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Background: There are no studies describing the cerebral hemodynamic patterns that

can occur in traumatic brain injury (TBI) patients following decompressive craniectomy

(DC). Such data have potentially clinical importance for guiding the treatment. The

objective of this study was to investigate the postoperative cerebral hemodynamic

patterns, using transcranial Doppler (TCD) ultrasonography, in patients who underwent

DC. The relationship between the cerebral circulatory patterns and the patients’ outcome

was also analyzed.

Methods: Nineteen TBI patients with uncontrolled brain swelling were prospectively

studied. Cerebral blood circulation was evaluated by TCD ultrasonography. Patients and

their cerebral hemispheres were categorized based on TCD-hemodynamic patterns. The

data were correlated with neurological status, midline shift on CT scan, and Glasgow

outcome scale scores at 6 months after injury.

Results: Different cerebral hemodynamic patterns were observed. One patient (5.3%)

presented with cerebral oligoemia, 4 patients (21%) with cerebral hyperemia, and 3

patients (15.8%) with cerebral vasospasm. One patient (5.3%) had hyperemia in one

cerebral hemisphere and vasospasm in the other hemisphere. Ten patients (52.6%)

had nonspecific circulatory pattern. Abnormal TCD-circulatory patterns were found in

9 patients (47.4%). There was no association between TCD-cerebral hemodynamic

findings and outcome.

Conclusion: There is a wide heterogeneity of postoperative cerebral hemodynamic

findings among TBI patients who underwent DC, including hemodynamic heterogeneity

between their cerebral hemispheres. DC was proved to be effective for the treatment

of cerebral oligoemia. Our data support the concept of heterogeneous nature

of the pathophysiology of the TBI and suggest that DC as the sole treatment

modality is insufficient.

Keywords: decompressive craniectomy, traumatic brain injury, transcranial Doppler ultrasonography, intracranial

pressure (ICP), cerebral hemodynamics
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INTRODUCTION

Decompressive craniectomy (DC) may effectively decrease
intracranial pressure (ICP) and increase cerebral perfusion
pressure (CPP) in traumatic brain injury (TBI) patients with
refractory elevated ICP (1, 2). However, randomized controlled
trials failed to disclose the efficacy of this procedure for
improving these patients’ neurological outcome (3, 4). This
means that ICP control to ensure CPP, as the sole treatment
strategy, is not sufficient to achieve satisfactory therapeutic
results in most cases. New research should focus on different
pathophysiological mechanisms of posttraumatic brain swelling.

Transcranial Doppler (TCD) ultrasonography is a non-
invasive and bedside method for real-time assessment of cerebral
blood circulation. This technique is routinely used in clinical and
scientific scenario (5–8).

To date, few studies have addressed the cerebral hemodynamic
and metabolic effects of DC for uncontrolled elevation of ICP
(2, 9–15). To our knowledge, there are no studies describing
the different cerebral hemodynamic patterns that can occur in
TBI patients following DC. Such data potentially have clinical
importance, which justifies a study.

The aim of this study was to investigate the postoperative
cerebral hemodynamic patterns, using TCD ultrasonography,
in patients who underwent DC for uncontrolled intracranial
hypertension and brain herniation syndrome. The relationship
between the cerebral circulatory patterns and the patients’
outcome was also evaluated.

MATERIALS AND METHODS

Study Design and Patient Enrollment
A prospective study on the effects of DC on cerebral
hemodynamics for traumatic brain injury (TBI) was conducted
from January 1999 to September 2002, at the Hospital das
Clinicas of the University of Sao Paulo Medical School. The
enrollment criteria were TBI patients presenting with severe
brain swelling for whom DC was indicated and in whom
preoperative and postoperative TCD ultrasonography had been
carried out. Exclusion criteria included penetrating TBI, Glasgow
Coma Scale (GCS) score of 3 associated with bilaterally fixed
and dilated pupils, and the lack of TCD ultrasonography
evaluations. Multisystem trauma patients were not excluded.
Participants were characterized in terms of demographic, clinical,
and radiological variables. This study was approved by our
research ethics committee (CAPPesq).

