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The extent to which Alzheimer neuropathology, particularly the accumulation of misfolded
beta-amyloid, contributes to cognitive decline and dementia in Parkinson’s disease (PD)
is unresolved. Here, we used Florbetaben PET imaging to test for any association
between cerebral amyloid deposition and cognitive impairment in PD, in a sample
enriched for cases with mild cognitive impairment. This cross-sectional study used
Movement Disorders Society level |l criteria to classify 115 participants with PD as having
normal cognition (PDN, n = 23), mild cognitive impairment (PD-MCI, n = 76), or dementia
(PDD, n = 16). We acquired 18F-Florbetaben (FBB) amyloid PET and structural MRI.
Amyloid deposition was assessed between the three cognitive groups, and also across
the whole sample using continuous measures of both global cognitive status and average
performance in memory domain tests. Outcomes were cortical FBB uptake, expressed
in centiloids and as standardized uptake value ratios (SUVR) using the Centiloid Project
whole cerebellum region as a reference, and regional SUVR measurements. FBB binding
was higher in PDD, but this difference did not survive adjustment for the older age of the
PDD group. We established a suitable centiloid cut-off for amyloid positivity in Parkinson’s
disease (31.3), but there was no association of FBB binding with global cognitive or
memory scores. The failure to find an association between PET amyloid deposition and
cognitive impairment in a moderately large sample, particularly given that it was enriched
with PD-MCI patients at risk of dementia, suggests that amyloid pathology is not the
primary driver of cognitive impairment and dementia in most patients with PD.
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INTRODUCTION

Motor impairment is the cardinal feature of early Parkinson’s
disease (PD), but progressive cognitive impairment and dementia
(PDD) eventually become major debilitating symptoms for
patients (1). PDD arises in over 80% of patients (2), leading to
substantial caregiver and financial burden, reduced quality of life,
early institutionalization and premature death (3). Progression
to PDD involves a complex, multisystem brain degeneration
(1, 4). Alzheimers disease (AD) neuropathology, including
misfolded beta-amyloid (Af), may influence the emergence of
PDD by acting synergistically with a-synucleinopathy (4-8).
Neuropathological investigations of AP suggest an association
with cognitive impairment and increased deposition in PDD,
at least in a subset of patients (4, 5, 9-11). Similarly,
increased concentrations of AP in cerebrospinal fluid have been
associated with cognitive dysfunction and dementia in PD (12-
16), although some studies have not found this relationship
(17, 18). While both neuropathological and CSF markers
suggest an association with cognitive decline, the cerebral
deposition of amyloid is, however, not ubiquitous and the
neuropathology underlying the development of PDD remains
heterogeneous (19-21).

In vivo imaging of a-synuclein is currently not possible, but
positron emission tomography (PET) imaging allows an in vivo
test of an association between amyloid deposits and cognition
in PD (22, 23). Amyloid PET imaging, however, has produced
conflicting results in PD, especially with respect to cognitive
decline. Gomperts and colleagues (22), found no difference in
amyloid accumulation in the precuneus between a group of
PD patients with mild cognitive impairment (PD-MCI) and
cognitively normal patients at baseline, but the baseline presence
of amyloid was weakly associated with cognitive decline an
average of 2.5 years later, suggesting that amyloid may be a better
marker of future rather than current cognitive status in PD.
While Fiorenzato et al. (24), suggest a modest association with
cognitive decline, other in vivo amyloid imaging studies suggest
that amyloid deposition may occur in only a minority of PD
patients, even in PDD (23, 25-31). However, these previous PET
studies have used relatively small samples and the robustness of
their findings may be compromised by low statistical power, lack
of thorough cognitive characterization, or not accounting for age.

We therefore investigated the relationship between amyloid
deposition and cognitive impairment in PD using ['3F]
Florbetaben (FBB) PET imaging in a large, cognitively well-
characterized group of PD participants that included cases with
normal cognition (PDN), mild cognitive impairment (PD-MCI)
and dementia (PDD). Patients meeting PD-MCI criteria are at
a 7-fold higher risk of conversion to PDD over a 4-year period
compared to patients who do not meet these criteria (32). Thus,
the sample was enriched by recruiting a large proportion of PD-
MCI patients; this is a group in whom intervention to prevent
progression to dementia is particularly pertinent.

