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Background: Chronic vagal nerve stimulation (VNS) is a well-established

non-pharmacological treatment option for drug-resistant epilepsy. This study sought

to develop a statistical model for prediction of VNS efficacy. We hypothesized that

reactivity of the electroencephalogram (EEG) to external stimuli measured during routine

preoperative evaluation differs between VNS responders and non-responders.

Materials and Methods: Power spectral analyses were computed retrospectively on

pre-operative EEG recordings from 60 epileptic patients with VNS. Thirty five responders

and 25 non-responders were compared on the relative power values in four standard

frequency bands and eight conditions of clinical assessment—eyes opening/closing,

photic stimulation, and hyperventilation. Using logistic regression, groups of electrodes

within anatomical areas identified as maximally discriminative by n leave-one-out

iterations were used to classify patients. The reliability of the predictive model was verified

with an independent data-set from 22 additional patients.

Results: Power spectral analyses revealed significant differences in EEG reactivity

between responders and non-responders; specifically, the dynamics of alpha and

gamma activity strongly reflected VNS efficacy. Using individual EEG reactivity to

develop and validate a predictive model, we discriminated between responders and

non-responders with 86% accuracy, 83% sensitivity, and 90% specificity.

Conclusion: We present a new statistical model with which EEG reactivity to external

stimuli during routine presurgical evaluation can be seen as a promising avenue for

the identification of patients with favorable VNS outcome. This novel method for the

prediction of VNS efficacy might represent a breakthrough in the management of

drug-resistant epilepsy, with wide-reaching medical and economic implications.
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INTRODUCTION

Resective surgery is currently the best therapeutic option
for treatment of patients with drug-resistant epilepsy, but a
substantial number of intractable patients remains who are
ineligible for such treatment or for whom resective surgery
fails to abolish seizures. Chronic vagal nerve stimulation (VNS)
has become a well-established alternative, offering a palliative
method of treatment for drug-resistant epilepsy; it rarely results
in complete seizure freedom (∼5% of treated patients), but
provides substantial (≥50%) seizure reduction in 50–60% of
individuals. Unfortunately, however, seizure frequency remains
unchanged after VNS therapy in∼25% of patients (1, 2).

Identifying individuals who will benefit from VNS therapy
prior to the implantation of the VNS device would improve
patient selection, minimize unnecessary surgical procedures,
and reduce associated financial expenses dramatically; and yet
there exists no method with which to predict individual efficacy
pre-intervention (2). Achieving a pre-operative classification of
individual patients as VNS responders or non-responders (i.e.,
patients with ≥50% or <50% seizure reduction, respectively)
would represent a major breakthrough in the treatment of drug-
resistant epilepsy.

It is presumed that VNS increases seizure threshold by
activating neuronal networks in the thalamus and other
limbic structures (3, 4), but the precise mechanism of VNS
action is not yet understood fully. Both synchronization and
desynchronization of the electroencephalogram (EEG) has been
proposed as a possible mechanism behind the antiepileptic
effect of VNS (5, 6), and recent neurophysiological studies
focusing on EEG parameters lend support to this: Fraschini
et al. report a significant correlation between VNS-induced
global desynchronization in gamma bands and positive clinical
outcome in temporal lobe epilepsy patients (7). Similarly, Bodin
et al. revealed a lower level of global EEG synchronization
in delta and alpha frequency bands during the ON phase of
VNS in responders (8). Theoretically, differential alterations
in brain rhythms from VNS therapy between responders and
non-responders might reflect inter-individual variability in
the (non-specific) susceptibility of EEG to be synchronized
or desynchronized by external stimulation. It follows that
differences in this susceptibility might underlie individual
VNS efficacy.

We tested the hypothesis that EEG reactivity to standard
external stimuli used during routine pre-operative EEG
assessment differs between VNS responders and non-responders,
with the aim of developing a reliable statistical model for
prediction of VNS efficacy.

