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Deep brain stimulation (DBS) has become the treatment of choice for advanced stages of

Parkinson’s disease, medically intractable essential tremor, and complicated segmental

and generalized dystonia. In addition to accurate electrode placement in the target

area, effective programming of DBS devices is considered the most important factor

for the individual outcome after DBS. Programming of the implanted pulse generator

(IPG) is the only modifiable factor once DBS leads have been implanted and it becomes

even more relevant in cases in which the electrodes are located at the border of

the intended target structure and when side effects become challenging. At present,

adjusting stimulation parameters depends to a large extent on personal experience.

Based on a comprehensive literature search, we here summarize previous studies that

examined the significance of distinct stimulation strategies for ameliorating disease signs

and symptoms. We assess the effect of adjusting the stimulus amplitude (A), frequency

(f), and pulse width (pw) on clinical symptoms and examine more recent techniques for

modulating neuronal elements by electrical stimulation, such as interleaving (Medtronic®)

or directional current steering (Boston Scientific®, Abbott®). We thus provide an

evidence-based strategy for achieving the best clinical effect with different disorders and

avoiding adverse effects in DBS of the subthalamic nucleus (STN), the ventro-intermedius

nucleus (VIM), and the globus pallidus internus (GPi).

Keywords: DBS programming algorithms, subthalamic nucleus, DBS side effects, segmented electrode, short

pulse width

INTRODUCTION

Since the pioneering work of Cooper et al. (1) and of Benabid et al. in the early 1990s (2), deep
brain stimulation (DBS) has become the treatment of choice for advanced stages of Parkinson’s
disease (PD), for medically intractable essential tremor (ET), and for complicated segmental
and generalized dystonia. Although overall considered an effective treatment in these diseases, a
number of specific factors determine the treatment success: in addition to careful patient selection
and accurate electrode placement, the effective post-operative programming of DBS devices is
considered the most important factor for the individual patient outcome (3–5). Programming is
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the only modifiable factor once a patient has been implanted
with DBS leads and it becomes even more relevant in cases
in which the DBS electrodes are located at the border of
the intended target structure. Current implantation techniques,
using either stereotaxic frames or surgical robots, exhibit an
average precision in the range of 1–2mm from the target area
(6–12). In addition, the brain itself can shift by 2–4mm during
surgery (13–15), contributing to imprecise lead placement.
According to previous studies, such errors occur in up to 40%
of DBS surgeries (16–20), thus underscoring the importance of
post-operative programming to compensate for such variability.
Inefficient stimulation may result in unnecessary follow-up visits
and reduced patient satisfaction with DBS (21). Conversely,
sound programming has been shown to improve patient
outcomes and to avoid unnecessary lead revisions (19). In
addition, improvement with re-programming highlights that
proper adjustment of stimulation parameters is a major factor for
successful treatment and patient satisfaction (22).

Despite established strategies for adjusting neurostimulation
(23–27), DBS programming remains time- and resource-
consuming. New leads with two levels of tripartite electrodes
(i.e., segmented electrodes) (Abbott R©, Boston Scientific R©) can
improve the therapeutic window (Figures 1A,B) but increase the
number of possible combinations of programming parameters
(28) [For a thorough review of currently implanted pulse
generators (IPGs) and electrodes see: (29)]. Therefore, there is
a need for sophisticated strategies on how to adjust stimulation
parameters and lead configurations in a precise and effective
manner once the electrodes have been implanted. We here
review the current evidence for adjusting neurostimulation in
different movement disorders. Regarding the biophysical and
physiological effects of DBS, the reader is referred to extensive
reviews on this matter (30, 31).

CURRENT PROGRAMMING STRATEGIES

Specific Programming Strategies for DBS
of the Subthalamic Nucleus (STN)
It is thought that adjustment of stimulation parameters is
best carried out by trained clinicians (3) and depends to a
large extent on personal experience, whereas detailed algorithms
for a disease-specific programming strategy are rare, with the
exception of expert recommendations (3, 27, 32).

Assessing the Response to DBS:
In order to judge the effect of STN-DBS, rigidity is typically
used in PD because it does not fluctuate, responds to stimulation
adjustments within seconds (Figure 2A), and does not depend
on the patient’s fatigue or cooperation (33, 34). When effective
stimulation is switched on, rigidity disappears within 20 s,
whereas after cessation of stimulation, rigidity returns within
1min (35) (Figure 2A). This must be taken into account when
subsequent tests are performed. In the absence of rigidity,
bradykinesia or (rest) tremor can be used, although the response
of bradykinesia to changing the stimulation parameters is slower
(33) and may be biased by fatigue and the patient’s discomfort
or expectations and (rest) tremor may fluctuate spontaneously.

