoholism or gambling, and impulsive or novelty-seeking traits increase the risk for ICDs and their predictors (2–8, 14, 16–18, 29, 59, 60).

+ PD onset and related ICDs: prevalence increases over time, while ICDs tend to occur in the first years of the disease. Early PD onset and the presence of motor complications of PD may predict a higher risk for ICDs (4–8, 13, 14, 16–18, 21, 24, 29, 60).

+ Cultural factors: it remains to be determined if cultural factors may increase the risk for ICDs and ICRDs. Some authors suggest that cultural factors probably contribute not only to the prevalence of ICD but also the type of ICD (7, 17). One classic example in this field was provided by the DOMINIO study that suggests that living in the United States of America may be an independent risk factor for ICD development (1, 6, 29).

+ Deep Brain Stimulation (DBS): the relationship between ICDs and DBS remain under discussion. Initial studies reported improvement in ICDs after DBS, while subsequent studies showed ICD exacerbation (1, 6, 22, 60, 62).

DBS of the subthalamic nucleus (STN) is an effective, widely used treatment for motor fluctuations or disabling dyskinesias in PD (63).

STN-DBS has been identified as an independent risk factor for ICRDs; however, the reduction of dopamine agonist dosage after STN-DBS could improve or decrease ICD occurrence (6, 7, 22, 60, 62).

On the other hand, several studies suggest that DBS may contribute to impulsivity, excessive reward seeking and ICDs. Consistent with this hypothesis, PD patients without ICDs showed impulsive decision making when DBS is turned on (7, 60, 62, 64).

To explain these controversial findings, it has been hypothesized that STN stimulation plays a role in dynamic aspects of impulse and inhibitory control (22, 60).

+ Personality, Neuropsychiatric symptoms and Cognition in ICDs: a higher level of neuroticism, ineffective coping skills, and lower levels of agreeableness and conscientiousness in PD patients with ICDs has been reported (3). Early onset PD patients constitute a high risk population for ICDs with a self-assertive/antisocial and reserved personality and somatization traits (22).

A large constellation of comorbid affective symptoms and behavioral traits have been reported in PD with/or at risk for ICDs including depression, anxiety, novelty seeking, impulsivity symptoms and anhedonia (2, 62, 65, 66). Interestingly, in PD patients with ICDs, apathy could be noticed during withdrawal from dopamine replacement therapy (DRT). Impulsivity and apathy are two major comorbid syndromes of PD that may represent two extremes of a dysexecutive and behavioral spectrum involving dopamine-dependent cortico-striato-thalamo-cortical networks (64).

+ Cognition: controversial data have been identified in cognitive battery tests between PD patients with and without ICD (8, 36); the first group presents values lowered in some tests that evaluate the frontal lobe, but did not find significant differences in executive functioning (14, 67). Cognitive flexibility and ability to plan is altered in patients with ICD (8).

Visuo-spatial working memory and reward-punishment learning impairments have been reported in different studies; however, many results could not be replicated (6, 17).

Interestingly, patients with ICDs showed a more immediate reward response and greater choice impulsivity leading to increased risk behavior (6).

When the cognitive performance was compared according to the type of ICD it was found that patients with HS showed greater general cognitive impairment, including lower performances on learning tests and were more impaired on the Stroop test and memory tasks than were patients with PG (8, 68). However, another study found no differences in the executive functions of patients with PD and PG (69).

+ Genetics: genetic factors have been involved in ICDs in PD. Although heritability was estimated to be 57%, consensus remains a challenge and data need to be replicated in large cohorts from different populations (16). A large number of single nucleotide polymorphisms (SNP) in dopaminergic, glutamatergic, serotonergic, and opioid neurotransmitter systems has been reported as a candidate that improved predictability of ICDs when compared with clinical risk factors (2, 6, 9, 16, 21, 70). Recently, an association of OPRM1 rs1799971 was identified, a gene encoding the mu opioid receptor with ICDs. This gene is central to pain control as well as drug reward and addictive behaviors (70).

In Table 4 we present the genetic factors reported to be related to ICDs.


Table 4. We present the genetic factors reported to be related to ICDs.
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Interestingly, the ICARUS study, the largest prospective observational study in an Italian population, contributes to the identification of additional risk factors that include non-motor symptoms (mood and sexual function), mood symptoms (depression), sleep disorders and a low level of quality of life (19).

+Other Risk Factors

Recently, the overexpression of ΔFosB, a transcriptional regulator involved in addiction induced by drugs of abuse and in many types of compulsive behaviors has been reported to be associated with L-dopa induced dyskinesia and to be triggered by pramipexole (60).

The ΔFosB overexpression was identified in the nucleus accumbens (NA) and the striatum (brain regions important for addiction) of healthy and DA-lesioned rats exposed to pramipexole and found to be NMDA receptor dependent. These findings suggest that enhanced ΔFosB expression may represent the strongest predictor of PD patients at risk of ICDs (27, 60).

PATHOPHYSIOLOGY

Although an extensive number of studies have focused on the pathophysiologic mechanisms of ICDs in PD, these remain to be clarified (2, 9). Classically, the appearance of impulsivity in PD has been attributed to neuronal dopaminergic degeneration, facilitating ICD occurrence in dopamine replacement therapies (8).

Nevertheless, in recent years, evidence has suggested a complex multifactorial mechanism beyond the dopaminergic corticostriatal networks, including a complex serotoninergic and noradrenergic interaction. Further investigation is required (9).