Since previous studies have suffered from inconsistent and
variable standardization procedures, we used centiloid scaling
in the present investigation. The centiloid scale facilitates direct
comparison of amyloid deposition across different imaging

centers, analysis methods, amyloid ligands (incorporating ''C-
and '®F-based ligands), and diseases (33, 34). This is achieved
by appling a linear scaling to amyloid PET data to an average
value of zero in high-certainty amyloid-negative subjects, and
to an average of 100 in typical AD subjects (33). In this
first application of centiloid standardization in PD, we (1)
investigated the relationship between amyloid deposition and
cognitive impairment in a group of well-characterized PD
participants representative of the broad cognitive spectrum, and
(2) established the distribution of centiloid values across the
cognitive spectrum in PD.

MATERIALS AND METHODS

As part of an ongoing longitudinal study, a convenience
sample of 118 PD participants meeting the UK Parkinson’s
Disease Society’s criteria for idiopathic PD (35) was recruited
from volunteers at the Movement Disorders Clinic at the
New Zealand Brain Research Institute, Christchurch, New
Zealand. We invited people representative of the broad
spectrum of cognitive status in PD to participate, i.e.,
from normal cognition to dementia, although we particularly
encouraged participation from individuals with PD-MCL
Exclusion criteria included atypical Parkinsonian disorders;
prior learning disability; previous history of other neurological
conditions including moderate-severe head injury, stroke,
vascular dementia; and major psychiatric or medical illness in the
previous 6 months. Neuroradiological screening (RJK) excluded
two participants with multifocal infarcts and one in whom part of
the bolus injection extravasated into the soft tissue. Participants
completed a neuropsychological battery, MRI scanning session,
and ['®F] Florbetaben (FBB) PET imaging. All participants
gave written informed consent, with additional consent from a
significant other when appropriate. The study was approved by
the regional Ethics Committee of the New Zealand Ministry of
Health (No. URB/09/08/037).

Diagnostic Criteria and Assessment

Comprehensive  neuropsychological ~assessment  fulfilling
the Movement Disorders Society (MDS) Task Force Level
IT criteria was used to diagnose PD-MCI (32, 36). Five
cognitive domains were examined (executive function; attention,
working memory and processing speed; learning and memory;
visuospatial/visuoperceptual function; and language; see
Supplementary Table 1 for a list of the specific tests) (32).
Within each cognitive domain, standardized scores from
the constituent neuropsychological tests were averaged to
provide individual cognitive domain scores; global cognitive
performance for each participant was expressed as an aggregate
z score obtained by averaging four domain scores (language
domain excluded). PD-MCI cases had unimpaired functional
activities of daily living, as verified by interview with a significant
other, and scored 1.5 SD or more below normative data on
at least two measures within at least one of the five cognitive
domains (32). Dementia was defined using MDS criteria as
significant cognitive impairments (2 SD below normative
data) in at least two of five cognitive domains, plus evidence
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of significant impairment in everyday functional activities,
not attributed to motor impairments (37). Participants also
completed the Montreal Cognitive assessment (MoCA). All
assessments and scans were performed with no disruption to
participants’ usual medication regimen. PD participants were
classified as either cognitively normal (PDN, n = 23), with mild
cognitive impairment (PD-MCL n = 76), or with dementia
(PDD; n = 16). Assessors were blinded to amyloid status.

PET Acquisition

['8F] Florbetaben (FBB) was manufactured in Melbourne,
Australia, by Cyclotek Pty Ltd, and transported by air freight to
Christchurch, New Zealand, with sufficient radioactivity for three
participant doses, despite the passage of three half-lives in transit.
After receiving an intravenous injection of 300 MBq =+ 20% FBB,
participants were scanned in “list mode” on a GE Discovery
690 PET/CT scanner, 90-110 min after injection. Images were
reconstructed using an iterative time-of-flight plus SharpIR
algorithm. Standardized uptake value (SUV), defined as the
decay-corrected brain radioactivity concentration normalized for
injected dose and body weight, was calculated at each voxel. A low
dose CT scan was acquired immediately prior to PET scanning
for attenuation correction. Voxel size in the reconstructed 20 min
PET image was 1.2 x 1.2 x 3.2 mm°.

