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Cryptotanshinone (CTs), an active component isolated from the root of Salvia miltiorrhiza

(SM), has been shown to exert potent neuroprotective property. We here established an

oxygen-glucose deprivation/recovery (OGD/R)-injured Neurovascular Unit (NVU) model

in vitro to observe the neuroprotective effects of CTs on cerebral ischemia/reperfusion

injury (CIRI), and explore the underlying mechanisms. CTs was observed to significantly

inhibit the OGD/R-induced neuronal apoptosis, and decease the activation of Caspase-3

and the degradation of poly-ADP-ribose polymerase (PARP), as well as the increase

of Bax/Bcl-2 ratio in neurons under OGD/R condition. The inhibitory effects of CTs on

neuron apoptosis were associated with the blocking of mitogen-activated protein kinase

(MAPK) signaling pathway. CTs also remarkably ameliorated OGD/R-induced reduction

of transepithelial electrical resistance (TEER) values and the increase of transendothelial

permeability coefficient (Pe) of sodium fluorescein (SF) by upregulating the expression of

ZO-1, Claudin-5, and Occludin in brain microvascular endothelial cells (BMECs), which

might be related to the down-regulation of matrix metalloproteinase (MMP)-9 expression.

Based on these findings, CTs may play a neuroprotective role in OGD/R injure in NVU

models in vitro by inhibiting cell apoptosis and alleviating the damage of blood-brain

barrier (BBB).

Keywords: cryptotanshinone, oxygen-glucose deprivation/recovery, cerebral protection, neurovascular unit,

apoptosis, BBB disruption

INTRODUCTION

Stroke is the second leading cause ofmorbidity andmortality worldwide, with acute ischemic stroke
(AIS) making up more than 80% of all the cases (1). AIS is caused by sudden interruption of artery
supplying blood to the brain, usually resulting in a disorder of nervous system. Rapid restoration
of blood supply is a critical therapeutic strategy for AIS, but it can bring secondary damage and
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further lead to more serious disturbance in the function of
nervous system, called cerebral ischemia/reperfusion injury
(CIRI). CIRI initiates a complex cascade of events, such as
intracellular calcium overload, glutamate exitotoxicity, free
radicals accumulation, excessive release of inflammatory
mediators, DNA damage, blood-brain barrier (BBB) disruption,
and apoptosis (2). Therefore, not only is CIRI involved in
neurons but also in microvessels and gliacytes (3).

Hunting for an effective therapy for CIRI constitutes a
challenging task in neuroscience for decades. Neuroprotection
remains the central focus of CIRI treatment. Many mechanisms
are involved in the origination and development of CIRI. Hence,
neuroprotection targeting to a single therapeutic target is invalid.
Based on this, LO EH and his colleagues proposed Neurovascular
Unit (NVU) in 2003 (4). NVU is regarded as the basic structural
and functional unit of brain, and mainly including neurons,
astrocytes, microglia, microvascular endothelial cells, pericytes,
even with basement membrane, and extracellular matrix. This
concept not only shows the interactions among these types
of cells, but also reflects their roles in the origination and
development of brain diseases (5). So, NVU has become an
important model for studying multi-target and multi-level
therapy for brain diseases.

We here established an in vitro model of NVU, as described
in previous reports (6). It is a co-culture system made up of
three kinds of rat primary cells including brain microvascular
endothelial cells (BMECs), astrocytes and neurons. This model
can be used in brain research, potential drug targets screening
and therapeutic drug discovery.

Salvia miltiorrhiza (SM) root has been commonly used to
treat cardiovascular and cerebrovascular diseases in China and
other Asian countries (7, 8). Cryptotanshinone (CTs), one
of the major tanshinones isolated from the root of SM, is
a kind of lipophilic compound and can pass through BBB
(9, 10). CTs has various biological activities, such as anti-
oxidation, anti-inflammation, anti-tumor, anti-apoptosis, anti-
platelet aggregation activities, and so on (11–14). The previous
studies demonstrated CTs possessed protective effects on the
ischemic damage of multiple organs (15) and has the potential
protective effects for CIRI (16). However, the protective effects
of CTs on CIRI have not yet been confirmed, and its exact
mechanism is unknown.