DOPAMINERGIC THEORY

Dopaminergic receptors, Dopamine 1 receptor 1 (D1R) (D1 and D5) and Dopamine 2 receptor (D2R) (D2, D3, D4) types possess contrasting roles with inhibitory and excitatory signaling, respectively. These contrasting roles are present not only in the nigro-striatal pathway but also in the mesolimbic and mesocortical circuits. The pathways link cortical and subcortical regions [prefrontal cortex (PFC), ventral striatum, VTA and amygdala]; both circuits are implicated in reward learning and executive decision making or reinforcement behaviors, respectively (6, 22, 74).

Anatomical regions involved in ICDs:

1. Planning and judgment areas: caudal orbitofrontal cortex, ventromedial prefrontal cortex (PFC).

2. Reward system: ventral striatum (VS-nucleus accumbens [NA]).

3. Conditioned responses and emotional processing: amygdala.

4. Medial dorsal and anterior nucleus of the thalamus (6, 75).

In PD with ICDs a marked decrease ventrostriatal D3R-binding has been reported, while experimental PD models have shown an increase in DA levels in the NA associated to bilateral nigrostriatal DA denervation (64, 76). These findings, of a diminished striatal D2/D3 receptor level and an increase in mesolimbic DA tone, lead to an imbalance in the cortico-accumbens network implicated in reward signaling and behavioral changes (64, 77, 78). Moreover, the dopaminergic mesocorticolimbic system provides a role for shift behavior in response to changing stimulus-reward contingencies (64).

In this scenario, the tonic “overdosed” by D2/D3 receptor agonists in the mesocorticolimbic circuit could contribute to suppress, through the impairment of top-down inhibitory control from prefrontal cortical area (PFC) inputs to the ventral striatum, reward-related learning and induce compulsive, perseverative behavior through the direct D1 receptor pathway (6, 9, 22).

Dopaminergic agonists (DA) show a high D3R affinity in the mesolimbic system (6, 7, 9, 60). In effect, DA therapy, acting on the depleted dorsal striatum (involved in the sensory-motor circuit) and a relatively intact ventral striatum, induces a reduction of inhibitory response and impulse control by the reduction of activity in the lateral orbitofrontal cortex, the rostral cingulated zone, the amygdala, and in the external pallidum (6, 7). Therefore, PD patients on DA are not only at high risk for ICDs but also demonstrate greater choice impulsivity, shorter reaction time and increased risk taking (6, 79).

The D1 receptor family localize in the direct pathway of reward-based behaviors. Stimulation increases the activity of striatal projections to the nucleus accumbens/ventral striatum, while D2 receptors elicit suppression of the cortico-accumbens network (6, 22, 80).

NEUROIMAGING IN PD PATIENTS WITH ICDs

In recent years neuroimaging, particularly that which is focused on the dopaminergic system, has significantly contributed to the knowledge of neurobiological factors for ICDs (2, 7, 8, 81, 82) (see Tables 5A–D).


Table 5A. Structural MRI.
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Table 5B. Diffusion-tensor images.
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Table 5C. Resting state and Task-based fMRI.
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Table 5D. PET and SPECT Studies.

[image: image]



STRUCTURAL AND FUNCTIONAL MAGNETIC RESONANCE IMAGING

1. Structural MRI changes have been reported in PD patients with ICDs with a selective atrophy in the orbitofrontal and anterior cingulate cortices (areas involved in behavioral modulation). Atrophy in the orbitofrontal cortex has been reported in PD patients with ICDs (85, 91).

2. Functional brain resonance (fMRI) studies have reported an abnormal metabolism on the frontostriatal and cingulate cortices, the nucleus accumbens and the amygdala (2, 120).

3. A connectivity dysfunction between the striatal and limbic areas has been proposed. Brain connectivity was impaired in PD patients with ICDs with respect to the PD individuals without ICDs involving the neurocognitive network. A decreased connectivity has been identified in the central executive networks (mediofrontal areas, anterior cingulate and para-cingulate cortices), while an increased connectivity has been identified in the salience network (limbic-paralimbic network) and in the default mode network (pre-cuneus and posterior cingulate, bilateral inferior-lateral-parietal and ventromedial frontal cortices) (95, 97).

Single photon emission computed tomography (SPECT) of the dopamine transporter (DAT).

DAT regulates dopamine turnover. A reduced DAT binding in PD patients with PG and ICDs has been identified in PD patients with ICD compared to PD patients without ICD or healthy controls. This reduced binding of DAT has been suggested as a potential biomarker for risk of developing ICD symptoms (2, 36, 60). The binding reduction was not uniformly reproduced in different studies: some reported a reduction in right ventral striatum (2, 102), while others in the left putamen and left inferior frontal gyrus. These data could reflect a mesolimbic projection and frontostriatal disconnection, suggesting a vulnerability or maladaptive synaptic plasticity under non-physiological DA stimulation (2).

POSITRON EMISSION TOMOGRAPHY (PET) WITH 11C-RACLOPRIDE

Positron emission tomography (PET) neuroimaging with 11C-raclopride explores the DA fluxes within the basal ganglia. The 11C-raclopride is a reversible binding to the post-synaptic D2/3 receptor that competes with endogenous DA (2, 8, 22, 106, 107). Decreased 11C-raclopride binding is an indirect measure of increased endogenous dopamine release or “hyperdopaminergic state.”

A significant reduction of 11C-raclopride binding has been reported in ventral striatum, but not in dorsal striatum, in PD with ICDs (single or multiple) as compared to PD individuals without ICDs, following generic reward-related vs. neutral visual stimuli.

A more selective radioligand [18F]fallypride, with high affinity D2-like receptors (D2/D3 receptors) confirmed a reduced binding within the VS and putamen (121).