Gait speed, arm swing during gait, finger tapping, or alternating
handmovements can all be measured with a stopwatch to achieve
numeric data to supply evidence for a certain stimulator setting.
A list of appropriate tests has been suggested (36). Also, selected
items from the UPDRS-III scale are used to judge the therapeutic
effect and to document effects in a systematic manner. It is
noteworthy that no single clinical sign or symptom should be
used alone (such as e.g., rigidity) to judge the therapeutic effect.
Our clinical experience suggests that one should select from a list
of possible tests two or three which characterize the symptoms of
the patient best and to apply these tests in a systematic manner
during the programming sessions. The contact with the lowest
threshold for beneficial effects and the widest therapeutic window
is then selected for chronic stimulation (23–27).

Electrode Configuration Adjustment
It is commonly suggested that once the leads have been
implanted, each ring contact should be tested in a monopolar
configuration with the electrode as negative (cathode) and the
IPG as positive (anode), a process referred to as monopolar
review (3, 27, 32). In some centers, this is done prior to the
implantation of the IPG using externalized leads, with the
option to adjust the depth of the implanted electrode during the
implantation of the IPG. In these cases, stimulation is applied by
an external stimulator. Initially, the pulse width and frequency
are kept constant at 60 µs and 130Hz, respectively. Each of the
ring electrodes is tested separately with increasing amplitudes to
determine the threshold of beneficial effects and, with further
increasing the amplitude, to detect the threshold of adverse effects
(3, 37). In the case of segmented electrodes, all segments of one
ring are activated simultaneously (38). Most authors suggest a
gradual increase of stimulation amplitude in steps of 0.1–0.5V or
0.1–0.5mA up to a maximum of 5V or 5mA, or until side effects
occur (3, 25, 37).

When newer DBS leads (Boston Scientific R©, Abbott R©) with
two levels of tripartite electrodes are used, it is suggested that
after determination of the clinically most efficient ring, single
contacts of this ring are screened in a similar fashion (directional
or current steering) (39, 40) (Figures 1A,B). Stimulation of
single segments can result in a larger therapeutic window
(38). In addition, the average current threshold for obtaining a
therapeutic effect was noted to be lower with the best directional
stimulation (41–44). In accord, Pollo et al. reported, in their study
on intraoperative segmental stimulation, a reduced threshold
for clinical efficiency as well as a better clinical efficiency with
segmental stimulation (39). Even with small currents of 0.3mA,
these authors were able to induce clinical effects in individual
patients, which suggests that the stepwise increase of current
during testing may have to be considerably lower than 0.5mA.
In the VANTAGE study, stimulation was performed with the
Vercise system (Boston Scientific R©) that includes a separate
current source for each segment of the lead which contains 8
contacts (45). These authors stimulated the best as well as the
second best segment and instructed their patients to optimize the
applied current via a patient control device. The authors reported
an improvement of over 60% during the ON phase on the
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FIGURE 1 | The therapeutic window depends on stimulation parameters and the electrode configuration. In tripartite electrodes, the therapeutic window should be

determined for each segment individually by examining the beneficial and adverse effects with increasing the stimulation amplitude under defined pulse width and

frequency (A). The therapeutic window in DBS is defined as the gap between the minimum stimulation current required to produce adverse effects and the current

required to produce a beneficial effect. Similar to pharmacologic intervention, DSB is a tradeoff between beneficial and adverse effects. Numerous stimulation

parameters, as well as the anatomical position of the respective contact, affect the therapeutic window. As a consequence, each electrode contact and each

combination of pulse width and frequency thus has an individual therapeutic window (B).

FIGURE 2 | The effects of DBS on clinical symptoms are time-dependent. PD signs and symptoms respond to STN-DBS variably. Axial symptoms may take hours or

days to improve, whereas tremor typically disappears almost instantly with STN- or VIM-DBS (A). A similar temporal disparity occurs with dystonia, where phasic

dystonic symptoms respond quickly within minutes to GPi-DBS, and tonic dystonic movements may take much longer to resolve (B). The reappearance of symptoms

after discontinuation of DBS exhibits a similar temporal pattern.