Oxygen-glucose deprivation/recovery (OGD/R) model is the
most widely used in studies of CIRI in vitro (17), and many
typical pathologic changes in CIRI were observed on OGD/R-
injured NVU model (3). In the present study, we successfully
established an OGD/R-injured NVU model in vitro to elucidate
the potential protective effects of CTs on CIRI and explore its
underlying mechanisms.

MATERIALS AND METHODS

Animals
Sprague-Dawley (SD) rats were obtained from the Experimental
Animal Center and housed in the Experimental Animal Center,
Academy ofMilitaryMedical Sciences (Beijing, China). Newborn

rats were sacrificed for isolating the primary cerebral astrocytes
and neurons, and 120–150 gmale rats were sacrificed for isolating
the primary BMECs. All experiments followed an institutionally
approved protocol in accordance with the China’s Guidelines for
Care and Use of Laboratory Animals.

Preparation of CTs
CTs (Mw: 296.35, purity≥98%) was purchased from the National
Institute for Food and Drug Control (Beijing, China). CTs was
dissolved in dimethyl sulfoxide (DMSO, Sigma-Aldrich, USA) to
prepare for the stock solution with a concentration of 100mM.
The final concentration of DMSO in the testing solution was
<0.1% (v/v) to prevent possible cytotoxicity.

Reagents
MCDB 131 medium, DMEM, neurobasal A medium,
microvascular growth supplement (MVGS) and B-27 were
purchased from GIBCO (Thermo Fisher Scientific Inc., USA).
DNase I, collagen type I and sodium fluorescein (Mw: 376.27,
SF) were purchased Sigma (Sigma-Aldrich Co. LLC., USA).
CCK-8 was purchased from Dojindo (Dojindo Laboratories,
Japan). In situ cell death detection Kit (Fluorescein) and
collagenase/dispase were purchased from Roche (Roche Applied
Science, Germany). Clarity Western ECL Substrate kit were
purchased from Bio-Rad (Bio-Rad Laboratories, Inc., USA). All
the antibodies used in this research were purchased from CST
(Cell Signaling Technology, Inc., USA), except the antibodies
specific for ZO-1, Claudin-5, Occludin, MMP-2 and MMP-9
were from Abcam [Abcam (Shanghai) trading Co., Ltd., China].

Isolation and Purification of Three Types of
Rat Cerebral Cells
Primary rat BMECs were obtained from the cerebral cortex
of 120–150 g rats according to previous reports (6) with some
improvements. Primary rat cerebral astrocytes and neurons were
obtained from cerebral cortex of 24 h newborn rats as previous
reports (18) (Appendix 1).

The purified BMECs, astrocytes and neurons were used to
establish the in vitro NVUmodel (Appendix 2).

Establishment of OGD/R-Injured NVU
Model in vitro
At first, we established a NVU model in vitro by referring to
previous reports (6, 19) with a slight modification (Appendix 3).

The OGD/R treatment on NVU models in vitro were
performed as previous descriptions (6). Briefly, the prepared
NVU models in vitro were subsequently transferred into an
anaerobic incubator (Coy laboratory, USA) with condition of
95% N2 and 5% CO2 at 37◦C. Within the anaerobic incubator,
the cell culture mediums were replaced with oxygen/glucose-
free balanced DMEM without serum, which were previously
saturated with 95% N2 and 5% CO2 at 37◦C for 3 h. After
OGD treatment for 2 h, the NVU models in vitro were switched
to the normoxic incubator with high-glucose DMEM without
serum for 24 h.
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Experimental Groups and Treatment
NVU models in vitro were randomly divided into 4
groups of Control, OGD2h/R24h and two doses of CTs
(2.5 and 5.0µM). Except for the Control group, each
group was exposed to OGD2h/R24h. Drug treatment
groups were treated with CTs (2.5 and 5.0µM) for 3 h
before OGD and during the OGD period (CTs was added
into the culture mediums of insert). The experimental
condition was established by a preliminary study involving
different concentrations of CTs (0.32–10.0µM) at
different (3 and 24 h) pre- and post-hypoxia incubation
periods (Appendix 4).