All of these findings contribute to support a mesocorticolimbic imbalance in PD with ICDs (108).

PD- ICDs TREATMENT

The first approach for ICD is prevention, and a key element is patient and family education concerning potential risks of different dopaminergic therapies. Physicians should be aware of predisposing risk factors and balance cost/benefit before DA prescriptions, excluding genetic factors and taking into consideration clinical findings, such as young age, early PD onset, lengthy disease duration, personal history of addictive behaviors, male gender, short-acting DA drugs, behavior and mood disorders (apathy, depression), DBS and certain cultural factors that require attention before prescription.

When ICDs appear, treatment continues to be a challenge. Individualized treatment must be conducted, identifying potential variables, such as motor status, comorbidities, other non-motor symptoms and quality of life (27, 122, 123).

The relevance of prevention is supported by NICE guidance that includes written information, or verbal information recorded in writing, at DA initiation of treatment. The authors emphasize the relevance of communicating to patients, relatives and carers the risk of ICDs due to the potential impact on their lives and for early detection (124).

The first approach for the treatment of ICD symptoms is the reduction or discontinuation of DAs. However, it should be considered that neuropsychiatric traits may persist for at least 12 weeks after drug withdrawal (60, 61, 123).

Nonetheless, in certain cases this strategy is not feasible, and some patients are at risk of developing DA withdrawal syndrome and worsening motor symptoms (21, 61, 123).

Although animal PD models have identified serotonin (5HT) depletion as a higher risk for impulsivity and risk behaviors, the serotonin reuptake inhibitors (SSRIs) used to treat ICDs had controversial results (22, 123).

Atypical antipsychotics, such as clozapine and quetiapine have been used to treat ICDs in PD, but no randomized trials have been conducted and evidence is limited (2, 7).

Taking into consideration that specific SNP opioid receptors have been identified as stronger risk factors for ICDs, opioid antagonists employed in the treatment of PG have produced controversial results (naltrexone, nalmefene) (2, 7, 16, 22, 60, 123).

A number of drugs administered to increase Gabaergic inhibition (valproate, topiramate), as well as new drugs to preserve ventral striatal DA system (zonisamide, donepezil, noradrenaline reuptake inhibitor) have been essayed (2).

As previously mentioned, controversial data are available concerning DBS and ICD treatment. A favorable response through reduction in dopaminergic requirements has been noted. It has been suggested that STN stimulation could reduce the risk for ICDs by increased reward-driven behaviors by inhibitor effect in the indirect dopaminergic pathway. However, some patients may develop transient de novo ICDs after STN DBS, and selective patients may develop ICDs a long time after DBS (123, 125).

A non-pharmacologic approach includes cognitive behavioral therapy and patient and caregiver education (7, 60).

CONCLUSIONS

The treatment used for PD, particularly DA, is associated with the development of ICDs and related behaviors. Susceptibility to these disorders depends on the associated risk factors.

ICDs can have serious personal, family, psychosocial, financial, and medical consequences. However, in contrast, artistic activities have been described in patients with PD while undergoing treatment with DA. These patients are compulsive but report a positive influence on quality of life.

These findings highlight the need for a very critical approach at the moment of Dopaminergic Replacement therapy choice.
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Study objectives Participants Results References
PD ICD/RBDs PD No Controls
ICD/RBDs
To demonstrate morphometric X X X No significant changes PD + ICD vs. PD-ICD ©3)
changes
To measure brain cortical x x x In 10D+ Significant cortical thinning in right superior ©4)
thickness and subcortical orbitofrontal, left rostral middle frontal, bilateral
volumes, and to assess their caudal middle frontal region, and corpus callosum
relationship with presence and and reduced volume in right accumbens and
severity of symptoms, in PD increase in left amygdala in ICD
patients with and without ICDs.
To identify Neuroanatornical Pathological X X Gray matter loss in bilateral Orbitofrontal-cortex in ©5)
abnormalities in PD patients Gambiing (PG) PD-PG vs. PD-CNTR correlated with increase of
with PG gambiing symptoms in PD-PG
To assess brain structural and x x x Cortical thinning i left pre-central and superior ©6)
functional alterations in patients frontal cortices, as well as decreased FA of the left
PD-ICB vs. controls and PD uncinate fasciculus and parahippocampal tract;
no-Ic8 increased mean, radial and axial difusivity of the left
parahippocampal tract and right pedunculopontine
tract; increased mean and radial diffusivity of the
genu of the cingulate cortex and right uncinate
fasciculus.
To assess whether a functional X Punding x x Cortical thinning of right inferior frontal gyrus ©n
dysreguiation of the habenula compared to controls and PD-without punding
and amygdala (modulators of the
reward brain circuit), contributes
to PD punding.
To investigate structural x x x Volume loss in the nucleus accumbens of PD ©8)
abnormalities in mesocortical, patients. PD-ICD showed significant increased
limbic cortices and subcortical cortical thickness in rostral anterior cingulte cortex
structures in PD ICDs. and frontal pole compared to PD-without ICD.
Increased cortical thickness in medial prefrontal
regions in PD-ICD
To determine morphometric x x x No significant morphometric changes in PD-ICD ©9)
changes as prediictors of ICB in ‘and PD-without ICD before and after onset of ICD.
de novo PD
To better understand the neural x x x PD-ICD patients showed a reduced gray mater (©0)
basis of ICDs in PD volume in External Globus Pallidus compared to
PD-without ICD
To investigate gray matter (GM) x x x Increased cortical thickness in anterior cingulate ©1)
and cortical thickness (CTh) cortex, orbitofontal cortex in PD-ICD.
changes in PD with and without
ICDs.
Morphometric Changes in PD Punding X X Significant cortical thinning in dorsolateral prefrontal ©2)

punding patients

Modified by: Ramdave et al. (81) and Meyer et al. (82).

cortex in PD-punding. Cortical thinning in
PD-punders localized in prefrontal cortex extending
into orbitofrontal cortex.
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Study objectives

PD ICD/RBDs

To assess brain white matter
tract alterations in PD+ punding
vs. controls and PD ICD, and PD
non-ICD

PD + Punding

To assess brain structural and x
functional alterations in patients

with PD-ICB vs. with controls.

and PD no-ICB cases.