UPDRS-III rating scale, which is above the average improvement
seen with conventional ring electrodes.

Stimulation Parameter Selection
In order to achieve the best clinical effect, certain stimulation
parameters have been determined empirically for STN-DBS.
Previous studies investigating the specific contribution of
frequency, pulse width, and amplitude found that the amplitude
had the greatest effect on ameliorating PD motor signs relative
to energy-equivalent changes in frequency and pulse width
(23, 24). In one study that examined PD patients with STN-
DBS, the amplitude required to improve wrist rigidity ranged
from 0.7 to 1.7mA, and the amplitude required to generate
adverse effects was in the range of 1.3–3.4mA (23). In an
intraoperative examination of clinical STN-DBS effects in 17
PD patients, Sauleau et al. found that the threshold for the

vanishing of wrist rigidity was 0.94V (at 130Hz and 100µs) (46).
Stimulation frequencies of 50Hz and 130Hz improved tremor,
rigidity, and bradykinesia, with rigidity improving already above
a threshold of 33Hz. In these studies, there was no significant
improvement above 185Hz for either target symptom, although
some reports suggest that tremor tends to respond to a higher
frequency (47). Using frequencies below 50Hz in STN-DBS did
not improve motor signs, even when the total electrical energy
delivered (TEED) was similar (23). In fact, very low frequencies
of 5–10Hz have been found to worsen motor symptoms, in
particular, bradykinesia, compared with no stimulation (24, 48,
49). Moro et al. demonstrated that pulse widths between 60
and 210 µs were beneficial for improving tremor and rigidity,
while reduction of bradykinesia relative to baseline was only
significant at 60 µs. High-pulse-width stimulation (>210 µs)
was generally not well-tolerated. No difference in tremor has
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been observed with different pulse widths (23, 24). In addition
to rigidity, tremor, and akinesia, STN-DB has a beneficial effect
on off-dystonia (50, 51), whereas improvement in on-dyskinesia
is predominantly a consequence of a reduced L-Dopa equivalent
dose (LED) (52). Recently, IPGs became available which allow
for even shorter pulse widths 60 µs. The CUSTOM-DBS study
by Steigerwald et al. investigated 15 PD patients with STN-DBS
and found that for STN stimulation, a shorter pulse width of 30
µs resulted in a larger therapeutic window with a non-inferior
therapeutic efficacy (as measured by the UPDRS III score) when
compared to the standard pulse width of 60µs (53). Also, another
group showed that stimulation using 30 µs pulse-width results
in better walking and speech performance at a similar total
electrical energy delivered (TEED) (54). Therefore, the previous
recommendation for a fixed pulse width of 60 µs in STN DBS
is clearly challenged, although future research needs to confirm
these encouraging findings.

Typical Side Effects in STN-DBS
Most DBS side effects can be understood as a result of current
spreading into brain regions adjacent to the target area. The
STN is a relatively small, ovoid structure with a close anatomical
relationship with other deep brain nuclei and tracts, including the
internal capsule (lateral, anterior), the substantia nigra (ventral),
the red nucleus (medial), the fibers of the third cranial nerve
(medioventral), the thalamic fasciculus, also termed field H1 of
Forel and composed of the ansa lenticularis and the lenticular
fasciculus (mediodorsal), the sensory thalamic nuclei (dorsal),
the zona incerta (ZI) and cerebello-rubro-thalamic fibers (medial
dorsal, posterior), and the hypothalamus and medial forebrain
bundle (anterior) (55, 56) (Figure 3). In addition to these
anatomical relationships, the STN is subdivided into different
territories (motor, oculomotor, associative, and limbic), each
with different connections and specific functions (57). Previous
studies that have analyzed the anatomical location of the most
effective contacts used for chronic stimulation showed varying
results: the majority of reports suggest that the most effective
contacts to ameliorate PD symptoms segregate to the dorso-
lateral, sensorimotor aspect of the STN (58–64), whereas current
spread to the limbic and associative sub-segments may cause
unwanted affective and cognitive side effects (65–68). Conversely,
other studies recommended targeting other areas or even
adjacent regions such as the zona incerta (ZI) or the Forel fields
H1/H2 (69–76) and one study found no significant association
between the position of the active contacts and the clinical effect
(77). This heterogeneity may be a consequence of methodological
differences among the studies, as different imaging techniques
were applied to define the position of the electrodes including
ventriculography, CT and MRI (78). In addition, classical studies
applied numerical coordinates referenced to the stereotactic
space to define the contact position, making the results difficult to
interpret without knowing the patient’s individual anatomy and
because a volume of tissue is represented by a single point. The
following adverse effects in STN-DBS can be derived from the
function of the adjacent anatomical structures:

Spastic muscle contractions: The most frequent adverse effects
include (spastic) contractions involving the facial muscles

(“facial pulling”), which often affect bilateral upper facial
and contralateral lower facial muscles (79, 80) and are a
consequence of current spread into the internal capsule (IC)
lateral and anterior to the STN (Figures 3A,D). By modeling
the electric field caused by STN-DBS, it was found that
even small deviations in the electrodeposition within the
STN can result in activation of large diameter myelinated IC
axons over a volume that spreads outside the borders of the
STN (81).

Uni- or bilateral gaze deviation: Typical oculomotor side
effects are reduced gaze ipsilateral to stimulation, sometimes
progressing to contralateral gaze deviation. This resembles
conjugate eye deviation during frontal epileptic seizures and is
therefore assumed to be caused by activating fibers stemming
from the frontal eye field (FEF) which run in the internal
capsule in three bundles: a dorsal trans-thalamic trajectory,
an intermediate bundle crossing the subthalamic region, and
a ventral bundle in the medial portion of the cerebral
peduncle, which projects, among other structures, to the
subthalamic nucleus (82). Analyzing 22 electrode locations
which intraoperatively could elicit conjugate eye deviations, these
positions were found to lie within the lateral anterosuperior
border of the STN (Figures 3A,D). This resulted in the
recommendation to place the lead or deflect the field to a more
medial, posterior, and inferior position (83). In a single case,
this phenomenon was elicited with the STN contacts which
provided the best clinical efficiency and could be compensated by
bilateral STN stimulation (84). These eye movements consisted
of several saccades and were accompanied by turning the
head. Thus, contra-versive and conjugate eye deviation cannot
be generally taken as evidence for electrode misplacement.
Conversely, activating the fibers of the third nerve (N.III) that run
inferomedial to the STN and within the red nucleus (RN) below
the STN may result in unilateral gaze deviation and diplopia
(Figures 3A,C). Tamma and co-authors claim that stimulation
of oculomotor fibers causes adduction or reduced abduction or
elevation of the superior eyelid in the ipsilateral eye (85). Also,
in another report, unilateral eye deviations were frequently seen
during intraoperative test stimulation when the electrode was
medial, posterior, and ventral to the final target (46). However,
this far medial position makes unwanted stimulation of these
fibers an extremely rare instant. In experimental stimulation
of the third nerve in macaques, only small adduction of the
eye was seen but prompt miosis, as expected from physiology
(86). Eyelid opening apraxia has also been observed (51),
although this symptom may be present as part of PD itself,
and is occasionally relieved by stimulation but also can be
induced by stimulation above the clinically efficient threshold
(87). Mydriasis is rather frequently seen during intraoperative
test stimulation and post-operative adjustment along with
ipsilateral perspiration. These are quickly adapting symptoms
and are not considered as evidence for a misplaced electrode.
The central sympathetic tract runs medial to the red nucleus
anteriorly to the aqueduct and is therefore not involved, but
sympathetic fibers within the zona incerta (ZI) (88) or within
the STN (Figures 3A,B) are assumed to be stimulated when
mydriasis occurs.
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FIGURE 3 | Anatomical relationship of the subthalamic nucleus (STN) and the ventral intermedius nucleus (VIM) to adjacent structures. The schematic shows coronar

(A–C) and sagittal (D) planes through the basal ganglia at the level of the STN and VIM. Co, Commissural nucleus; CeM, central medial thalamic nucleus; VA,

ventroanterior thalamic nucleus; VC, ventrocaudal nucleus; VLP, ventrolateral posterior thalamic nucleus; VPM, ventroposterior medial thalamic nucleus; IC, internal

capsule; SNr, Substantia nigra pars reticulate; and SNc compacta; H1, H2, H1 and H2 Fields of Forel; ZI, zona incerta; N.III, nucleus of the third cranial nerve; DHA,

dorsal hypothalamic area; DHM, dorsomedial hypothalamic nucleus; LHA, lateral hypothalamic area; mfb, medial forebrain bundle; opt, optic tracts; RN, red nucleus;

crt, cerebello-rubro-thalamic tract. Stimulating the tissue medial and dorsal to the STN activates the H1 and H2 fields of Forel and the ZI and may reach to the

medio-dorsal thalamic nuclei incl. the Co, CeM, and VIM. Deflection of the field to more ventral areas will activate the fibers of the N.III and the SN (A). Anterior of the