Patient Population
Nineteen patients met the inclusion criteria for this study. Their
ages ranged from 17 to 63 years, with a mean age of 33 ±

14 years. There were 13 male and 6 female patients. Median
admission GCS scores was 7, varying from 4 to 13. These patients
were divided into two groups. The first group consisted of 9
patients with no focal lesions, in whom severe brain swelling and
refractory signs of brain herniation led to DC. The second group
was composed of 10 patients who presented with an expanding
hematoma (contusion hemorrhage, extradural and/or subdural

hematoma), which had been initially removed, and developed
afterwards severe brain swelling. Twenty percent of patients had a
hypotensive insult at hospital admission. Demographic, clinical,
and imaging data for each patient were presented in our previous
studies (10, 16).

General Management Protocol
Guidelines of the American College of Surgeons (Advanced
Trauma Life Support) and of the American Association of
Neurological Surgeons were adopted for the clinical e surgical
management of the patients (10). All patients with neurological
deterioration underwent brain computerized tomography (CT)
scans. ICP monitoring was not part of the study.

Indications for Surgical Decompression
DC was performed in patients with neurological deterioration
and CT scans disclosing predominantly unilateral diffuse
brain swelling associated with mass effect, a midline shift
and/or obliteration of peri-mesencephalic cisterns. Neurological
worsening was defined as a decrease in GCS score and/or
unilaterally or bilaterally unresponsive and dilated pupils.
Patients with persisting GCS score of 3 and/or bilaterally fixed
and dilated pupils were not operated on. The surgical technique
consisted of large hemicraniectomy with dural opening over the
most swollen cerebral hemisphere.

Evaluation of Cerebral Hemodynamics
TCD examinations were performed before surgery while the
patient waited to go to the operating room, or while the surgical
team prepared the patients in the operating room. Postoperative
TCD examinations were obtained soon after the completion of
incision closure and dressing, while the anesthesiologist prepared
the patient in the operating room. Portable 2 MHz pulsed TCD
equipment (Pioneer TC 2020 EME;Nicolet Biomedical,Madison,
WI) was used to measure the blood velocities in the middle
cerebral arteries (MCA) and the distal segment of the extracranial
internal carotid arteries (ICA), respectively, via temporal and
submandibular regions. TCD examinations were performed by
an experienced sonographer (EBSS) using a hand-held technique.
Monitoring of cerebral blood flow velocities for long periods
of time was not performed. The TCD variables were the mean
velocity (the time mean of the peak velocities over the course
of four cardiac cycles) and the pulsatility index (PI = [systolic
velocity–diastolic velocity]/mean velocity).

Systemic arterial blood pressure, body temperature,
hematocrit, arterial blood carbon dioxide, and oxygen pressures
were noted in each TCD examination.

Definition of TCD Cerebral Circulatory
Patterns
High MCA mean blood velocities can occur in both cerebral
vasospasm and hyperemia. The Lindegaard ratio (LR), defined
as the ratio of MCA mean blood velocity to the ipsilateral
extracranial ICA mean blood velocity, can be used to
discriminate cerebral vasospasm from hyperemia (17–19).
For the calculation of the LR, MCA flow velocities were divided
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by the ipsilateral extracranial ICA flow velocities. LR can improve
the diagnostic accuracy of TCD in detecting cerebral vasospasm.

MCA mean blood velocities >100 cm/s along with LR
<3 were considered as cerebral hyperemia, whereas MCA
mean blood velocities <40 cm/s were defined as cerebral
oligoemia. MCA mean blood velocities between 40 and 100
cm/s associated with LR <3 were considered as non-specific
hemodynamic pattern. MCA mean blood velocities >100 cm/s
in conjunction with LR >3 were considered as cerebral
vasospasm (17–19).

Categorization of Patients by Cerebral
Circulatory Patterns
Participants with hyperemia in both cerebral hemispheres,
or hyperemia in one cerebral hemisphere and non-specific
hemodynamic pattern in the contralateral hemisphere
were defined as having cerebral hyperemia. In contrast,
participants with oligoemia in both cerebral hemispheres,
or oligoemia in one cerebral hemisphere and non-specific
hemodynamic pattern in another hemisphere were considered
as presenting cerebral oligoemia. Patients with hyperemia in
one cerebral hemisphere and oligoemia in the contralateral
hemisphere, as well as patients with cerebral vasospasm, were
grouped separately.