To determine the changes in DT x
associated with

medication-related ICD in PD

patients undergoing chronic
dopamine-replacement therapy.

To identiy alterations of white x
matter tract in drug-naive PD-

IcDs

Participants

PD No
ICD/RBDs

PD Punding -

Controls

Results

Greater damage of genu of corpus callosum and left
pedunculopontine tract in PD-punding vs.
PD-without ICD

Cortical thinning in left pre-central and superior
frontal cortices, as well as decreased Fractional
anisotropy (FA) of the left uncinate fasciculus and
parahippocampal tract; increased mean, radial and
axial diffusivity of the left parahippocampal tract and
fight pedunculopontine tract; increased mean and
radial diffusivity of the genu of the cingulate cortex
and right uncinate fasciculus.

PD-ICD showed significantly elevated FA in anterior
cingulate cortex (ACC), right interal capsule
posterior limbs, right posterior cingulum, and right
thalamic radiations compared to PD-without ICD

Decreased connectivity i left and right
cortico-thalamic tract, left and right cortico-pontine
tract, left and right corticospinal tract, left and right
superior cerebellar peduncle and left and right
middle cerebellar peduncle between PD-ICD
compared to PD-without ICD. Decreased
connectivity in left and right inferior longitudinal
fasciculus, genu and body of corpus callosum, left
and right corticospinal tract, left superior cerebelar
peduncle and left and right cingulum in PD-ICD
compared to control.
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©2)

©4)

Modified by: Ramdave et al. (81) and Meyer et al. (32).
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Tools

Questionnaire for
impulsive-compulsive disorders
inPD (QUIP)

QUIP rating scale (QUIP-RS)

Minnesota Impulsive Disorders
Interview (MIDI)

Doparnine Dysregulation
Syndrome-Patient and Caregiver
Inventory (DDS-PC)

Movernent disorders Society
UPDRS, included a single item
for DDS

Barrat Impulsiveness Scale (BIS)

Ardouin scale of behavior in
Parkinson’s disease

Structured Cinical Interview for
Obsessive-Compulsive
Spectrum Disorders
(SCID-0CSD)

Parkinson's Impulse Control
Scale (PICS)

QUIR, Questionnaire for impulsive-compulsive disorders in PD; QUIP-RS, QUIP rating scale; MIDI, Minnesota Impulsive Disorders Interview; DDS-PC, Dopamine Dysregulation Syndrome-Patient and Caregiver Inventory; BIS, Barrat

Objectives

To screen ICRDs in PD patients.

To screen ICDs in PD patients

To assess the degree of
impulsivity related to compulsive
behavior

To screen ICRDs in PD patients

Not valid as an assessment tool
for ICDs

To assess impulsivity in PD
patients.

To assess neuropsychiatric
features in PD patients

To determine the presence of a
range of ICDs.

To rate severity of ICD in PD
patients.

Brief description

Most commonly used, validated,
self-report screening tool to assess ICDs

Rates severity of the ICDs and provides a
measure of change over time

A questionnaire to assess the presence of
impulsive-compulsive behaviors
associated to dopamine replacement
therapy in PD.

Questionnaie to assess the presence of
several ICD behaviors associated to DDS
in PD, for both self-report and caregiver's
report, to uncover eventual discrepancies.
The MDS-UPDRS contains
questions/evaluations, diviced in three
domains scoring 18 items of motor,
behavior and daily activities

High reliabilty and high predictive valicity
to assess high risk behaviors including
‘symptoms of condluct disorders, attention
deficit disorders, substance abuse and
suicide attempt.

Specifically designed for asses mood and
behavior, quantifying changes related to
Parkinson's disease, to dopaminergic
medication, and to non-motor fluctuations
A structured dlinician-administered
interview for the diagnosis of putative
oCsDs

Abrief, clinician-rated screening tool that
assess the intensity and impact of a wide
range of ICBs common in PD

Translated into other
languages other than
English

Yes No

+
German, ltalian

+

German, ttalian,

Spanish
+
+
+

+ Brazilan

Portuguese,

Sparish, dialectal

Arabic
+
+
+

Impulsiveness Scale; SCID-OCSD, Structured Clinical Interview for Obsessive-Compulsive Spectrum Disorders; PICS, Parkinson’s Impulse Control Scale.