MRI Acquisition

MR images were acquired on a 3T General Electric HDxt
scanner (GE Healthcare, Waukesha, USA) with an eight-channel
head coil. A volumetric T1-weighted (inversion-prepared spoiled
gradient recalled echo (SPGR), TE/TR = 2.8/6.6 ms, TT = 400 ms,
flip angle = 15 deg, acquisition matrix = 256 x 256 x 170, FOV
= 250 mm, slice thickness = 1 mm) was acquired to facilitate
spatial normalization of FBB PET images. Additional T2-
weighted and T2-weighted fluid-attenuated inversion recovery
(FLAIR) images were acquired to enable a clinical read.

Classification of FBB Images

Visual classification of FBB scans as positive or negative is
accurate and reliable for detection of cases with histology-
defined plaques (38). A neuroradiologist (RJK, with both
in-person and e-training), blinded to cognitive status, rated each
scan as amyloid-positive or -negative. That judgment was based
on the assessment of FBB uptake in gray vs. white matter in
the lateral temporal, frontal, posterior cingulate/precuneus, and
parietal lobes (in accordance with the NeuraCeq™ guidelines:
https://www.accessdata.fda.gov/drugsatfda_docs/label/2014/204
677s0001bl.pdf).

An additional approach using standardized uptake value
ratios (SUVR) or centiloids (see below) was also used to
categorize FBB scans. An ROC analysis [using the R package
“pROC” (39)] was used to identify the optimum centiloid cut-off
to separate positive and negative scans.

Image Processing

MRI

CAT12 (r934, http://www.neuro.uni-jena.de/cat/), a toolbox
of SPM12 (v6685, http://www filion.ucl.ac.uk/spm/), running

in Matlab 9.0.0 (R2016a), was used to process T1-weighted
structural images. Images were bias corrected, spatially
normalized via DARTEL (using the MNI-registered template
provided within CAT12), modulated to compensate for the effect
of spatial normalization, and classified into gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF), all within the
same generative model (40).

PET Data

FBB PET images were coregistered to each person’s T1-weighted
image and warped into MNI space using the MRI-derived
deformation fields. We then created a standardized uptake value
ratio (SUVR) image in each individual by scaling to the mean
radioactivity in the Centiloid project whole cerebellum reference
region of interest. Mean cortical SUVR was extracted from the
standard centiloid cortical region. Lastly, SUVR images were
smoothed using an 8 mm isotropic Gaussian kernel for whole-
brain analysis.

Centiloid Calibration

We performed a level 3 centiloid calibration (Supplementary
Material) to verify agreement between the standard centiloid
processing method (which utilized SPM8) and our processing
method (which utilized CAT12 normalization) (33, 34). All
calibration parameters were within expected values, validating
our processing methods (slope = 0.998, intercept = —0.187,
and R? = 0.995). Cortical centiloid values were calculated in all
PD participants using the FBB-to-centiloid conversion equation
(centiloid units = 153.4 x SUVRggp - 154.9) (34).

Regions of Interest (ROls)

While our principal analysis focused on cortical A deposition,
a number of both pathological and imaging studies suggest a
potential relationship between AP accumulation in the striatum,
thalamus, and globus pallidus and cognitive decline (10, 24,
41-43). We therefore specifically investigated a priori ROIs,
including the caudate, putamen, thalamus, globus pallidus, and
precuneus. The precuneus was included as a representative
cortical region that exhibits very high amyloid load in AD (44).
As standard centiloid regions do not exist for these structures,
we calculated average SUVR within these regions defined by
the Harvard-Oxford cortical and subcortical atlases in MNI152
space (45-48).