Data Collection
Clinical data such as age, gender, accident date, time intervals
from accident to hospital admission, and from admission
to decompressive craniectomy, brain injury mechanisms,
neurological examination (GCS score and pupil activity) at
admission, prior to, and following brain decompression, midline
brain structures shift, associated intracranial posttraumatic
lesions, length of hospital stay, and outcome were extracted from
our database.

Clinical Outcome
Glasgow Outcome Scale (GOS) score was determined for all
patients approximately 6 months post-injury. Patients were
assigned to one of the five categories: death, persistent vegetative
state, severe disability, moderate disability, or good recovery.
Patients with good recovery (GOS score of 5) or with moderate
disability (GOS score of 4) were defined as presenting favorable
outcome. Patients who were assigned to the severe disability
(GOS score of 3) or to the persistent vegetative state (GOS score
of 2) or those who died (GOS score of 1) were considered to have
an unfavorable outcome.

Statistical Analysis
Results were expressed as means ± standard deviations. The
paired Student’s t-test, Mann-Whitney U-test, the Wilcoxon
rank-sum test, and the Fischer exact test were carried
out. Spearman correlation coefficients were considered when
appropriate. For all statistical tests, a difference was defined as
significant when the probability value was <0.05.

RESULTS

Cerebral Blood Flow Velocity
Measurements and PI
Preoperative MCA mean blood velocity varied from 8 to 143
cm/s. The averagemean blood flow velocities in theMCAwere 53
± 38 and 51± 26 cm/s, respectively, in the most swollen cerebral
hemisphere and in the opposite side (p = 0.88). The PI in the
MCA ranged from 0.61 to 7.09. The average PI in the MCA was
1.85 ± 1.56 in the most swollen cerebral hemisphere and 1.73 ±
1.36 in the opposite hemisphere.

Postoperative MCA mean blood velocities varied widely from
39 to 155 cm/s. The average mean blood velocities in the MCA
were 94 ± and 76 ± 16 cm/s, respectively, in the decompressed
cerebral hemisphere and in the opposite side (p < 0.05). The PI
in the MCA ranged from 0.46 to 1.30; the average PI in the MCA
was 0.81 ± 0.18 in the decompressed cerebral hemisphere and
0.86± 0.22 in the contralateral hemisphere.

Following DC, mean blood velocities increased, on average,
from 53 ± 38 to 94 ± 33 cm/s in the MCA of the decompressed
cerebral hemisphere (p < 0.01), and from 51 ± 26 to 76 ± 16
cm/s on the contralateral side (p < 0.01), whereas PI decreased,
on average, from 1.85 ± 1.56 to 0.81 ± 0.18 in the MCA of the
decompressed cerebral hemisphere (p < 0.01), and from 1.73 ±

1.36 to 0.86± 0.22 on the contralateral side (p < 0.01) (Table 1).

Classification of Patients and the Cerebral
Hemispheres by Hemodynamic Patterns
Prior to DC, 10 patients (52.7%) presented cerebral oligoemia, 3
patients (15.8%) fulfilled the criteria for cerebral hyperemia, and
6 patients (31.5%) were assigned to have non-specific circulatory
pattern (Table 2). Abnormal circulatory patterns were found in
13 patients (68.5%).

Considering only the most swollen cerebral hemisphere, 10
patients (52.6%) had cerebral oligoemia, 7 patients (36.9%)

TABLE 1 | Cerebral blood flow velocity and pulsatility index before and after

decompressive craniectomy.

Variable Side Preop Postop P-value

Flow velocity Decompressed 53 ± 38 cm/s 94 ± 33 cm/s p < 0.01

Flow velocity Opposite 51 ± 26 cm/s 76 ± 16 cm/s p < 0.01

Pulsatility index Decompressed 1.85 ± 1.56 0.81 ± 0.18 p < 0.01

Pulsatility index Opposite 1.73 ± 1.36 0.86 ± 0.22 p < 0.01

TABLE 2 | Number of patients according to cerebral circulatory patterns before

and after decompressive craniectomy.