Self-administered

Yes

No
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Receptor types Genotype Associations References
Dopamine DRD1rs4867798, rs4532, rs26598 1 Increased risk of ICDs ©.71,72)
PD: punding and hobbyism behaviors,
ICDs
Non-PD: ICDs, neuropsychiatric disease,
problem gambling, addiction, and
cogpitive functioning in non-PD population
DRD2 Taq1A Dopamine transporter (DAT1) No association ©
DRD2/ANKK1 rs1800497 Increased risk of ICDs ©, 16, 65, 71)
Dopa decarboxyiase (DDC) rs 3837091; rs Stronger predictor fICDs (16)
1451375
D3Rp.S9G 10Ds and levodopa-induced dyskinesias (2.5.6,9, 18,21, 65, 79)
Stronger predictor of ICDs
Glutamate Grin2B 57301328 Increased risk of ICDs (2.5.6,9,16,71)
Monoamine Transporters COMT gene Val158 Met No association ©,65)
COMT 154646318 No association ©
Opioid OPRKI 15702764 Stronger predictor fICDs: (.16, 65,72)
Serotonine Hydroxytryptamine receptor HTR2A Stronger predictor f ICDs (2,6,8,9, 16, 18)

rs6313
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Study rationale

PD ICD/RBDs

RESTING-STATE fMRI

Toidentify corticostriatal connectivity X X
(espedially between ventral striatum

and cortical limbic regions) in PD ICDs

To investigate functional alterations in X X
PD ICB+; vs. controls and PD no ICB

To assess whether a functional
dysregulation of the habenula and
amygdala (modulators of the reward
brain ciroult), contributes to PD
punding

Punding X

Toinvestigate differences in both b3 X
affective and sensorimotor striatal

circuitries between PD ICD, PD-No

ICDS and association with impulsive

behavior

To investigate brain network
connectivty at baseline in a cohort of
drug-naive PD patients who
successively developed ICDs over a
36-month follow-up period compared
with patients who did not.

To investigate intrinsic neural X X

networks connectivity changes in PD
with and without ICD.

Drug Naive PD

"TASK-BASED fMRI

To identify differences in CBF X X
responses to DA in mesocorticolimbic

regions in PD patients with and

without ICD

Toidentify dysfunctional brain reward DDS X
networks in PD- Doparnine

dysregulation sindrome (DDS)

To demonstrate that DA treated PD X X
patients with ICDs have increased

functional connectivity between the

ventral striatum and components of

the limbic

striato-palido-thalamocortical loop

and additionally to explore amygdala

connectivity with reward network

components.
To demonstrate a ink between Hypersexuality X
hypersexuality in PD and increased (PDHS)

processing in brain regions inked to
sexual motivation and cue reactivity

To quantify resting cerebral blood flow X X
(CBF) and blood oxygenation level

dependent (BOLD) MR to measure

neural responses to risk taking during

performance on the Balloon Analog

Risk Task (BART).

To demonstrate that DA would be X X
associated with faster leaming from

gain outcomes along with greater

Ventral striatal positive 3 activty in PD

1CDs vs. PD without I0Ds

To demonstrate that DA would be X X
associated with greater risk taking

and lower ventral striatal activity in PD

with ICD vs. PD without ICD

Modified by: Ramdave et al. (81) and Meyer et al. (52).

Participants

PD No
ICD/RBDs

Controls

X

NA

NA

NA

NA

NA

NA

Ligand

Resting state

On/Off state

ON and OFF medication states.
Drug-related visual stimull. Drug
Effects Questionnaire

Incentive leaming task with
“gain” and “loss” conditions.
ON and OFF medication states

Visual stimu presented of
sexual, other-reward related
and neutral cues. ON and OFF
medication states

Balloon Analog Risk Task

Probabilistic reward leaming
task. ON and OFF medication
states.

Risk task with “Gain” and
“Loss" condition. ON and OFF
medication states.

Results

Significant functional disconnection between left anterior putamen and
both left inferior temporal gyrus and left ACC, in PD-ICD

Increased functional connectivity of bilateral pre-central and
post-central gyrus in PD-without ICDs vs. control and PD-ICD.
Increased functional connectivity in left frontoparietal and visual
network positively correlated with ICD duration

Higher functional connectivity of habenula and amygdala with thalamus
and striatum bilaterally, and lower connectivity between bilateral
habenula and left frontal and pre-central cortices in PD-punding vs.
PD-without ICDs and control. Lower functional connectivity between
tight amygdala and hippocampus in PD-punding vs. PD-without ICD.

PD-ICD compared to PD-without ICD: Stronger connectivity between
left putamen and central operculum, left caudate and occipital fusiform
gyrus and various cerebelar regions, left Globus Palidus internali and
left superior temporal gyrus, left subthalamic nucleus(STN) and left
caudate, parietal and temporal areas. Weaker connectivity between left
GPe and various frontal cortical areas, left STN and various frontal
areas, parietal area and paracingulate, middle frontal gyrus and
subcortical areas.

Increased baseline connectivity in subtantia nigra (SN) and decreased
baseline connectivity in defauit mocle network and central executive
network in PD patients who develop ICD after chronic dopaminergic
treatment compared to those who did not

Increased connectivity in salience network and default mode network
and decreased connectivity in central executive network in PD-ICD.
Increased connectivity in salience network positively correlated with
ICD symptom severity.

Increased CBF in bilateral striatum, SN, periaqueductal gray matter,
insular cortex, and ventromedial prefrontal cortex in PD-ICD compared
to PD-without ICD. Increased CBF in bilateral VS in PD-ICD in ON state
vs. OFF state.

Exposure to drug-cues increase subjective feeling of being “ON” during
both "ON’ and *OFF" medication scans, which corresponds to
significantly increased activation in ventral striatum (V) in PD-DDS.

Elevated ventral striatal connectivity to anterior cingulate cortex (ACC),
orbitofrontal cortex (OFC), insula, putamen, globus pallidus and
thalamus in PD-ICD patients compared to PD-without ICD. No
difference in connectivity seen between ON and OFF medication
scans. Ventral striatum to subgenual ACC connectivity positively
correlated with reward learning performance.

Increased sexual desire correlated with enhanced activation in VS,
cingulate and OFC in PD-HS when ON medication.