Statistical Analysis

Bayesian models were fitted using the “brms” (v2.2.0) package
(49) in R (v3.4.4). In each model, four chains with 2,000
iterations each were used to generate the posterior sample. Model
comparison using LOOIC (leave-one-out information criterion)
was performed when models included correlated predictors or
predictive performance was being evaluated (50). A lower LOOIC
score, by at least twice the standard error of the estimated
difference, indicated a model with a better fit, and consequently
whether a specific predictor significantly improved model fit.
Baseline demographic and neuropsychological group differences
were analyzed using linear models (in brms). Analysis code and
data are available at https://osf.io/5fqb9/.
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Region of Interest (ROI) Analysis

We investigated the relationship between FBB uptake and
cognition in PD using Bayesian regression models including age
and sex.

(1) We first tested for evidence of varying cortical amyloid
deposition (centiloid) across the cognitive subgroups (PDN,
PD-MCI PDD).

(2) We aimed to predict a continuous measure of global
cognitive ability (aggregate cognitive z score) as a function of
age, sex, and cortical FBB binding (centiloid). We evaluated
the importance of predictors by model comparison, using
LOOIC. That is, we compared a model predicting global
cognitive ability with and without cortical FBB binding in
order to determine whether cortical FBB binding improved
prediction of global cognitive ability. This same procedure
was repeated for the memory domain score.

(3) Lastly, regional SUVR from the a priori ROIs was modeled
as a function of age, age-by-ROI, sex, and global cognitive
ability-by-ROI interaction, in order to investigate the
relationship between FBB uptake and cognition in the
different ROIs.

Whole-Brain Voxel-Wise Analysis (SUVR)

We used a standard, frequentist ANCOVA model (with age
and sex as covariates) to assess the spatial distribution of
amyloid deposition across cognitive subgroups (we specifically
investigated the contrasts: PDD > PD-MCI, PDD > PDN, and
PD-MCI > PDN). In addition, we ran three multiple linear
regression models to investigate the association between voxel-
wise FBB SUVR and continuous measures of (1) global cognitive
ability (cognitive z score), (2) memory domain score, and (3) age.
Age and sex were included as covariates in the global cognitive
ability and memory domain models; only sex was included in
the age model. Voxel-wise comparisons were performed using
a gray matter mask and a permutation-based inference tool for
non-parametric thresholding [“randomise” (51) in FSLv5.0.9].
For each contrast, the null distribution was generated from 5,000
permutations and the alpha level set at p < 0.05, corrected
for multiple comparisons [family-wise error correction using
threshold-free cluster-enhancement (TFCE)].

RESULTS

Table 1 summarizes the demographic and clinical information
for PD participants. Twenty-one of 115 (18%) had positive FBB
scans on visual assessment. We identified a centiloid cut-off
of 31.3 (equivalent SUVR = 1.21), which yielded sensitivity
(to visually assessed positive scans) = 100%, specificity =
92.6%, and AUC [95% confidence interval] = 0.98 [0.97, 1.0].
We also identified a significant association between centiloid
and age (r = 0.011 [0.005, 0.017] SUVR/year, or 9.3%
per decade).

Regional Amyloid Distribution in PD
With a simple model that only considered the discrete cognitive
groups, we found evidence of increased cortical amyloid

TABLE 1 | Demographic, cognitive, and clinical metrics.