MATERIALS AND METHODS

Study Design
We performed retrospective analyses of EEG data collected
from all adult patients implanted with a VNS device for drug-
resistant epilepsy in the Brno Epilepsy Center between 2005
and 2015. Data from patients implanted between 2005 and
2012 were used for investigation of EEG reactivity to external

stimuli and subsequently for development of the statistical model
(Cohort 1). Additional data from patients implanted with VNS
between 2013 and 2015 were used as independent data-set for
validation of the statistical model (Cohort 2). All the data were
acquired during routine outpatient pre-operative assessment,
20min recording at morning with two standard eyes opening
and closing activation procedures (i.e., 10 s period with eyes
open), photic stimulation (PS), and hyperventilation (HV). Each
EEG recording was filtered into individual frequency bands and
segmented into specific intervals representing the eyes opening
and closing, PS and HV periods. The relative powers of EEG
spectrum in distinct time intervals for a particular frequency
band and brain area were then calculated.

Based on their individual responses to VNS, patients were
categorized as Responders or Non-responders. In Cohort 1,
Responders and Non-responders were first compared on the
relative power values, and then a statistical model for prediction
of VNS efficacy was developed. Subsequently, the validity of the
statistical model was tested in Cohort 2. The study was conducted
in St. Anne’s University Hospital and approved by the local ethics
committee. All patients gave their informed written consent for
the use of their pre-operative data.

Patients’ Description
All patients were implanted with a VNS system (Cyberonics,
Houston) according to a standard implantation procedure (9).
Before implantation, all patients underwent a comprehensive
assessment protocol for epilepsy surgery candidates, including
a detailed history and neurological examination, magnetic
resonance imaging (MRI), interictal PET, neuropsychological
testing, and scalp video-EEG monitoring. In some patients,
ictal and interictal SPECT (SISCOM) and invasive video-EEG
monitoring have been completed if necessary. Based on the
results of all the investigations, patients indicated for VNS and
included in this study were ruled out as suitable candidates for
resective epilepsy surgery. Our analyses were applied to data
acquired from patients who fulfilled the following criteria: The
duration of VNS treatment was at least 2 years; the efficacy
of VNS treatment was determined in regular visits every 3 or
6 months; and artifact-free pre-operative interictal EEG was
available for eye opening and closing, PS and HV periods.

Demographic information and data regarding the type and
number of antiepileptic drugs (AEDs) at the time of implantation
were obtained by review of patients’ charts. The efficacy of
VNS was categorized using a classification system reported by
McHugh (10). The cut-off value for seizure-reduction between
responders and non-responders was 50%. Patients were defined
as Responders or Non-responder only if they were categorized as
such for the entire follow-up period.

EEG Analysis
First, we compared relative EEG powers between Responders and
Non-responders in Cohort 1. Interictal scalp EEG was recorded
on a 64-channel Alien Deymed system with international
10–20 electrode placement and a sampling frequency of 128Hz.
Standard antialiasing filters were applied before digitalization.
Occasional artifacts were rejected manually and further
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processing was performed with artifact-free EEG periods. The
resulting EEG signals were filtered into four frequency bands:
theta (4–7.5Hz), alpha (8–12Hz), beta (14–30Hz), and gamma
(31–45Hz). A Hilbert transform was then used to estimate the
envelopes of pre-defined pass-band frequency oscillations as a
function of time (Figure 1). The EEG records were segmented
into the following conditions (time intervals):

1 –Rest#1 (2 min)
2 –Eyes opening/closing (10 s)
3 –Rest#2 (immediately after eye closure; 10 s)
4 –Photic stimulation (PS; 2.5 min)
5 –Hyperventilation (HV; 4 min)
6 –Eyes opening/closing (10 s)
7 –Rest#3 (immediately after eye closure; 10 s)
8 –Rest#4 (2 min)

Further analysis was focused on oscillatory power changes
in these conditions. Absolute mean power of the EEG
spectrum was computed as a mean value of the passband
power envelope inside each interval separately, for each
scalp electrode. Subsequently, relative mean power (RPW)
was calculated as a percentage decrease or increase of mean
power relative to baseline, i.e., event-related desynchronization
or synchronization, respectively. As a baseline we selected
Rest#1 (11). We then evaluated differences between Responders

and Non-responders by comparing relative power in seven
conditions of clinical assessment: Open/Close#1, Rest#2, PS, HV,
Open/Close#2, Rest#3, and Rest#4.