STN, stimulation may activate hypothalamic nuclei and mfb as well as the IC (B,D). At the posterior border of the STN, stimulation may activate the RN and ml, in

particular, if the tissue medial of the STN is activated. Stimulation of tissue dorsal of the STN may activate the crt. (C,D). Adjusted from Mai et al. (55).

Autonomic side effects: Nausea and excessive sweating
are likely a consequence of medial and anterior current
spread, presumably corresponding to tissue activation in
the hypothalamus and red nucleus (85, 89) (Figures 3B,C).
Approximately half of all STN-DBS cases experience dizziness,
a sense of heavy- or lightheadedness, or malaise (51).

Paresthesia: Contralateral paresthesias may be due
to stimulation of the medial lemniscus which conveys
somatosensory information from the joints and skin and
lies ventroposterior to the STN (Figure 3D). With the usual
frontal entry of the lead the lowermost contacts may thus
encroach on this structure (89). Mostly, paresthesias are
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transient but when they persist, a more dorsal contact may be
chosen, if clinically effective.

Speech impairment: The impairment of speech frequently
occurs during the initial programming and long-term follow-
up of STN DBS (37, 90) but can be ameliorated through proper
programming (91). Dysarthria occurs in about 25% of STN-DBS
cases and may be caused by current spread into the internal
capsule (strained or spastic speech) or otherwise into the pallidal
and cerebello-thalamic fiber tracts (crt) medial and dorsal of
the STN (92–94) (Figures 3A,C,D). It is therefore important
to distinguish the different causes of DBS-induced dysarthria
to be able to adjust stimulation contacts and parameters. In
addition, stimulation of the STN itself may account for speech
impairment. In particular, medial left-sided stimulation in right-
handed patients had a negative effect on prosody, articulation,
and overall intelligibility (95–97). Accordingly, higher left STN
voltage is associated with deterioration of speech (98). Similarly,
other reports demonstrated a strong correlation between high
voltages in the left STN and speech impairment (99–101).

One report suggested high stimulation frequency to increase
the risk of speech impairment (102). Another report suggested
high-frequency stimulation to have a negative effect on speech-
related velopharyngeal control (103).

Dyskinesia: STN-DBS may induce dyskinesia, such as
choreiform, ballistic, or dystonic movements reminiscent of
levodopa-induced dyskinesia (52). Dyskinesias occurring during
the initial post-operative programming period are thought to
indicate a good outcome and the contact inducing dyskinesia is
usually the most effective in ameliorating motor symptoms (52,
104–106). Rare dystonic effects in STN-DBS included dystonia of
head and neck muscles with stridor and dysphagia (107, 108).

Gait impairment and postural instability: Overall, L-Dopa
responsive axial symptoms are also more likely to improve with
STN-DBS and indeed, various studies reported gait improvement
with STN-DBS (109–115), in particular in terms of gait velocity
and amplitude of arm and leg swing. On the other hand, long-
term follow-up studies (116, 117) have consistently shown that
axial symptoms including gait may worsen over time in contrast
to the sustained improvement of cardinal motor signs, suggesting
a differential effect of DBS on the distal and axial neural
control circuits (118–120). Indeed, increasing the stimulation
amplitude can worsen gait and increase freezing episodes similar
to no stimulation as discussed further in detail in section
Specific Programming Strategies to Counteract Side Effects in
STN-DBS. However, the cause of gait impairment in DBS is most
likely multifactorial (121) and, apart from stimulation-induced
worsening through the current spread, disease progression,
medication reduction, and cognitive decline may contribute.
Postural instability is the least likely to respond to DBS and
STN-DBS appears to be more detrimental to postural stability as
compared to GPi-DBS (122, 123). Although there is no evidence
to support a certain programming strategy to avoid worsening
of postural stability, a recent study suggested that limiting
current spread to the non-motor territories of the STN would
liberate cognitive resources that could be used to maintaining
a steady posture (124, 125) and to improve postural stability
(126). Because certain studies suggested that trunk ataxia to be

a consequence of activating the red nucleus, directing the current
to more lateral areas might be also helpful.