Detection of Cell Viability
The cell viability of neurons was evaluated by cell counting
kit-8 (CCK-8). The values were expressed as the percentage of
living cells.

The cell viabilities of BMECs and astrocytes were tested by
trypan blue stain after digestion with 0.25% trypsin-EDTA. The
values were expressed as cells/cm2.

TUNEL Assay
TUNEL assay was performed to analyze neuron apoptosis
according to the manufacturer’s instructions using In situ
Cell Death Detection Kit. Finally, images were captured on a
fluorescence microscope at ×100 and ×400 magnification. The
neurons with green fluorescence were described as apoptotic
neurons. The number of apoptotic neurons per view was counted
using microscopy at×400 magnification.

Permeability Measurement of BBB by
TEER and SF
The integrity of the BBB was measured via the transepithelial
electrical resistance (TEER) assay using a Millicell ERS-2
Voltohmmeter (Millipore, USA) according to the protocol
provided by the manufacturer. The TEER value of cell-free
well was regarded as background TEER value. The final TEER
value = (sample TEER value–background TEER value) × the
area of insert membrane (4.52 cm2). The values were expressed
as � × cm2.

FIGURE 1 | The effects of CTs on cell viability and cellular apoptosis in neurons in OGD/R-injured NVU model in vitro. (A) Cell viability was measured using the CCK-8

assay (n = 4). The cell viability of neurons was calculated by dividing the optical density of samples with the optical density of control. (B) Representative

photomicrographs of apoptotic neurons were determined by TUNEL staining. Green fluorescence shows TUNEL-positive nuclei; blue fluorescence shows nuclei of

total neurons. Scale bars: 25µm. (C) The neuronal apoptosis rate was presented as the percentage of TUNEL-positive neurons. The percentage of TUNEL-positive

neurons was calculated by dividing the number of TUNEL positive apoptotic neurons with the total number of neurons in 5 high-power fields. Data are presented as

the mean ± SD. **P < 0.01 vs. Control group; #P < 0.05, ##P < 0.01 vs. OGD2h/R24h group. CTs, cryptotanshinone.
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Transendothelial permeability coefficient (Pe) of SF was
performed as previously described (20). Briefly, the culture
mediums in the inserts were switched to 1ml Ringer-Hepes
buffer containing a final concentration of 10µg/ml SF. The
inserts were transferred after 5, 15, 30, and 60min to a new
well with 2.5ml Ringer-Hepes buffer, respectively. Hundred
microliter culture mediums under the insert membrane were
taken out at each observing time. The absorbance was measured
by fluorospectrophotometer (Fluoroskan Ascent FL, Thermo
Fisher Scientific Inc., USA, excitation wavelength: 485 nm;
emission wavelength: 535 nm). The absorbance of cell-free well
was regarded as background absorbance. Pe was calculated as
previously described (21).

Western Blotting
BMECs and neurons from NVU models were collected and
lysed by RIPA buffer containing protease inhibitor, respectively.
Protein concentration was determined by the BCA protein assay
kit. Equivalent amounts of proteins from each group were
subjected to SDS-PAGE gel electrophoresis, and transferred onto
polyvinylidene fluoride (PVDF) membranes (Millipore, USA).