Statistical Analysis
Demographic data were compared between Responders and
Non-responders using Fisher’s exact test or the Mann-Whitney
test. Statistical comparisons of RPW between Responders and
Non-responders were also performed with Mann-Whitney
tests. Using false discovery rate (FDR) (12), p-values for all
electrodes were corrected for multiple comparisons in each
time interval separately. Differences were considered significant
when p ≤ 0.05.

Prediction of Response to VNS
Developing the Statistical Model
The statistical model for prediction of VNS efficacy was
developed from data obtained in Cohort 1 in the following
steps: Firstly, electrodes were grouped into seven anatomical
regions as follows: (1) left frontal—Fp1, F3, Fz; (2) right
frontal—Fp2, F4, Fz; (3) left anterotemporal—F7, T3; (4)
right anterotemporal—F8, T4; (5) central—C3, Cz, C4; (6)
left posterior quadrant—P3, Pz, T5, O1; (7) right posterior
quadrant—P4, Pz, T6, O2. Specifically, mean values were
calculated for the respective groups of electrodes. This resulted

FIGURE 1 | Pre-processing of EEG signal. The EEG was segmented into eight time intervals, and then filtered into four frequency bands: theta, alpha, beta, and

gamma. Subsequent analyses focused on the oscillatory power changes within these intervals, which were analyzed separately for each frequency band.
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in 196 electrode group variables (7 conditions × 4 frequency
bands× 7 anatomical regions). In the second step, the maximally
discriminative electrode group variables were then selected using
stepwise logistic regression performed in leave-one-out (LOO)
manner; specifically, with n patients, logistic regression was
performed over n iterations, each with one subject omitted. This
approach allowed us to avoid overestimating the classification
results, which occurs when classification is performed on
electrode groups selected using all subjects simultaneously.
Thirdly, electrode group variables identified most frequently
as maximally discriminative after the n LOO iterations were
used for classification using three classifiers; namely, logistic
regression (LR), linear support vector machines (SVM), and
linear discriminant analysis (LDA). In this step, we used a LOO
cross-validation to split the data into training and testing sets:
one patient was chosen randomly as a testing subject and the
remaining patients were employed for training the classifier.
The testing subject was then classified as belonging to the
Responder or to the Non-responder class, and the resulting
class label was compared with the true classification label. This
procedure was repeated using each of the subjects as the testing
subject sequentially, and the overall classification performance
measures of accuracy, sensitivity, and specificity were calculated
(see the black schematics in Figure 2). Fourth, using one-sample
binomial test we performed a comparison of the achieved
classification accuracies with a classification by chance. We also
attempted to predict VNS efficacy based on 532 possible single
electrode variables (7 conditions × 4 frequency bands × 19
electrodes; see Supplementary Material 1).

Validation of the Statistical Model
The validity of the aforementioned statistical model was verified
on the independent data-set obtained from Cohort 2. This
validation cohort consisted of patients suffering from drug-
resistant epilepsy who were implanted with VNS in our Center
between 2013 and 2015. We obtained EEG data recorded
using an identical EEG system and pre-surgical assessment
protocol, and processed mathematically in the exact same way
described above. Patients were classified as Responders and Non-
responders with our statistical model using two approaches (see
the gray schematics in Figure 2). Both began with data reduction,
whereby we selected only data corresponding to the maximally
discriminative electrode group variables identified based on
Cohort 1. In the first approach, this data reduction was followed
subsequently by a classification of m subjects from Cohort 2 as
Responders or Non-responders based on a single classifier, which
was trained on all n subjects from the Cohort 1. In contrast, in the
second approach we classified the reduced data of Cohort 2 using
majority voting of n classifiers trained on n-1 subsets of Cohort
1. The resulting indices for accuracy, sensitivity, and specificity
were then compared to those from the classification of Cohort 1.