Significantly reduced BOLD actiity in right ventral striatum during all
risk taking trials and significantly reduced resting CBF in right ventral
striatum, in PD-ICD

Greater left OFC activity in PD-DD patients compared to PD-without
ICD. PD patients in the ON state compared to OFF state learn faster
from gain outcomes during the task along with greater ventral striatal
activity to unexpected rewards.

ON state associated with lower bilateral ventral striatal activity
compared to the OFF state in patients with ICD with the reverse finding
in PD control group. Greater correlation between BOLD activity and risk
in PD-ICD compared to PD-without ICD in bilateral ACC and caudate,
and left OFC.
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Study objectives Participants Ligand Results References
PDICD/RBDs  PDNo  Controls
ICD/RBDs
PET
To evaluate I-dopa induced dopamine Dopamine NA  [11C] raclopride Greater reduction in ventral striatal binding potential in DDS (14.4%) vs. (108)
neurotransmission in the striatum of patients  dysregulation (02/D3-affinity) control (3.6%). Positive correlation with L-DOPA wanting but not liking
with DDS compared with PD control patients. syndrome (DDS)
To investigate the effects of reward-related x N/A Greater reduction in ventral striatal binding potential following task in (106)
cues and L-dopa challenge in patients with 1CD (16.39%) vs. control (5.8%),
PD ICD; and PD without ICD on striatal levels
of synaptic dopamine
To compare dopaminergic function during PD-PG N/A Greater reduction in ventral striatal binding potential during task in ICD (107)
gambiing in PD patients, with and without (18.9%) vs. PD control (8.1%)
pathological gambling (PG), following
dopamine agonists.
(1) To investigate dopamine Single ICD N/A Greater reduction in ventral striatal binding potential in single (17.19%) (108)
neurctransmission in PD patients with Multiple ICDs and multiple ICD (17.51%) vs. control (6.47%). No significant difference
multiple ICDs, single ICDs and non-ICD between ICD groups
controls in response to reward-related visual
cues. (2) To compare dlinical features of the
above three groups,
To investigate whether ICD in PD are x x [11C]-(+)-PHNO Greater reduction (20%) in ventral striatal binding potential in ICD vs. (109)
associated with greater D3 dopamine (03-affinity non-CD.
receptor availabiity
Toinvestigate the role of extrastriatal Gambling N/A  [11C] FLB-457 (Extra- Greater reduction in midbrain binding potential in PG vs. control during (110
dopaminergic abnormalities in PD patients (PD-PG) striatal D2/D3 affinity) gambling. Increase in binding potential in ACC in PG vs. control in
with PG control task
To investigate the possible involvernent of the x N/A  [18F] F-Dopa Increased binding potential (35%) in medial orbitofrontal cortex in ICD (111)
mesostriatal and mesolimbic monoaminergic vs. control PD without ICD.
function in ICDs associated with PD
Toinvestigate DA-induced changes inbrain  PD-Gambiing H2(15)0 [Regional cerebral ~ Significant reduction in rCBF inleft lateral orbitofrontal cortex, right (112)
activity that may differentiate patients with PD [2°) blood flow (fOBF)] rostral cingulate zone, right amygdala, left ventral anterior external
with DA-induced PG) from PD without PG pallidum in PG, while controls showed increased rCBF in these areas
for ON vs. OFF phase scans.
To investigate the extrastriatal dopaminergic X x [18FIFP-CIT (DAT Increased binding potentialin right ventromedal prefrontal cortex, left (113)
neural changes in refation to the density/PET) insular and right posterior cingulate cortex and reduced binding
medication-related ICDs in PD. potential at left nucleus accumbens, ventral striatum and ventral
palidum, in ICD vs. non-ICD.
To describe the metabolic PET substrate and X NA (18 FDG Increased glucose metabolism in right midle and inferior temporal (114)
related connectivity changes in PD ICDs. regions in PD-ICD compared with PD-CNTR. Higher metabolism in
these areas in patients with muliple ICDs vs. single ICD
SPECT
To investigate resting state brain perfusion in PG X X [1231FP-CIT (DAT Reduced DAT binding in right ventral striatum (nucleus accumbens) of (115)
PD patients with active PG compared with density/SPECT PD-PG compared to PD-CNTR
PD controls and healthy controls.
To assess presynaptic dopaminergic function X x Reduced tracer binding i the ventral striatum of PD patients with PG (116)
compared to PD controls
To assess striatal dopamine transporter (DAT) X N/A Lower DAT binding in right striatum with trend in ICD. (117
density in PD ICD
To follow-up data from medication-naive PD  PD-Drug Naive N/A [1231FP-CIT (DAT 11 patients developed ICD symptoms after DRT. PD-ICD patients had (118)
patients who underwent doparmine and subsequently density/SPECT lower DAT availabilty in right ventral striatum, anterior-dlorsal striatum
transporter SPECT imaging at baselineand treated with and posterior putamen compared to control
were subsequently treated with DA dopaminergic
replacement therapy. therapy
To assess cortico-striatal connectivity in PD X N/A Significant reduction in tracer uptake in left putaminal and left inferior (119
ICDs frontal gyrus in PD-ICD vs. PD without ICDI.
To investigate resting state brain perfusion in X X 99mTe-ECD (fCBF/SPECT) PD-PG showed a disconnection between the ACC and the striatum, (115)

PD PG compared with matched PD controls
and healthy controls.

Modified by: Ramdave et al. (31) and Meyer et al. (82).

which was not observed in PD patients without PG and HC groups.
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ICDs

Total
Age (mean SD)
UPDRS Il score (mean SD)

Cognitive scores MMSE adjusted total
score

Disease Duration
Median dopamine agonist LEDD

Median levodopa LEDD associated DA

Median levodopa LEDD without a
dopamine agonist

Compulsive Buying
Pathological Gambiing
Binge eating
Hypersexual disorder
References

N/A*: non available or Non applicable.