After being blocked with 5% non-fat milk in TBST buffer for
1 h, the PVDFmembranes were incubated with primary antibody
at 4◦C overnight. The primary antibodies used in this study
were rabbit anti-Caspase-3 (1:1,000), rabbit anti-PARP (1:1,000),
rabbit anti-Bax (1:1,000), rabbit anti-Bcl-2 (1:1,000), rabbit anti-
p-ERK1/2 (1:1,000), rabbit anti-ERK1/2 (1:1,000), rabbit anti-
p-JNK (1:1,000), rabbit anti-JNK (1:1,000), rabbit anti-p-p38
(1:1,000), rabbit anti-p38 (1:1,000), rabbit anti-ZO-1 (1:1,000),
rabbit anti-Occludin (1:1,000), mouse anti-Claudin-5(1:2,000),
rabbit anti-MMP-2 (1:1,000), rabbit anti-MMP-9 (1:1,000), rabbit
anti-β-actin (1:1,000). After three washes with TBST buffer, the
membranes were incubated with goat anti-mouse HRP or goat
anti-rabbit HRP-conjugated IgG secondary antibodies (1:3,000)
for 1 h each at room temperature. Protein bands were visualized
with an Clarity Western ECL Substrate kit. The density of the
bands was quantified using Image J software (National Institutes
of Health, USA).

Statistical Analysis
Data were expressed as the mean ± SD from at least three
independent experiments. Data were analyzed by one-way

FIGURE 2 | The effects of CTs on apoptosis-related proteins expressions in neurons in OGD/R-injured NVU model in vitro. (A) Representative Western blots showing

the levels of Caspase-3, cleaved-Caspase-3(17, 19 kD), PARP and cleaved-PARP in neurons. (B) Relative density refers to the ratio of cleaved-Caspase-3(17, 19 kD)

to Caspase-3 and cleaved-PARP to PARP (n = 4). (C) Representative Western blots showing the levels of Bax and Bcl-2 in neurons. (D) Relative density refers to the

ratio of Bax to Bcl-2 (n = 4). The semiquantitative analyse results indicated that CTs protected neurons from apoptosis induced by OGD/R. Data are presented as the

mean±SD. **P < 0.01 vs. Control group; #P < 0.05, ##P < 0.01 vs. OGD2h/R24h group. PARP, poly-ADP-ribose polymerase; Bcl-2, B-cell lymphoma 2; Bax,

Bcl-2-associated X protein; CTs, cryptotanshinone.
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FIGURE 3 | The effects of CTs on the MAPK signaling pathways in neurons in OGD/R-injured NVU model. (A) Representative Western blots showing the levels of

p-ERK1/2, p-JNK, p-p38, t-ERK1/2, t-JNK, and t-p38 in neurons. (B) Relative density refers to the ratio of p-ERK1/2 to t-ERK1/2, p-JNK to t-JNK and p-p38 to

t-p38 (n = 4). The semiquantitative analyses suggested that CTs pre-treatment obviously reduced the phosphorylation of ERK1/2, JNK and p38 in OGD/R injury

neurons, thus regulated cell apoptosis. Data are presented as the mean ± SD. **P < 0.01 vs. Control group; #P < 0.05, ##P < 0.01 vs. OGD2h/R24h group.

ERK1/2, extracellular regulated protein kinases1/2; JNK, c-Jun N-terminal kinase; p38, p38 mitogen-activated protein kinases; CTs, cryptotanshinone.

analysis of variance (ANOVA) followed by Tukey’s post hoc test
using GraphPad Prism 6.0 software (GraphPad, La Jolla, CA,
USA). Significant difference was accepted at P < 0.05.

RESULTS

The Effects of CTs on Cell Viability and
Cellular Apoptosis in Neurons in
OGD/R-Injured NVU Model in vitro
Compared with the neurons in control group, cell viability was
significantly reduced to 47.35 ± 3.80% after OGD/R treatment
(P < 0.01). CTs pre-treatment was able to increase the cell
viability in neurons. The cell viability in CTs 2.5 and 5.0µM
group neurons were respectively, 54.10 ± 4.54% and 60.56 ±

5.01% (P < 0.05 and P < 0.01, Figure 1A). Meanwhile, the
neuronal apoptosis was detected by TUNEL assay after OGD/R.
In Control group, only about 8.50 ± 1.30% neurons were of
apoptotic phenotype. This phenotype of neurons was remarkably
increased to 51.73 ± 3.99% in the OGD2h/R24h group (P <

0.01). Pre-treatment with CTs 2.5 and 5.0µM could protect
against OGD/R induced apoptosis. The apoptotic neurons were
significantly decreased to 45.00 ± 4.44% and 39.33 ± 2.78%
respectively (P < 0.05 and P < 0.01, Figures 1B,C).