RESULTS

Participants
Cohort 1
The VNS device was implanted in 110 patients in our center
between 2005 and 2012. We excluded 50 patients (45%) from
further analyses−17 (15%) because of poor-quality pre-surgical

FIGURE 2 | The statistical model for prediction of VNS efficacy based on EEG analysis. Schematics representing the development of the statistical model on data

from Cohort 1 outlining the selection of the most discriminative electrodes groups as well as classifier training (CT) and testing (T) performed in LOO manner (the black

schematics); and two approaches taken for the validation procedure, whereby our statistical model was applied to an independent data-set from Cohort 2 (the gray

schematics). Equivalent steps taken in each of the two validation approaches are visualized using solid lines, including the reduction of Cohort 2 by selecting the

maximally discriminative electrodes identified in Cohort 1. The two approaches differ in the steps represented by dashed lines—i.e., the classification (C) of the

reduced dataset using: (A) a single classifier trained on all n subjects from Cohort 1, and (B) voting of n classifiers trained on n-1 subsets of Cohort 1.
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EEG, 13 (12%) due to attrition, and 20 (18%) who switched
between VNS outcomes during the follow-up period (see
Supplementary Material 2 for details). Demographics for the 60
patients included in the analyses are summarized in Table 1.
According to the response to VNS, patients were subdivided
into 35 (58%) Responders and 25 (42%) Non-responders. When
examining demographic data, we observed significant differences
between Responders and Non-responders in patients’ age at
epilepsy onset, duration of epilepsy before VNS implantation,
and treatment by valproic acid (Table 1).

Cohort 2
In total, the VNS device was implanted in 25 patients between
2013 and 2015. Three patients were excluded from our analyses
due to poor-quality pre-surgical EEG recordings. Data from the

remaining 22 patients were used for independent validation:
12 (54.5%) Responders and 10 (45.5%) Non-responders. The
demographic data are summarized in Table 1. The Cohort 2 did
not differ from the Cohort 1 in the demographic characteristics,
apart from the anticipated difference in duration of VNS
(p < 0.001) and subtle differences in antiepileptic treatment
(specifically, eslicarbazepine, lacosamide, and zonisamide were
more frequent in Cohort 2; p = 0.029, p = 0.003, and p =

0.012, respectively).

RPW Differences Between Responders
and Non-responders
In Cohort 1, computation of RPWs and their dynamics in the
recording sites revealed significant changes for both Responders

TABLE 1 | Demographic and treatment data for Cohort 1 and Cohort 2.

Cohort 1 Cohort 2

Combined

(n = 60)

Non-responders

(n = 25)

Responders

(n = 35)

p Combined

(n = 22)

Non-responders

(n = 10)

Responders

(n = 12)

p

Type of epilepsy, n (%) TLE 14 (23) 6 (24) 8 (23) 1.000 6 (27) 3 (30) 3 (25) 0.801

Extra-TLE 43 (72) 18 (72) 25 (72) 15 (68) 6 (60) 9 (75)

IGE 3 (5) 1 (4) 2 (6) 1 (5) 1 (10) 0 (0)

Gender, n (%) Females 34 (57) 17 (68) 17 (49) 0.188 11 (50) 4 (40) 7 (58) 0.670

Males 26 (43) 8 (32) 18 (51) 11 (50) 6 (60) 5 (42)

Age (years) at VNS implantation (median,

min-max)

33 (15–65) 30 (15–65) 36 (18–63) 0.134 31 (22–71) 26 (22–42) 40 (22–71) 0.069

Age (years) at epilepsy onset (median,

min-max)

9 (1–51) 13 (1–27) 6 (1–51) 0.014 10 (0–59) 8 (0–18) 12 (4–59) 0.123

Duration (years) of epilepsy before vagal nerve

stimulator implantation (median, min-max)

22 (4–60) 15 (4–55) 26 (7–60) 0.019 20 (2–49) 20 (14–34) 19 (2–49) 0.872

Duration (years) of VNS (median, min-max) 6 (3–11) 6 (3–10) 6 (3–11) 0.581 3 (2–3) 3 (2–3) 3 (2–3) 0.628