General
population

0.2-5.3%
A

5.8% (2-8)
0.4-1.1%
2%
3-6%
m

Dominion study
1CD subgroup

17.10%
60.2(8.1)
NA

7.1(38-10.8)
300mg
450mg
621mg

5.7%
5%
4.3%
3.5%
(29)

ICARUS study (at
baseline, use QUIP)
1CD subgroup

28.6%
636+95
14.1+£5.89
279+ 1.62

69+5.19
NA

6.5%
5.30%
9.9%
9.7%
(19)

The drug interaction with
genes in Parkinson’s disease
DIGPD study (ICD at baseline)

19.7%
58.5(8.9)
18.8(9.4)
284(17)

3.1(1.4)

211.1 (118.0)
N/A

263.4 (230.7)

4.86%
3.9%
10.5%
8.5%
33)
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References Study Type of study N participants. Scales Age Disease Motor scores Levodopa or Levodopa Results.
(mean/sSD) duration (mean/sD) ‘equivalent LEED
years (mean/SD) Dopamine agonist
years L-dopa dose equivalent
DA-LEDD
Name of  Geographic PD  Controls Motor  ICDs Others PDICDs  PDnon PDICDs PDnon PDICDs PD non
the study Distribution IcDs IcDs IcDs
Driver- Initial United States  Retrospective 1,884 A HaY, NA 57.2 NA 1.6 NA meanH&Y  N/A Meandose  Pramipexole PG can occur
DuncKley et al. database UPDRS (30-72) 4-22) stage 2.5 LEDD883.4 4.3mg/day asthe PD
@7) mg/day Pergolide 4.5 progresses,
mg/day appears with an
increase in DA
therapy and
resolves
reduction
Maia et al. (38) N/A Brazil (Case/control 100 100 UPDRS Y-BOCS, SEADLS 622+ 11.9 NA NA Total UPDRS mean NA OCD are NOT
study mHYS Total PD 40.28 £20.6 'MORE frequent
in PD patients
Weintraub et al. DOMINION  United States ~ Cross-sectional, 3,090 NA  Ha&Y Massachusetts 60.2(8.1) 64.4 71 65 20 20 Pramipéxole 3.1mg DA treatment in
@9 Sty andCanada  muiicenter Gambling .8 (88-108) (7-106) (20-25 (2025  (SD,1.7mg)and PDIis
Screen, MIDI H&Y HeY LEDDs 306.9mg (SD, associated with
168.2mg) Ropirinole 2-to3.5-fold
11.1mg (SD, 6.6mg) increased odds
and LEDDs 277.9mg of having an ICD
(SD, 164.9mg)
Pergolide 2.9mg (SD,
1.7mg) and LEDDs
286.6mg (D,
169.3mg)
Joutsa et al. (59) Finland Cross-sectional. 575 NA South Oaks BOI. 64 (range. 6(<1-29) years Total N/A NA Total L-Dopa was 561 Thereiis a high
Gambling 43-90) total PD D (26-3,230) mg DA proporton of
Screen, QUIR LEDD was 160 patients vith PD
(105-210) mg with ICDS.
Prevalence of
PGinPDis 7
times higher
than general
population.
Depression
associated with
allIcDs.
Sarathchandran India Case/control 305 234 Hay MDI,DSM IV,  Eysenck 546+99 596+98 82+49 7.3+48 HAYON20 H&YinON PD without ICD Revealed a
etal. (39) study UPDRS  BIS, BDI personality +05 19+05 LEDD: 448 & 280mg; relatively higher
inventory; UPDRS-Il  UPDRS-Il  L-Dopa:326.2 % frequency of
Anvdety and ON 18.7 ON18.5 31.9mg ICD-RBs
Depression +£92 +88 PD with ICD LEDD:
Scale, 590  364.8mg;
PDQ-39 L-Dopa: 373.4
68.5mg
Rodriguez- Mexico. Case/control 300 180  MDS- QUIP-RS 58+ 141 63+125 NA NA MDs- MDs- PD with ICD group ICD significantly
Violante et al. study UPDRS UPDRS part UPDRS LEDD 638 + more frequent in
(40) HaY 1131 £ 15.9; part ll 32.8 448.5mg; DA-LEDD: PD than
H&Y:22+ +17;H&Y 147.4 £1233mg PD controls.
06 23+£08  without ICD LEDD: subjects. lower
561.3 £ 417.4mg; overall
DA-LEDD: 97.1 frequency and
124.9mg distinct pattem
of ICDs related
with
socioeconommic
differences
Ramirez Gémez Argentina, Muilticenter. 255 NA  UPDRS; QUIP, QUIP-RS; 586(SD, NA a 10 Mean Mean NA ICD in Latin
etal. (5) ‘Colombia, Structured Hay CISI-PD 11.11) UPDRS 10 UPDRS 33 American PD >
Ecuador Giinical Anglosaxon
Interview. population
cross-sectional
Rizos et al. (41) UK, Spain, Multicenter 425 NA  HaY NMS 62.7 7.0(0-24) NA H&Y: 3.0 NA NA Relatively low
Denmarkand ~ Retrospective Questionnaire 42-89) (10-50) rate of ICDs with
Romania and prospective long-acting or
survey based on transdermal
medical records DAs.
and ciinical
interviews.
Velaetal. (17) ‘Spain Muiticenter 87 &7 UPDRS; QUP 80, 484452 464259 7(@-11) 3(1-10) Mean Mean  LEDD 300 (0-600)mg 1CBs are much
study, Hay EuroQol, UPDRS lll:  UPDRS Il DALEDD 210 more prevalent
Cross-sectional, PDQ-39 16(10-22; 17(11-24;  (99-800)mg in early onset