The Effects of CTs on Apoptosis-Related
Proteins Expressions in Neurons in
OGD/R-Injured NVU Model in vitro
The effect of CTs pre-treatment on apoptosis-related proteins
expressions were confirmed by western blotting. As shown
in Figure 2, it is clear that the Caspase-3 activation, PARP

degradation and Bax/Bcl-2 ratio were significantly increased in
neurons after OGD/R damage (all P < 0.01). However, the
increased Caspase-3 activation, PARP degradation and Bax/Bcl-2
ratio were reduced by pre-treatment with CTs 2.5 and 5.0µM (all
P < 0.05 and P < 0.01).

CTs Regulated the MAPK Signaling
Pathways in Neurons in OGD/R-Injured
NVU Model in vitro
To assess whether CT pre-treatment would modulate the
mitogen-activated protein kinase (MAPK) signaling pathways in
vitro, we also examined the expression of total proteins [total
extracellular regulated protein kinases1/2 (t-ERK1/2), total c-
Jun N-terminal kinase (t-JNK), and total p38 mitogen-activated
protein kinases (t-p38 MAPK)] and their phosphorylation
(p-ERK1/2, p-JNK1/2, and p-p38 MAPK) on this pathway by
western blotting. The results showed that there was a significant
upregulation of p-ERK1/2, p-JNK, and p-p38 MAPK in neurons
after OGD/R treatment (all P< 0.01). Pre-treatment with CTs 2.5
and 5.0µM significantly downregulated p-ERK1/2, p-JNK, and
p-p38 MAPK (all P < 0.05 and P < 0.01, Figures 3A,B).

CTs Improved the BBB Function in
OGD/R-Injured NVU Model in vitro
BMECs and astrocytes are major cells that that comprise the
blood-brain barrier. The TEER values and the Pe of SF can reflect
paracellular permeability of BMECs. After OGD/R treatment,
compared with Control group, the numbers of survival BMECs
and astrocytes (both P < 0.01, Figures 4A,B) and the TEER value
(P < 0.01, Figure 4C) significantly decreased, while Pe of SF (P <
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FIGURE 4 | CTs improved the BBB function in OGD/R-injured NVU model. (A,B) The numbers of survival BMECs and astrocytes were detected by trypan blue

stain.The values were expressed as cells/cm2 (n = 4). (C) TEER value was measured using a Millicell ERS-2 Voltohmmeter. The values were calculated according to

the corresponding formula, and were expressed as � × cm2 (n = 4). (D) Pe of SF was calculated according to the corresponding methods. Pe were expressed as

×10−6cm/s (n = 4). The detection results showed CTs had an effect of protecting BBB function from OGD/R injury. Data are presented as the mean ± SD. **P <

0.01 vs. Control group; #P < 0.05, ##P < 0.01 vs. OGD2h/R24h group. BMECs, brain microvascular endothelial cells; TEER, transepithelial electrical resistance;

Pe, permeability coefficient; SF, sodium fluorescein; CTs, cryptotanshinone.

0.01, Figure 4D) increased significantly, demonstrating the BBB
integrity was destroyed. The above changes could be markedly
reversed by pre-treatmet with CTs 2.5 and 5.0µM (all P < 0.05
and P < 0.01).