Treatment at the time of

VNS implantation, n (%)

BRV 2 (3) 2 (8) 0 (0) 0.169

CBZ 32 (53) 15 (60) 17 (49) 0.439 9 (41) 3 (30) 6 (50) 0.415

CLB 1 (2) 1 (4) 0 (0) 0.417

CLZ 13 (22) 6 (24) 7 (20) 0.758 4 (18) 3 (30) 1 (8) 0.293

ESL 3 (5) 2 (8) 1 (3) 0.565 5 (23) 4 (40) 1 (8) 0.135

GBP 1 (2) 0 (0) 1 (3) 1.000

LCM 6 (10) 1 (4) 5 (14) 0.386 9 (41) 6 (60) 3 (25) 0.192

LEV 36 (60) 16 (64) 20 (57) 0.790 10 (45) 4 (40) 6 (50) 0.691

LTG 27 (45) 11 (44) 16 (46) 1.000 9 (41) 4 (40) 5 (42) 1.000

PGB 5 (8) 2 (8) 3 (9) 1.000 1 (5) 0 (0) 1 (8) 1.000

PHE 1 (2) 0 (0) 1 (3) 1.000

PHT 4 (7) 1 (4) 3 (9) 0.634 1 (5) 1 (10) 0 (0) 0.455

PRM 3 (5) 1 (4) 2 (6) 1.000 2 (9) 1 (10) 1 (8) 1.000

TPM 13 (22) 5 (20) 8 (23) 1.000 2 (9) 1 (10) 1 (8) 1.000

VPA 14 (23) 2 (8) 12 (34) 0.028 5 (23) 3 (30) 2 (17) 0.624

ZNS 8 (13) 5 (20) 3 (9) 0.259 9 (41) 4 (40) 5 (42) 1.000

Number of AEDs used at

the time of VNS

implantation, n (%)

1 4 (7) 1 (4) 3 (9) 0.974 1 (5) 0 (0) 1 (8) 0.495

2 17 (28) 8 (32) 9 (26) 7 (32) 3 (30) 4 (33)

3 26 (43) 11 (44) 15 (43) 7 (32) 2 (20) 5 (42)

4 12 (20) 5 (20) 7 (20) 5 (23) 3 (30) 2 (17)

5 1 (2) 0 (0) 1 (3) 2 (9) 2 (20) 0 (0)

AEDs, antiepileptic drugs; BRV, brivaracetam; CBZ, carbamazepine; CLB, clobazam; CLZ, clonazepam; ESL, eslicarbazepine; Extra-TLE, extratemporal lobe epilepsy; GBP, gabapentin;

LCM, lacosamide; LEV- levetiracetam; LTG, lamotrigine; NA, not applicable; PGB, pregabalin; PHE, phenobarbital; PHT, phenytoin; PRM, primidone; TLE, temporal lobe epilepsy; TPM,

topiramate; VNS, vagal nerve stimulation; VPA, valproic acid; ZNS, zonisamide.
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and Non-responders in all investigated frequency bands, all
defined conditions, and the majority of electrodes (Figure 3).
These changes were largely equivalent for both Responders
and Non-responders within specific frequency bands and
conditions. In the alpha and gamma frequency bands, however,
there were striking dissimilarities between the two patient
groups in conditions, with the most prominent differences
during photic stimulation (PS) and hyperventilation (HV).
Comparing Responders and Non-responders with respect to the
RPW in all pre-defined frequency bands and conditions, we
revealed significant differences in alpha and gamma frequency
bands (Figure 4).

When analyzing the alpha band, significant differences
between Responders and Non-responders were found
in the following conditions: 4-PS, 5-HV, and 8–Rest#4.
The differences were present over different brain regions
in each condition: In 4-PS, there were differences over
central and anterior areas (absence of desynchronization in
Responders); in the 5-HV interval we observed differences
over central and posterior regions (significantly higher
synchronization in Responders); and in 8-R, differences
were localized to right anterior and left posterior areas
(higher power in Responders but persisting desynchronization
in Non-responders).