Circulatory patterns Before craniectomy After craniectomy

Oligoemia 10 (52.7%) 1 (5.3%)

Hyperemia 3 (15.8%) 4 (21.0%)

Non-specific 6 (31.5%) 10 (52.6%)

Vasospasm – 3 (15.8%)

Hyperemia / Vasospasm – 1 (5.3%)

Total 19 (100%) 19 (100%)
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presented non-specific hemodynamic pattern, and 2 patients
(10.5%) had cerebral hyperemia. In the contralateral side
(N = 17), 3 patients (17.6%) presented cerebral oligoemia, 13
patients (76.5%) showed non-specific hemodynamic pattern,
and 1 patient (5.9%) had cerebral hyperemia (Table 3).
Abnormal circulatory patterns were more frequent in the most
swollen cerebral hemisphere than in the opposite hemisphere
(respectively, 63.1 vs. 23.5%).

After DC, 1 patient (5.3%) was found to present cerebral
oligoemia, 4 patients (21%) fulfilled the criteria for cerebral
hyperemia, and 3 patients (15.8%) were assigned to have
cerebral vasospasm. One patient (5.3%) was classified as having
hyperemia in one cerebral hemisphere and vasospasm in the
contralateral hemisphere. Ten patients (52.6%) showed to have
non-specific circulatory pattern (Table 2). Abnormal TCD-
circulatory patterns were found in 9 patients (47.4%).

In the decompressed cerebral hemisphere, no patient
had cerebral oligoemia, 11 patients (58%) presented non-
specific hemodynamic pattern, 4 patients (21%) had
cerebral hyperemia, and 4 patients (21%) were found
to have cerebral vasospasm. In the contralateral side
(N = 17), 1 patient (5.9%) presented cerebral oligoemia,
15 patients (88.2%) had non-specific hemodynamic
pattern, and 1 patient (5.9%) showed to have cerebral
hyperemia (Table 3). Abnormal circulatory patterns were
more frequently encountered in the most swollen cerebral
hemisphere than in the opposite hemisphere (42 vs.
11.8%, respectively).

Clinical and Cerebral Hemodynamic
Variables and Neurological Outcome
There was an inverse correlation between midline brain
structures shift and GOS scores at 6 months post-injury
(r = −0.46, p < 0.05). Also, the time interval from hospital
admission to DC was inversely correlated with the degree
of cerebral blood flow (CBF) velocity increase after surgical
decompression (r = −0.50, p < 0.05) (Table 4). There was no
correlation between postoperative cerebral circulatory responses
and other clinical and imaging variables such as preoperative
GCS score, GOS scores at 6 months post-injury, and neurological
recovery based on favorable (good recovery and moderate
disability) and unfavorable outcome (severe disability, vegetative
state, or death) at 6 months follow-up.

DISCUSSION

Role of Surgical Decompression
DC was proved to be effective for the treatment of cerebral
oligoemia. Prior to surgery, more than a half of our patients
(52.7%) had hemodynamic pattern of cerebral oligoemia (16)
while only 5% of them (5.3%) after surgery. This finding
can be explained by the decompressive effects of this surgery,
which consist of reduction of ICP and increase of CPP, CBF,
cerebral microvascular perfusion, and brain tissue oxygenation
(1, 2, 12–15, 20). It is important to emphasize that these
effects does not necessarily lead to cerebral hemodynamic
improvement. In our cases, despite all these decompressive

TABLE 3 | Circulatory patterns in the most swollen cerebral hemisphere and in the opposite hemisphere before and after decompressive craniectomy.

Before surgery After surgery

Circulatory patterns Most swollen

hemisphere

Contralateral cerebral

hemisphere

Decompressed

cerebral hemisphere

Contralateral cerebral

hemisphere

Oligoemia 10 (52.6%) 3 (17.6%) 0 1 (5.9%)

Hyperemia 2 (10.5%) 1 (5.9%) 4 (21%) 1 (5.9%)

Non-specific 7 (36.9%) 13 (76.5%) 11 (58%) 15 (88.2%)

Vasospasm 0 0 4 (21%) 0

Total 19 patients (100%) 17 patients (100%) 19 patients (100%) 17 patients (100%)

TABLE 4 | Correlation between neurological outcome and clinical variables and between postoperative cerebral hemodynamic changes and clinical variables*.