The Effects of CTs on Tight Junction
Proteins and Matrix Metalloproteinases in
BMECs in OGD/R-Injured NVU Model
in vitro
To determine the effects of CTs pre-treatment on the tight
junction proteins (TJPs) between endothelial cells, the levels of
tight junction proteins (TJPs), ZO-1, Claudin-5 and Occludin,
in BMECs were determined by Western blotting. As shown in
Figures 5A,B, the protein expression levels of ZO-1, Claudin-
5 and Occludin were significantly decreased after OGD/R
treatment (all P < 0.01). Pre-treatmet with CTs 2.5 and 5.0µM
up-regulated obviously all of the expression levels of those
proteins (all P < 0.05 and P < 0.01). Moreover, to explore the
potential mechanisms of CTs on the protection of BBB function,
the expression of matrix metalloproteinase-2 and -9 (MMP-2 and
-9) were also examined by western blotting in the BMECs. The

western blotting results exhibited that the expression levels of
MMP-2 and -9 obviously increased after OGD/R injury (both P<

0.01). The expression levels of MMP-9 significantly decreased in
CTs 2.5 and 5.0µMgroup (P< 0.05 and P< 0.01, Figures 5C,D).
The expression ofMMP-2 decreased in CTs 2.5 and 5.0µMgroup
although the difference was not significant (P >0.05).

DISCUSSION

AIS is induced by temporary occlusion of cerebral artery
supplying blood. Reperfusion remains the critical therapeutic
strategy for limiting brain injury following AIS, but the
rapid restoration of blood flow is frequently associated with
a serious secondary brain injury, called CIRI (22). AIS,
particularly CIRI, triggers multiple cell signaling pathways in
the brain, which may lead to neuron survival or damage
(23, 24). However, the mechanisms involving neuronal fate
following CIRI are complex and not fully clear. There
is increasing evidence to show that cell apoptosis and
disruption of the BBB play vital roles in neuron damage after
CIRI (25–27).
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FIGURE 5 | The effects of CTs on tight junction proteins and matrix metalloproteinase in BMECs in OGD/R-injured NVU model. (A) Representative Western blots

showing the levels of ZO-1, Claudin-5, and Occludin in BMECs. (B) Relative density refers to the ratio of ZO-1, Claudin-5, and Occludin to β-actin. (C) Representative

Western blots showing the levels of MMP-2 and MMP-9 in BMECs. (D) Relative density refers to the ratio of MMP-2 and MMP-9 to β-actin (n = 4). The

semiquantitative analyses suggested CTs upregulated the expression of tight junction proteins by downregulating the expression of MMP-9 in OGD/R injury BMECs.

Data are presented as the mean ± SD. **P < 0.01 vs. Control group; #P < 0.05, ##P < 0.01 vs. OGD2h/R24h group. BMECs, brain microvascular endothelial

cells; ZO-1, Zonula occludens-1; MMP-2, matrix metalloproteinase-2; MMP-9, matrix metalloproteinase-9; CTs, cryptotanshinone.

CTs, one of the main active components of SM root,
has already been shown to exert potent neuroprotective and
antiapoptotic properties (28, 29). CTs could attenuates CIRI
through inhibiting thrombosis formation, platelet aggregation
and activation of PLC/PKC signaling pathway (8). CTs protected
primary cortical neurons from glutamate-induced neurotoxicity
through the activation of PI3K/Akt signaling pathway (9). Recent
evidence has further shown that CTs exhibits a protective effect
against cerebral stroke through suppressing the PI3K/AKT-eNOS
signaling pathway (16). Taken together, these studies clearly show
that CTs protects against CIRI and suggest that modulation of
anti-apoptotic signaling cascades might be one of the molecular
mechanisms of its neuroprotective effect.

In this study, we used OGD/R-injured NVU model in vitro
to further investigate the neuroprotective effects of CTs on CIRI
as well as the underlying mechanisms by focusing on MAPK
signaling pathways, as these pathways were closely related to cell
survival and apoptosis (Figure 6). In line with previous studies,

our results indicated that CTs had significant neuroprotective
effects against CIRI.