When focusing on the gamma frequency band, we observed
significant differences (gamma synchronization in Responders
and desynchronization in Non-responders) in RPW within 4-
PS, 5-HV and 7-Rest#3: In the first two conditions, differences
were distributed across almost the whole scalp. The differences in
RPWs within 7-Rest#3 were observed within right anterior and
left posterior areas.

Prediction of VNS Response—Statistical
Model
Based on the EEG data of Cohort 1, the statistical model
was developed. Eight groups of electrodes were selected as
the most discriminative in this statistical model (visualized in
Figure 5). The best classification results based on these eight
most discriminative groups of electrodes were obtained using the
LR classifier, achieving 86.7% accuracy, with 88.6% sensitivity
and 84% specificity (Table 2). This classification accuracy was
significantly higher than those achieved by chance (p < 0.001).
The SVM classifier achieved lower accuracy (75%) but it was
still significantly higher than that achieved by chance (p =

0.004). The lowest classification performance measures were
obtained in classification using LDA (accuracy 65%). Detailed
visualizations of classification accuracy are provided in Figure 6.

FIGURE 3 | Relative mean powers (RPWs) for all frequency bands. Each head represents RPW in a given condition and frequency band. The RPW percentage scale

is displayed on the right-hand side. Where a statistically significant difference exists in a given condition relative to baseline (Rest#1), the electrode is marked by a

white dot. If no significant difference exists, the electrode is marked by a black dot.
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FIGURE 4 | Relative mean power (RPW) differences between Responders and Non-responders. Statistically significant or non-significant differences in a given

electrode are marked by a white or black dot, respectively. The significant differences between Responders and Non-responders were identified in alpha and gamma

frequency ranges only (heads in red boxes).

The final statistical model is described in more detail in
Supplementary Material 3.

Validation of the Statistical Model
The data of patients in Cohort 2 were used for independent
validation. When comparing the results of our classification
model applied to Cohort 2 against real-life outcome, the best
results were again obtained for the model using the LR classifier
achieving an accuracy of 86.4%, sensitivity of 83.3%, and
specificity of 90%. The complete results achieved using classifier
voting are summarized in Table 2. Classification performance
based on a single classifier was lower (data not shown).

DISCUSSION

Over 80,000 epilepsy patients have been treated worldwide using
vagal nerve stimulation (VNS), a standard of modern non-
pharmacological treatment. Importantly, the number of epileptic
patients who are eligible for VNS therapy is approximately
three million subjects worldwide. In this light, a method for
the reliable prediction of individual efficacy of VNS therapy is
desperately needed.

Recently, several authors have attempted to identify predictors
of VNS outcome (1, 2, 4, 13). Despite these efforts, however,

clinical predictors of individual responsiveness to VNS therapy
remain elusive. Similar estimates of efficacy are reported for
diverse neurostimulation techniques in the treatment of drug-
resistant epilepsy (i.e., VNS, Deep Brain Stimulation of Anterior
Thalamic Nuclei, Brain Responsive RNS System, transcutaneous
VNS, or external Trigeminal Nerve Stimulation), which might
suggest a more consequential impact of external stimuli per se
on epileptic activity. For this reason, we retrospectively evaluated
routine EEG data acquired before implantation in a large cohort
of VNS patients. Using standard computations of power spectral
analyses of interictal EEG, we reveal significant differences
between responders and non-responders in two pre-defined
frequency bands (alpha and gamma) and four conditions of
standard clinical assessment. Based on RPWs and their dynamics,
we have developed and validated a statistical model for prediction
of VNS efficacy that discriminated between responders and non-
responders with almost 90% accuracy.

Our primary finding is that VNS responders and non-
responders differ significantly in EEG power dynamics within
alpha and gamma frequency bands prior to therapy. Whilst both
patient groups demonstrated equivalent alpha desynchronization
during eyes opening, they differed in alpha reactivity to
photic stimulation and hyperventilation; specifically, responders
showed no decrease in alpha power during the former but
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FIGURE 5 | Electrode groups and individual electrodes selected for statistical modeling. Electrode groups (A) and individual electrodes (B) selected for the

development of the statistical model, in each condition and frequency band.