PDN PD-MCI PDD Linear
model

n 23 76 16 -

Female, No. [%] 8 (35) 18 (24) 3(19) -

Age, years 70 (6) 72 (6) 77 (6) PDD > PDN
& PD-MCI

Education, years 12 (2) 13 (3) 12 (2) ~

PD symptom 7.4 (5) 7.3(4) 8.5 (5) ~

duration, years

MoCA 26 (2) 23 (3) 16 (5) PDN >
PD-MCI >
PDD

Cognitive Z score 0.28 (0.48) —0.81(0.53) —1.89(0.57)% PDN >
PD-MCI >
PDD

Memory domain 0.52 (0.86) —0.82(0.85) —1.82(0.67)2 PDN >

score PD-MCI >
PDD

Dose, MBq 294 (20) 300 (16) 290 (27) ~

AB positive, No. [%]b 4[17] 11 [14] 6 [38] -

Mean cortical 1.11(0.13) 1.12(0.18)  1.28(0.30) PDD > PDN

SUVRNs & PD-MCI

Mean cortical CL 16 (19) 18 (27) 42 (44) PDD > PDN
& PD-MCI

Values are mean (standard deviation) unless specified; @Cognitive z scores and
memory domain scores for seven PDD participants were imputed from restricted
neuropsychological data due to their inability to complete the full cognitive assessment.
byjisual assessment of amyloid positive/negative reported. ~, no evidence of a difference;
-, no statistical test applicable or was not performed. Pairwise group estimates were
considered different if 95% uncertainty intervals did not overlap. MBq, megabecquerel;
MoCA, Montreal Cognitive Assessment; AB, Amyloid beta; SUVRys, Standardized uptake
value ratio with “non-standard” processing (see Supplementary Material), CL, centiloid.

accumulation in PDD relative to PDN and PD-MCI (Figure 1;
Table 1). However, adding age as a covariate to the model
and using LOOIC to compare models, showed that age, rather
than cognitive group, was predictive of increased cortical
amyloid accumulation (Figure 2B; Supplementary Material).
When attempting to predict cognition from cortical amyloid
deposition, the addition of FBB uptake (centiloid) to a model
resulted in marginally worse out-of-sample prediction of global
cognitive score [LOOIC (standard error) = 1.8 (0.8), Figure 2A]
and memory score [0.7 (2.1), data not shown] than simpler
models, which only included age and an intercept. This indicates
FBB uptake has little, if any, relationship with cognitive
impairment in our PD sample. In a priori ROIs, including
age and sex, we saw no evidence of association between
FBB uptake (SUVR) and either global cognitive or memory
score (Figure 3).

Whole-Brain Voxel-Wise Amyloid
Distribution in PD

We identified no evidence of a difference in amyloid
deposition across PD cognitive groups (TFCE-corrected,
p < 0.05). Furthermore, we identified no evidence of
association between SUVR and either global cognitive
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PDN, Parkinson’s with normal cognition; PD-MCI, Parkinson’s with mild
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FIGURE 2 | Associations between cortical amyloid deposition and global
cognitive ability and age. (A) Scatter plot showing no evidence of a significant
association between global cognitive ability (Cognitive z score) and cortical
amyloid (CL; Table 1). (B) Scatter plot of cortical amyloid (CL) vs. age (years).
FBB uptake was associated with age (slope = 1.5 CL/year, 95% uncertainty
interval [0.6, 2.3], equivalent to SUVR of 0.011/year [0.005, 0.017]). Black line
depicts estimate from the Bayesian model fit and the shaded area indicates the
95% credible interval. Color represents cognitive status: green—Parkinson’s
with normal cognition (PDN), orange—Parkinson’s with mild cognitive
impairment (PD-MCI), red—Parkinson’s with dementia (PDD). CL, centiloid.

ability or memory domain scores. There was, however, a
widespread positive association between SUVR and age over the
cortex (Figure 4).

DISCUSSION

Using FBB PET imaging in 115 PD patients across the cognitive
spectrum, we observed significantly higher cortical amyloid
accumulation in our PDD group relative to other cognitive
subgroups, but model comparison indicated this was due to the
older age of the PDD group.

Visual assessment revealed amyloid positive proportions of 17,
14, and 38% in PDN, PD-MCI, and PDD groups, respectively.
The prevalence of amyloid positivity reported in the literature
is variable, ranging from 0 to 53% in PDN (26, 27, 30, 31, 52),
0-47% in PD-MCI (23, 26, 27, 30, 31, 52), and an estimated
point prevalence of 34% in PDD (23). Nevertheless, these
proportions of amyloid positivity across the cognitive spectrum
in PD are substantially lower than levels seen in Alzheimer’s
dementia (88%) (53) or amnestic MCI (69%) (54), and are closer
to levels seen in elderly controls (11.6% at age 60, 23.8% at
70, and 34.5% at 80 years) (53). The association we observed
between amyloid deposition and age (r = 0.011 [0.005, 0.017]
SUVR/year, or 9.3% per decade) is similar to that reported
in the healthy elderly population (*!C-PiB uptake increased
at 0.016 SUVR/year, ~10% per decade) (54), indicating that
a PD-specific influence on amyloid accumulation is unlikely.
Although global SUVR measures obtained from PiB and FBB
PET in the same subjects have excellent linear correlation, the
above rates are not directly comparable as different reference
regions were used to define SUVR (for example, we used
the whole cerebellum while Villemagne et al. (54), used the
cerebellar cortex). Nevertheless, amyloid load in our PD sample
appears to be consistent with levels seen in the general elderly
population, as well as previous PD studies (2, 23, 31), and
any increases in our PDD group can be explained by their
older age. Not accounting for age may help explain the recent
report of association between amyloid deposition and global
cognition in a subset of the Parkinson’s Progression Marker
Initiative (24).