case/control HaY2 Hay2 PD patients vs.
study ©-2) (1-2) health controls.
Associated with
DA intake,
depression and
aworse QoL
Ergaetal. (20) Norwegian Norway Muticenter 125 159 UPDRS; QUIP MMSE, 67.9(.7) T714(98 7.4(16 T7.4(1.9 H&:22  UPDRS PD without ICD Patients with PD
ParkWest Cross-sectional Hay Stroop test, (0.5);Mean motor score  LEDD: 408.7 + treated with DA,
Study study, Semantic UPDRS lll:  22.7 (10.6). 266.7 mg; DA have increased
Semistructured verbal 23.8(10.5) H&Y:22 LEDD:289.5 + 150.0 ‘odds of having
Clinical fluency test, 0.8) PD with ICD LEDD: ICBs compared
interviews, CLvT-I, 505.2 £ 279.1; DA with age- and
cases and VOSP, NP, LEDD: 2607  132.4 gender-
controls MADRS, matched
Epworth controls.
Sleepiness.
Scale
(PDSS-2
Biundo ALTHEA Italy Muiticenter 251 NA  HaY, QUIP-RS; BDI  MoCA; ICD-RBs. 67.2+94 ICD-RBs 1402+ ICD-RBs UPDRS lll:  No ICD-RBs LEDD >50% of PD
etal. (42) study UPDRS; BDIHI below below 68.21 below cut-off 11.8(6.9) 971.06 401.1mg; patients with
UDysRS cut-off 665 cutoff  (months)  UPDRS i DA-LEDD 147.06 dyskinesia have
6102 527 % 1197 162.7mg ICD-RBs 1CDs and REDs.
ICD-RBs 61.1 ICD-RBs above cut-off LEDD Severity is
above (months); above cuteoff 101646 associated with
cut-off 635 1CD-RBs UPDRS Il 418.3mg; DALEDD Dopaminergic
699 above 122474 133.1 £1290mg therapy total
cut-off dose
1480 =
84.5
(months)
Zhang etal. China Xin Hua Hospital 142 H&Y, QU MMSE, 6555 6967+  7.76% 522%  Mean Mean Total LEDD, mg PD ICD and RBD
@) UPDRS, NMS, 743 8.16 590 523 UPDRS: UPDRS:  without ICD:329.82 + ‘commonly
the scale RBDQ-HK, 2018+ 1893+  84065mg PD vith found in
HAMA, 11.56; H&Y: 12.82 H&Y:  ICD: 522.06 + Chinese PD
HAMD, 232+099 221+077 412.46mg patients.
PDQ-39 Independent
factors.
associated with
ICRDs: Earlier
onset, dose of
DA, severe
cognitive
impairment;
dyskinesia.
Antonnieta. ICARUS  ltaly Prospective, 1,069 HEY,  mMDLQUP NMSS,  636:95 666£93 69£51958%  HAY20% HaY20% NA Prevalence of
(19) Study non- DA UPDRS POSS-2, 49  070Mean 063 Mean 1CD was.
interventional, alone PD-CRS, UPDRS lll:  UPDRS il relatively stable
mulicenter  L-Dopa PDQSS, 1412580 142 7.00 throughout the
alone BDHI, FAB 2-years
L-Dopa and three follow-up. No
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Anxiety and Depression Scale; BDI-ll, Beck Depressive Inventory; CISI-PD, Clinical Impression of Severity Index for Parkinson’s Disease; CLVT-Hi, California Verbal Learning Test li; Epworth Sleepiness Scale; Eysenck personality inventory.
FAB, Frontal Assessment Battery; H&Y, Hoehn & Yahr stage; HAMA, Hamilton Anxiety Scale; HAMD, Hamilton Depression Scale; MADRS, Montgomery and Asberg Depression Rating Scale; Massachusetts Gambling Screen; MDS-
UPDRS; mH&Y, modified Hoehn & Yahr stage; mMIDI, modified version of the Minnesota Impulsive Disorders Interview; MMSE, Mini Mental State Examination; MoCA, Montreal Cognitive Assessment; NMSS, Non-Motor Symptom
Scale; NPI-3, Neuropsychiatric Inventory; PD-CRS, Parkinson's Disease-Cognition Rating Scale; PDQ-39, 39-item Parkinson’s Disease Questionnaire; PDQ-8, Parkinson’s Disease Questionnaire-8 items; PDSS-2, Parkinson’s Disease
Sleep Scale-2; QUIR, Questionnaire for Impuisive-Compulsive Disorders in Parkinson's Disease; QUIP-RS, Questionnaire for Impulsive-Compulsive Disorders in Parkinson’s Disease Rating Scale; RBDQ-HK, REM Sleep Behavior Disorder
Questionnaire Hong Kong; SEADLS, Schwab and England Activities of Daily Living Scale; South Oaks Gambling Screen; UDysRS, Scale Unified Dyskinesia Rating Scale; UPDRS, Unified Parkinson's Disease Rating Scale; VOSR, Visual

Object and Space Perception Battery; Y-BOCS, Yale Brown Obsessive Compulsive Scale; LEDD, L-dopa-equivalent daily dose; DAED, dopamine agonist-equivalent daily dose

RBDs, Related Behavior Disorders.

» DA, Dopamine Agonist; ICD, impulse control disorders;
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