TABLE 2 | Classification performance indices for electrode group variables.

Cohort 1−60 patients Cohort 2−22 patients

Accuracy Sensitivity Specificity p Accuracy Sensitivity Specificity p

LR 86.7 88.6 84.0 <0.001 86.4 83.3 90.0 0.006

SVM 75.0 62.9 92.0 0.004 77.3 58.3 100.0 0.043

LDA 65.0 48.6 88.0 0.147 45.5 16.7 80.0 0.879

LDA, linear discriminant analysis; LR, logistic regression; p, p-value calculated using one-sample binominal test; SVM, linear support vector machines.

an enormous increase during the latter. This reactivity pattern
stands in contrast to that observed in healthy individuals, in
whom photic stimulation typically leads to alpha attenuation
and standardized hyperventilation has been shown to decrease
alpha power (14). Interestingly, we also observed significant
increases in gamma power during both photic stimulation
and hyperventilation in responders relative to non-responders.
Hyperventilation-induced physiological changes are thought to
be a consequence of increased neuronal excitability resulting
from the hypocapnia-induced alkalosis (15, 16). Significantly
enhanced alpha and gamma activities during hyperventilation
in responders might reflect distinct properties of responders’
brains vis-a-vis neuronal excitability and synaptic transmission.
Nevertheless, hyperventilation is a complicated practice which, in
epileptic subjects, results in unpredictable responses. The reasons
for this remain unclear (e.g., metabolic hypersynchronization,
altered neurotransmitters, etc.). It also remains unclear why the
alpha (and less expressed gamma) desynchronization persist in

our non-responders at the end of EEG recordings (Rest#4). It
seems that the protocol itself, particularly photic stimulation
and hyperventilation, induces some change from the resting-
state baseline for non-responders. Differential dynamics of power
changes after the stimulation—faster in responders and slower
in non-responders—might represent another characteristic in
which these groups of patients differ substantially.

Interestingly, valproic acid (VPA) was used more frequently
in pharmacological treatment prior to implantation in our
VNS responders compared to the non-responders. We might
therefore ask whether differences in EEG reactivity observed in
our study is related to some pharmacological imprint. Although
this speculative explanation cannot be fully excluded, it seems
unlikely that pharmacological impact on EEG is the main factor
driving our findings. Still more unlikely is substantial VPA impact
on the prediction of VNS efficacy, bearing in mind that only one
third of responders were treated with VPA and the accuracy of
individual VNS efficacy prediction was almost 90%.
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FIGURE 6 | Classification accuracy based on a number of selected groups of electrodes. The bottom row of numbers shows a minimum number of LOO iterations (#

iterations) in which a given number of electrode groups (# groups) were selected as most discriminative (e.g., eight electrode groups were selected as maximally

discriminative in 35 or more LOO iterations). The best LR classification accuracy and corresponding results for SMV and LDA (shown in Table 2) are depicted by

circles and a dashed line.

Since Hans Berger’s initial observation in 1933, the best known
example of EEG reactivity is alpha attenuation (alpha blocking
and desynchronization). This is observed typically when subjects
open their eyes (the Berger effect), but alpha also disappears
when subjects become drowsy and it can be blocked by
numerous kinds of external stimuli (visual or auditory) or mental
operations (e.g., imagery, visualization, mental arithmetics). This
implies that alpha reactivity as a modality-independent, general
phenomenon, reflecting the functionalmodes of thalamo-cortical
and cortico-cortical loops that facilitate/inhibit the transmision
of information in the brain (17, 18). Particularly noteworthy is
the high inter-individual variability in alpha reactivity; it has been
shown to differ between extraverts and introverts, for example,
and there is less pronounced alpha desynchronization in people
with high intelligent quotient during several cognitive tasks (19,
20). Alpha reactivity has also been reported to decrease with
aging (21–24) and in patients with mild cognitive impairment
andAlzheimer disease (25), and a lack of alpha reactivity has been
used to predict the long-term deterioration of higher functions
in subjects with cognitive decline (26). From this viewpoint, our
discovery of differential alpha reactivity in VNS responders vs.
non-responders further emphasizes themultifold functions of the
diffuse alpha system (27).