Ideally we would have used a predefined centiloid threshold
derived from a large population study to define amyloid positivity
in our PD sample. However, to the best of our knowledge,
this is not currently possible. SUVR cut-off values are well
established, but recent work demonstrates that specific thresholds
are, as expected, highly dependent on the reference regions and
processing methodology (7, 55). Therefore, a threshold derived
using a particular method should not necessarily be applied
to a different processing methodology, even after centiloid
standardization (55). Many potential thresholds are available: a
phase III FBB study identified a histopathologically-confirmed
amyloid positivity cut-off of SUVR = 1.478 (56); Jack et al. (57),
report a Pittsburgh Compound B-derived cut-off of SUVR =
1.42 and CL = 19; Bullich et al. (58), reported FBB thresholds
using cerebellar cortex (SUVR = 1.43) and non-centiloid whole
cerebellum (SUVR = 0.96) as reference regions. However, it
would be inappropriate to apply these cut points to our current
dataset as image processing and reference regions differed from
the standard centiloid SUVR method. Su et al. (55), presented
a centiloid cut-off using standard reference regions (CL = 6.8)
based on an ROC analysis to classify young, amyloid negative

Frontiers in Neurology | www.frontiersin.org

April 2019 | Volume 10 | Article 391


https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles

Melzer et al.

Amyloid and Cognitive Impairment in PD

orange—Parkinson’s with mild cognitive impairment (PD-MCI), red—Parkinson’s wi

Caudate Globus Pallidus Precuneus
1- o 0e ° 0:0. o ° ~
o . °3° et
0- oo, o 0.=.~ $.’.. .
_ a® ° (] ° ®
g o o . 5y ) N <
g -1 «° ote " °
N 5. o 0 o %% % o, o8 L °
% -3- ° °
g Putamen Thalamus 1.0 1.5 2.0
s q- e ° 00o
> s o5
(o] 0- ...o % ®
o E e o 3 ® o i o PDN
© ¢« ® &e
-g -1- " s P PD-MCI
O . ° o ® oo . we . e PDD
o® od
® o
-3- o
1.0 1.5 2.0 1.0 15 2.0

FBB uptake (SUVR)

FIGURE 3 | Cognitive performance as a function of mean standardized uptake volume ratios (Florbetaben) within a number of brain regions. While different regions
exhibited different levels of amyloid deposition, there was a clear lack of relationship between cognitive performance (cognitive z score) and SUVR within all of the
regions examined. FBB, Florbetaben; SUVR, standardized uptake volume ratio. Color represents cognitive status: green—Parkinson’s with normal cognition (PDN),

th dementia (PDD).

FIGURE 4 | Red indicates voxels with a significant positive association between FBB uptake and age (TFCE-corrected p < 0.05), overlaid on a study-specific
structural image. This association was evident throughout the cortex and in the thalamus but not in the striatum.

participants from AD patients in the GAAIN dataset. This
surprisingly low threshold may be driven by differences in
non-specific binding and tracer delivery differences between
young and old participants. In any case, standardized centiloid
analyses of large cohorts are needed to establish appropriate
centiloid thresholds, which will lead to greater applicability of the
centiloid scale.

In this study, we used a well-validated visual assessment to
clinically rate scans as being amyloid positive or negative (38).
As there is not an accepted threshold based on standardized
centiloid reference regions, we defined an amyloid positivity
centiloid cut-off threshold in our sample. Our cut-off (CL = 31.3,
SUVR = 1.21) corresponds well to the estimated value proposed
by Rowe and colleagues (34) in the context of AD (CL = 25-
30), however our estimated threshold may be biased by the low
number of Af positive patients.