6-Months GOS CBFV increase

decompressed side

CBFV increase

opposite side

P-value Correlation P-value Correlation P-value Correlation

Age 0.319 −0.242 0.29 −0.256 0.556 −0.154

Sex 0.574 0.138 0.801 −0.062 0.802 −0.066

Interval Ad—DC 0.129 0.598 0.028 −0.503 0.03 −0.527

Preoperative GCS 0.113 0.375 0.301 0.251 0.472 0.187

Midline shift 0.044 −0.466 0.651 −0.111 0.27 0.284

CBFV increase decompressed side 0.113 0.645

CBFV increase opposite side 0.158 0.545

*Interval Ad—DC, interval between hospital admission and decompressive craniectomy; GCS, Glasgow coma scale; CBFV, cerebral blood flow velocity; GOS, Glasgow outcome scale.
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effects, almost half of the patients (47.4%) still had cerebral
hemodynamic disturbances, potentially requiring postoperative
cerebral hemodynamic monitoring, and possibly measures of
cerebral hemodynamic control.

Clinical Implications
Modern principles on CBF management in TBI patients
recommend avoiding states of severe cerebral hyperemia and
oligoemia (10, 16, 21). The former may result in cerebral blood
volume rise, vasogenic edema enhancement, and the risk of
intracerebral hemorrhage, while the latter may lead to cerebral
ischemia and infarction. Both hemodynamic states can aggravate
cerebral swelling and raised ICP. Therefore, the systemic and
cerebral hemodynamicmanagement should aim at adequate CBF,
preferably coupled with metabolism, avoiding severe cerebral
hyperemia, and oligoemia.

Methodically, causes of cerebral hyperemia (anemia,
hypercapnia, arterial hypertension, hypervolemia, increased
cardiac output, and cerebral metabolic crisis, drugs that
induce microvascular dilation, etc.) must be investigated and
treated if indicated. On the other hand, causes of cerebral
oligoemia (hypocapnia, arterial hypotension, hypovolemia,
dehydration, decreased cardiac output, raised ICP, drugs that
induce microvascular constriction, among others) must be
considered and corrected if possible. Factors that intensify
cerebral metabolic activity (seizures and fever) must be avoided
and treated, irrespective of the cerebral hemodynamic status,
whether hyperemia or oligoemia, because such factors increase
the energy requirement in the brain, worsening the uncoupling
between cerebral blood flow and metabolism in cases of cerebral
ischemia and/or the uncoupling between cerebral energetic
need and brain energy production in cases of non-ischemic
metabolic crisis due to mitochondrial dysfunction (22, 23).
Cerebral oligoemia detected in our patients was not associated
with significant arterial blood hypotension. During TCD
examinations, factors that can cause low CBF velocity, such as
suboptimal angle of insonation, arterial hypotension, arterial
hypocapnia and intracranial hypertension must be considered
and ruled out.

Recent papers disclosed that metabolic crisis in TBI
patients undergoing DC cannot be explained only by cerebral
ischemia (11, 13, 22–24). Some patients showed to have
non-ischemic metabolic crisis characterized by impairment of
oxidative phosphorylation in mitochondria, leading to failure
of brain energy production. Therefore, there are hyperactivity
of anaerobic metabolism pathway, failure of brain energy
metabolism, and aggravation of cerebral swelling. The brain
energetic failure associated with mitochondrial dysfunction
triggers the cascade of free radical production, necrosis and
apoptosis (11). A higher prevalence of mitochondrial dysfunction
and ischemic episodes was reported in unfavorable outcome
patients (11), reinforcing the importance of controlling both the
cerebral hemodynamics and metabolism.

Non-ischemic metabolic crisis causes cerebral tissue acidosis
due to anaerobic metabolism, despite high levels of tissue oxygen;
as a consequence, microvascular paresis can occur leading to
decrease in cerebrovascular resistance, impairment of cerebral

autoregulation and hyperemia (12, 22, 23, 25). A recent review
disclosed association between intracranial hypertension and
dysfunction of cerebral autoregulation, which can persist after
DC (26). The impairment of cerebral autoregulation can reduce
the arterial blood pressure threshold needed to maintain suitable
CBF (27).