In our study, significant differences in EEG power dynamics
within the gamma frequency band between VNS responders
and non-responders very likely reflects distinct reactivity of true
brain gamma. When interpreting thoroughly our results in this
frequency band, however we shall keep in mind the study of
Whitham et al. (28); these authors showed recently that even
the normal resting EEG might reveal significant contamination
with electromyography (EMG) activity in this frequency band.
Further, the level of EMG contamination increased dramatically
when subjects perform various experimental tasks and are sitting

during EEG recordings (29). More recently, however, Boytsova
et al. showed that EMG contamination does not necessarily hide
high-frequency EEG and does not preclude qualitative detections
of electroencephalographic correlates of mental activities in beta
and low gamma frequency ranges (30). Unfortunately, despite the
availability of several techniques for the reduction of muscular
artifacts from EEG traces, at a present none are able to guarantee
that analyzed data are completely free of high-frequency artifacts
(29). In our study, EEG was recorded under standard conditions:
patients laid comfortably and were instructed to relax (including
their facial muscles), no task was performed, and recordings
from patients containing artifacts identified with careful visual
inspection (e.g., muscular activity) were excluded (17 out of
110 patients). As such, we strongly believe an increased gamma
power during both photic stimulation and hyperventilation in
responders relative to non-responders is not resulting from
distinct muscle artifacts contaminations.

Both brain rhythms—alpha and gamma—are considered to
represent a kind of universal code consistent with their putative
role in brain signaling (27). Both are generated in a widely
distributed system, with a major role of thalamocortical circuits
in their origin (31–33). The differential impact of external
stimuli on alpha and gamma between VNS responders and
non-responders might be mediated by differences in neuronal
interconnectivity and different levels of neurotransmitters
within underlying cerebral matrices (24). Such differences
might influence the effect of external stimuli delivered to
thalamocortical circuits and other brain networks via the
vagal nerve (34, 35). Consistent with this notion, many
consider the mechanism of VNS action to be modulation
of synaptic activity in the thalamus and thalamocortical
projections, increased plasticity in GABA receptors, and
modulation of GABAergic activity that is related directly to
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gamma oscillations (6, 36). Indeed, one of the most plausible
factors involved in gamma variation between our populations
of responders vs. non-responders is represented by the role of
GABA neurotransmission and divergent dynamics of inhibitory
interneuron networks within the central nervous system (37,
38). The close relationship between different types of external
stimulation and brain reactivity we have observed might be
indicative of a commonmechanism underlying the various forms
of neurostimulation in epilepsy treatment.

Finally, as seen in the developed and validated statistical
model, for accurate prediction of VNS efficacy distinct
recording electrode groups, different conditions (especially
hyperventilation, but also eyes opening/closing and resting
periods), and all frequency bands were selected as the most
discriminative ones. Using our approach we achieved high
accuracy, sensitivity and specificity in both well-defined and
predominant VNS patients. We also evaluated a statistical
model based on single electrodes, which had slightly superior
classification performance in Cohort 1 and predominant
VNS patients but failed in the independent validation set
of Cohort 2. This indicates that groups of electrodes are
better suited for VNS efficacy prediction—by integrating data
from larger regions, such groupings appear to produce more
robust results.

To conclude, we have revealed that EEG reactivity to external
stimuli used during routine pre-operative EEG investigation
differs between VNS responders and non-responders. Moreover,

we have developed and validated a statistical tool that can
predict with extremely high accuracy whether or not individual

drug-resistant epileptic patients will benefit from VNS treatment
(Patent Number EP3437692-A1). This electrophysiological

marker could prove invaluable when providing patients with
expected postoperative prognosis. Further research is required

before this can be achieved, however; our findings come from
a retrospective and monocenter study, with a limited number
of patients comprising the independent validation. Our results

must therefore be replicated in prospective, multicentre, and

well-designed clinical study in order to obtain a clear-cut
statistical power.
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