Cell apoptosis is a major characteristic of CIRI. Reducing
neuronal apoptosis could minimize or even prevent the
occurrence of CIRI (25). In this study, we found that CTs pre-
treatment could decrease the apoptotic rate in the neurons of
NVU model in vitro exposed to OGD/R. Meanwhile, we further
investigated the Bax/Bcl-2 ratio. The Bcl-2 family member Bax
was markedly up-regulated after OGD/R, which resulted in
the release of cytochrome c to the cytosol. Bcl-2 exerts the
anti-apoptosis efficiency through inhibiting the function of Bax
(30, 31). We found that the OGD/R-induced up-regulation
of Bax/Bcl-2 ratio could be reversed by CTs pre-treatment.
Moreover, we analyzed the activation of Caspase-3 and the
degradation of PARP. Cytochrome c release triggers the cleavage
of Caspase-3 to activate the Caspase-3 protein, which results
in DNA fragmentation and cell apoptosis by cleaving PARP
(31, 32). Our data revealed that pre-treatment with CTs prevented
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FIGURE 6 | Mechanisms in CIRI inducing neuronal apoptosis and BBB disruption by activiating MAPK signaling pathways. AIS may lead to CIRI causing the release

of proinflammatory cytokines and free radicals at the neurovascular unit activating MAPK signaling pathways. MAPK signaling pathways, including ERK1/2, JNK and

p38 MAPK, participate in the regulation of neuronal survival or apoptosis and the activation of MMPs. Then MMPs activation disrupts the BBB integrity by degrading

TJPs. ZO-1, Claudin-5 and Occludin are three of the important TJPs associated proteins. AIS, acute ischemic stroke; CIRI, cerebral ischemia/reperfusion injury; BBB,

blood-brain barrier; MAPK, mitogen-activated protein kinase signaling pathways; ERK1/2, extracellular regulated protein kinases1/2; JNK, c-Jun N-terminal kinase;

p38, p38 mitogen-activated protein kinases; Bcl-2, B-cell lymphoma 2; Bcl-xL, B-cell lymphoma-extra large; Bax, Bcl-2-associated X protein; Bad, Bcl-2-associated

death protein; PARP, poly-ADP-ribose polymerase; TJPs, tight junctions proteins; ZO-1, Zonula occludens-1; MMP-2/-9, matrix metalloproteinase-2/-9.

the OGD/R-induced increase in cleaved-Caspase-3 and cleaved-
PARP. Our findings suggested that CTs could protect neurons
from apoptosis induced by OGD/R.

Neuronal damage after CIRI is usually caused by oxidative
stress, inflammation response, or mitochondrial dysfunction,
and activates ultimately an apoptotic cascade. MAPK signaling
pathways, as both targets and mediators of CIRI, are involved
in neuronal survival or apoptosis regulation after stroke (33–
35). Thus, inhibiting or regulating the expression and activity of
MAPK signalings may constitute novel therapeutic strategies for
CIRI (36, 37). Recent studies have found that several drugs might
play protective roles in CIRI by inhibition of MAPK signaling
pathways (38, 39). The MAPK family includes extracellular
signal-regulated kinase 1/2 (ERK1/2), c-Jun amino terminal
kinase (JNK) and p38 MAPK. These pathways are activated