Acute neuropsychiatric side effects: STN-DBS may cause acute
neuropsychiatric alterations in addition to preexisting psychiatric
comorbidities that can decompensate during or after surgery
(106). Neuropsychiatric signs can be observed in individual
subjects during initial programming and may include apathy
(112, 127), mirthful laughter (66) as well as acute mania (68, 128)
and acute depression (129–131).

Depression: In a case described by Bejjani et al., depression
occurred while all contacts were screened in the post-operative
setting. When contact the most ventral (Figures 3B,C) was
activated, depression set in after 5 s. of stimulation with 2.4V.
This contact was not efficient in relieving PD symptoms and
was shown to be located within the substantia nigra. Stimulation
of more dorsal contacts provided relief from PD motor signs
without causing depression. In addition, apathy and depression
may be due to a “hypodopaminergic” state as a consequence of
a quick or radical reduction in dopaminergic medication (132).
Recognizing depression is highly relevant since these symptoms
have an even bigger impact on the live quality of DBS patients
than motor function (133, 134).

Mania: Manic episodes due to STN stimulation are assumed
to be a consequence of stimulating the medial and ventral
aspects of the STN (135, 136). Therefore, the use of more dorsal
contacts is recommended in these cases. In addition, stimulating
tributary fibers from the STN to the median forebrain bundle
may contribute to these symptoms (65).

Impulse Control Disorders (ICD): The relationship between
DBS and ICD is complex and in part controversial (137).
In general, bilateral STN-DBS was found to either ameliorate
or worsen decision-making or to have no effect (138–140).
STN-DBS is associated with the risk of binge eating (141,
142) and punding behavior (143). Moreover, STN-DBS may
induce hypersexuality, hypomania (144, 145), or compulsive
gambling (146). These effects are most likely associated with
using the most ventral contacts (147–150) and are assumed
to be caused by stimulating the ventromedial, limbic area of
the STN (66, 149, 151) as well as the SNr (128) and the
medial forebrain bundle (65) (Figures 3A,C). One therapeutic
option may, therefore, be to avoid current spread into STN-
related limbic circuits by deflecting the electrical field to more
dorsal and lateral parts. However, ICD may also resolve or
improve after surgery (152, 153) and STN-DBS might in fact
be considered to treat ICD in PD (152, 153). Long-term follow-
up of patients with STN-DBS showed pre-surgery ICD was
abolished in most patients once L-DOPA or dopamine agonist
doses were reduced (141) as was the dopamine dysregulation
syndrome (154). In these studies, the de-novo onset of ICD was
rare and transient with the exception of compulsive eating (141).
Similar to motor symptoms, the individual patient outcomes
in regard to ICD depend on several factors, including target
selection, electrode location, programming settings, appropriate
medical management, age, and perhaps genotype (155) and is
thus difficult to predict.

Cognitive side effects: The effects of STN-DBS on cognition
remain controversial. A reduced verbal fluency is well-described
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(156), but has been observed with and without stimulation and
thus has been attributed to penetrating the caudate nucleus
during surgery (157, 158). On the other hand, Morishit et al. and
Isler et al. found no significant difference in cognitive decline
between caudate-penetrated and caudate-spared groups. In
addition, executive dysfunction and altered short term memory
have been observed (159, 160). These effects are also considered
to be a consequence of stimulating the ventral and medial aspect
of the STN (160, 161). However, well-controlled studies did not
find detrimental effects of STN-DBS on global cognitive function
(162, 163). The etiology is therefore likely multifactorial and due
to the surgical lesion of the frontal lobe and caudate nucleus and
diseases progression (164).