Our results suggest a lower prevalence of amyloid-positive
PDD individuals than in dementia with Lewy bodies (DLB);

neither of these two conditions exhibit the proportions of
amyloid-positive cases reported in Alzheimer’s dementia (23,
30, 59, 60). While some have reported an association between
cognitive ability and cortical SUVR in DLB (28), the largest
study (including the most thoroughly profiled group of DLB to
date) did not find an association between amyloid deposition and
clinical profile, despite showing increased amyloid accumulation
vs. controls (59). We confirm here a similar lack of association
in PD between amyloid deposition and cognitive impairment,
with age explaining the increased FBB-uptake observed in our
PDD group.

Most of our PD patients were within the normal centiloid
range (comparted to control data from the Global Alzheimer’s
Association Information Network used for level 3 centiloid
standardization: http://www.gaain.org/centiloid-project), with
few showing AD-like levels of cortical amyloid. Hence Af
pathology is unlikely to be a dominant causal factor in the
majority of individuals with PD or PDD.
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PET measures of amyloid do not suggest plaques as a
primary pathology for dementia in PD, but amyloid may play
a part in conjunction with other pathologies, such as alpha-
synuclein and hyper-phosphorylated tau. It is expected that tau
deposition will correlate more directly with current cognitive
ability, due to its association with accelerating neuronal injury.
Initial tau PET imaging in PD and DLB demonstrates a spectrum
of deposition, with reports of both association (30, 52) and
lack of association (26, 61) with cognitive impairments in
PD. Thus, consideration of amyloid, tau, and alpha-synuclein
deposition in the same individuals may ultimately provide
a more complete description of how pathological processes
potentially interact to affect cognition in PD. A potential
scenario for prediction of future outcomes will most likely
synthesize an array of biomarkers representative of these and
other pathologies (21, 62).

Our results suggest that amyloid deposition is neither
necessary nor sufficient to explain cognitive decline and
dementia in PD. The current study cannot address the role
that amyloid accumulation plays in AD, but it does raise the
question as to the fundamental relationship between amyloid
plaques and dementia. While the amyloid cascade hypothesis
remains the leading candidate to explain the pathophysiology
of AD, it not universally accepted (63, 64). Amyloid beta may
be a downstream result, and not necessarily the cause, of
AD (65).

Limitations of this study include the absence of a healthy
control group. Analyses were restricted to the effects of varying
levels of cognitive impairment within PD. All comparisons
to healthy controls were based on comparable reports from
the literature. However, the primary aim of this work was to
investigate the relationship between amyloid deposition and
cognitive impairment within a group of well-characterized PD
participants. Even when following level II criteria for PD-MCI,
considerable variability exists across those diagnosed as PD-
MCI; some exhibit single domain and others multi-domain
impairment (32). It is possible that different subtypes may
exhibit greater or lesser underlying AP. Nonetheless, Ap was
not associated with global cognitive ability or memory function.
We do not know the APOE genotype of our participants, which
has been shown to correlate with amyloid deposition (31, 54).
We also did not have histopathological confirmation of amyloid
plaque accumulation, although recent work demonstrates tight
agreement between visual assessment of amyloid PET and
histopathological evidence in AD (58). Lastly, recent work
suggests that partial volume correction can improve the ability
of FBB PET to discriminate between AD patients and healthy
controls (66). We did not perform this step because partial
volume correction methods are still highly variable across
centers, with no consensus on optimal methods, and have not
been incorporated into centiloid standardization procedures
yet (33).

In this cross-sectional investigation of a large, cognitively well-
characterized PD group, we found increased cortical amyloid

accumulation in PDD, but this was explained by the older
age of the PDD group. We found no associations between
amyloid load and continuous measures of cognitive performance.
This suggests that A accumulation is not the primary cause
of cognitive impairments in PD. Low levels of amyloid may,
however, still interact synergistically with other PD pathological
processes, thereby accelerating other pathways to dementia.
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