through phosphorylation by upstream kinases recruited through
diverse extracellular signaling events. Our results demonstrated
that the phosphorylation of ERK1/2, JNK, and p38 MAPK
was significantly increased in the neurons of NVU model in
vitro exposed to OGD/R. Pre-treatment with CTs resulted in
decreased phosphorylation of all the three molecules. These
results suggested that MAPK signaling pathways could be
involved in the neuroprotective effects of CTs. It is known that,
the activated ERK1/2, JNK and p38 MAPK mainly mediate the
cellular stress in CIRI by phosphorylating intracellular enzymes,
transcription factors, and cytosolic proteins involved in cell
survival and apoptosis (40–42). Our results indicated that the
protective effects of CTs against neuronal apoptosis induced
by OGD/R could associate with suppressing the activation of
MAPK signalings.
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In addition, the activation of MAPK signaling pathways is
associated with BBB damage (Figure 6) and aggravates CIRI
by promoting the production of inflammatory cytokines (43,
44). BBB disruption is a hallmark of stroke and a mediator
of CIRI and stroke progression (45). Restoration of the BBB
can relieve neuronal damage caused by CIRI (46). Our findings
demonstated that CTs could suppress the activation of MAPK
signalings in neurons. Therefore, we hypothesized that CTsmight
have a beneficial effect on CIRI-induced BBB dysfunction. As
we know, BBB, is mainly made up of BMECs and astrocytes,
plays a critical role in maintaining the microenvironment of
brain (18). Accumulating evidence has indicated that BBB
dysfunction is a key event during the progression of CIRI
(47). Therefore, protecting BBB from disruption may be a
promising strategy for prevention and treatment of CIRI (48).
In the current study, we found that the cell viabilities of
BMECs and astrocytes of NVU model in vitro were significantly
reduced after OGD/R. Pre-treatment with CTs increased notably
the cell viabilities of BMECs and astrocytes. Moreover, the
permeability measurement of BBB by TEER and SF showed
that CTs pre-treatment remarkably reversed the leakage of
BBB in the OGD/R-injured NVU model in vitro. These results
suggested that CTs could effectively improve BBB integrity
during OGD/R.

Tight junctions proteins(TJPs) between BMECs participate in
forming the BBB and are composed of Zonula Occludens (ZO),
Claudins and Occludin, all of which play important roles in
regulating BBB permeability and function (49, 50). And there
is growing evidence that the disruption of ZO-1, Claudin-5,
and Occludin led to the functional changes of TJs (51–53). In
this study, we found that the expression of ZO-1, Claudin-
5 and Occludin was significantly down-regulated in BMECs
of NVU model in vitro after OGD/R. Pre-treatment with CTs
could maintain the expression of these three kinds of TJPs.
These data confirmed that CTs could attenuate the BBB damage
during CIRI by maintaining the TJPs expression in BMECs.
Furthermore, alterations of MMPs also affect the function of
the BBB (54). MMPs, a family of zinc- and calcium-dependent
enzymes, disrupt the BBB integrity by degrading TJPs (55–57).
The expression of MMPs is only low level in normal brain tissue,
but many MMPs are activated and their levels increase after
ischemic stroke (58). Members of the MMPs family, specifically
MMP-2 and MMP-9 are involved in the breakdown of the BBB
and increased levels of these MMPs have been observed during
CIRI in stroke (59, 60). Consistent with these observations,
we found the increase of MMP-2 and -9 protein levels in
BMECs of NVU model in vitro exposed to OGD/R. CTs pre-
treatment down-regulated the expression of MMP-9, but not
MMP-2. These data further supported that CTs maintained the
expression of ZO-1, Claudin-5 and Occludin, probably during
OGD/R via inhibiting protein expression of MMP-9. MMPs
expression is tightly regulated at the transcriptional and post-
translationa levels. However, the exact mechanism is unclear.
At present, it is believed that multiple signaling pathways are

involved in this complex regulatory process, such as MAPK, NF-
κB, and PI3K/Akt signaling pathway (61–63), which may be the
reason why CTs only down-regulated the expression of MMP-9.
Further study is required to explore the functional relationship
between the regulation of MMP-2 expression and BBB integrity
and health.

LIMITATIONS

Several limitations should be acknowledged for the present study.
Again further studies are needed to reveal the effects of CTs on
oxidative stress, inflammation and the other two types of cells
apoptosis in the NVU model during OGD/R injury, BMECs and
astrocytes for instance.

CONCLUSIONS

Despite the above limitations, we indicate that the protective
mechanism of CTs against OGD/R damage might exert via
inhibiting neuron apoptosis and attenuating BBB disruption.
Furthermore, we also clarified that CTs inhibited neuronal
apoptosis possibly by blocking the activation of MAPK
signaling pathways, and CTs alleviating BBB disruption
may associated with the regulation of TJPs and MMP-
9 in our experiment. Accordingly, CTs will represent a
novel and potent candidate for the treatment of CIRI in
the future.
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