Our results are important for guiding the intensive
management of these patients. One patient from our series
presented with hemodynamic pattern suggestive of cerebral
hyperemia in one hemisphere and vasospasm in the other
hemisphere. Therapeutic management of these patients may
be challenging, chiefly if both hyperemia and vasospasm are
severe. Arterial blood pressure augmentation therapy or surgical
decompression for treating cerebral oligoemia may not be
suitable for the hyperemic hemisphere; in contrast, measures for
decreasing cardiac output may worsen ischemia in the oligoemic
cerebral hemisphere. Such patients should be monitored closely
with multimodal fashion to achieve a middle ground whereby
correction of cerebral hypoperfusion does not cause significant
worsening of contralateral cerebral hyperemia (28). It is worth
stressing that traumatic intracranial expanding lesions and/or
disturbed cerebrospinal fluid circulation contribute to the
formation of pressure gradients in the intracranial space (29, 30),
such as interhemispheric supratentorial pressure gradients
(31), as well as to the hemispheric asymmetry of the pressure
autoregulation (32) and critical closing pressure (33). Along with
cerebral vasospasm, these pathophysiological events can explain,
in part, our findings of cerebral hemodynamic heterogeneity,
including heterogeneity between the cerebral hemispheres.

Cerebral Hemodynamic Changes and
Outcome
The data of the present study failed to show correlation
between cerebral hemodynamics and clinical outcome. This
does not mean that those correlations cannot exist. However,
the statistical analysis revealed a significant inverse correlation
between midline brain structures shift and GOS at 6 months after
injury, suggesting that the greater the midline shift, the worse
the clinical outcome. Also, a significant inverse correlation was
found between the time interval from hospital admission to DC
and cerebral hemodynamic changes after DC, indicating that the
longer the time interval, the lower the degree of postoperative
CBF velocity increases. Both facts can reinforce the idea that DC
should be indicated early or, at least, should not be indicated
too late.

Limitations
This study has a number of caveats, mainly related to small
sample size, possibility of type II error, and difficulties in
obtaining serial TCD examinations and clinical data (from
mechanical ventilation, sedation, vasopressors, intracranial
pressure, cerebral metabolic, and electrical activity, neurological
status, among others). Future studies should devise protocols that
can investigate the temporal course of cerebral hemodynamics
for each patient, and the impact of TCD results on guiding
the treatment. Other limitations include the lack of data about
the number of patients and the respective reasons for their
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exclusions during the recruitment process and the lack of sample
size estimation in the planning of this research; the latter may
limit the interpretation of the findings related to the correlation
between cerebral hemodynamic patterns and clinical outcome. It
should be noted that to date there are no data on this subject in
the literature that can be used to calculate the sample size.

Concerning the MCA blood velocity threshold for vasospasm
detection, flow velocities >140 cm/s can be more appropriate,
however the higher the blood velocity, the lower the TCD
sensitivity. Taking this into account, both flow velocities >100
cm/s and LR >3 were adopted in this study. The latter
can improve the diagnostic discrimination between cerebral
hyperemia and vasospasm.

Although little discussed, the diameter of MCA depends on
factors such as blood pressure in the vessel lumen, intracranial
pressure, and intrinsic vessel wall properties, among others. This
means that the diameter of MCA may change following DC,
making the interpretation of TCD results more difficult.

CONCLUSION

DC leads to increase in CBF velocity and decrease in PI,
indicating reduction in ICP. Our results showed a marked
heterogeneity of postoperative cerebral hemodynamic findings
among TBI patients with uncontrolled brain swelling who
underwent DC, including hemodynamic heterogeneity between
their cerebral hemispheres. DC was proved to be effective
for the treatment of cerebral oligoemia. Not surprisingly,
previous studies on TBI demonstrated cerebral heterogeneity
in terms of circulation, pressure autoregulation, critical closing
pressure, oxygenation, and metabolism (2, 16, 34). Our data
reinforces the concept of heterogeneous nature of the TBI
pathophysiology and suggest that DC as the sole treatment
modality is insufficient. The combination of therapies (for

instance, surgical decompression associated with the control of

both CBF and metabolism) can potentially improve patients’
outcomes. For the future, patients should be monitored in
terms of ICP, cerebral hemodynamics and metabolism to
allow individually planned treatments. In clinical practice, the
identification of different cerebral hemodynamic and metabolic
patterns and their significances may be useful for determining
specific therapeutic strategies. TCD can be more used as a
bedsidemonitoringmethod due to its low cost, non-invasiveness,
wide availability, and relatively short time of examination.
Unfortunately, this diagnostic tool depends on the operator
skill to obtain and interpret the cerebral hemodynamic data,
and does not directly quantify the CBF, but only its velocity.
The finding of cerebral hemodynamic heterogeneity in severe
TBI requires more TCD studies on this issue to have more
practical clinical experience.
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