Specific Programming Strategies to
Counteract Side Effects in STN-DBS
Some adverse effects may be transient in nature and will
disappear despite continuing stimulation (165). For instance,
dyskinesia is a typical side effect of STN-DBS in PD but
increasing the amplitude in minute steps and waiting for
the dyskinetic symptoms to disappear after each incremental
step might ultimately allow for an increase in amplitude
required for symptom control despite transient dyskinesia (105).
Moreover, it may be sufficient in some instances to adjust
stimulation parameters in order to achieve a more symmetrical
or asymmetrical DBS effect. For example, if gait disturbances
are prominent in STN-DBS, reducing the stimulation amplitude
on the side contralateral to the best motor response resulted
in increased stride length, reduction of gait variability, and
a reduction in freezing episodes (166). On the other hand,
asymmetric stimulation may be helpful in ameliorating the
emotional side effects of STN-DBS, that are thought to be
lateralized (167). The latter study demonstrated emotional
auditory stimuli to induce activity in the ventral non-oscillatory
region of the right STN but not in the left ventral STN or in
the dorsal regions of either the right or left STN. These results
suggest that DBS of the right ventral STN may be associated
with beneficial or adverse emotional effects observed STN-DBS.
The authors suggest that the stimulation parameters in the right
STN should be modified to counteract psychiatric side effects.
This hypothesis is tempting but needs further confirmation
from clinical studies. When permanent side effects occur, either
the stimulating contact or the stimulation parameters may be
changed or, as the last option, the electrode may be repositioned.
The first step is to check the electrode position in case this
is not done routinely after surgery or if post-surgical images
are not available. The second step is to reduce the current
of the activated contact(s) and/or choose another contact for
stimulation. For example, choosing a more dorsal contact
is recommended when persistent paresthesias occur as well
as in psychiatric symptoms (see above). Alternative electrode
configurations can be achieved by combining single contacts to
a compound cathode (double or triple monopolar) or by setting
another lead contact as an anode (bipolar). The latter allows the
volume of tissue activated (VTA) to be restricted at the expense
of higher energy consumption (3), although one should be aware

that the extent of the computed VTA varies substantially with
the material properties of the surrounding brain tissue (168–
171). Alternatively, interleaving stimulation (Medtronic R©) may
be applied. Interleaving stimulation (ILS) consists of rapid and
alternate activation of two electrode contacts with two distinct
amplitudes and pulse widths but with the same frequency up to a
maximum of 125Hz and a delay of 4ms between two stimuli. In
general, ILS may be applied either to limit stimulation-induced
adverse effects or else, to stimulate different brain regions with
individualized settings in order to alleviate specific symptoms
(47). For example, ILS was successfully applied for freezing of
gait (additional stimulation of substantia nigra) (101) as well as
tremor (additional stimulation of zona incerta) (172). However,
with the exception of case reports and small case series (172–177),
there are no larger prospective trials that have investigated the
clinical effect of ILS. In accord with previous reports, a recent
study from Kern et al. demonstrated improvement with ILS
for adverse effect management predominately for the treatment
of dyskinesia and improvement of PD motor symptoms with
ILS (178), whereas ILS was less effective in ET and dystonia.
Of note, a contact was added into the rostral zona incerta
(ZI) (Figure 3A) in the majority of dyskinetic patients, thus
suggesting a particular role of the ZI and the surrounding pallido-
thalamic fibers for improving dyskinesia and a potential ILS
target in STN-DBS. These alternative targets are under active
investigation for treating dyskinesias (174, 179, 180), although
sound evidence for using these structures is still lacking. A
drawback of ILS is that battery drainage is likely increased with
ILS as 2 independent programming settings are applied (181).

Short Pulse Width Stimulation (SPWS)
Decreasing the standard pulse width, which is currently only
possible with Boston Scientific R© or Abbot R© devices, represents
an alternative strategy to counteract unwanted side effects in
STN-DBS (53, 182). For example, Reich et al. investigated
pulse widths below 60 µs at a frequency of 130Hz and found
that compared to (standard) 60 µs stimulation, the therapeutic
window increased by a mean of 182% with a PW of 30 µs,
and decreased by 46% with a PW of 120 µs (183). Although
the stimulation amplitude required for rigidity control increased
with reducing pulse widths from a mean of 1.6mA at 60 µs to
2.9mA at 30 µs, the TEED required for the clinical effect of
rigidity control decreased. This is thought to be mediated by
more selective action of stimulation on the fiber tracts that are
responsible for symptom relief while the neighboring thick and
myelinated corticospinal and corticobulbar fibers are thought to
be less affected by short pulse width stimulation (184–186).

Low-Frequency Stimulation (LFS)
If gait and balance issues such as freezing of gait (FOG) or
other axial symptoms predominate, LFS (60–80Hz) may be a
good treatment strategy for PD patients with STN-DBS. FOG is
a gait disorder featured by recurrent transient gait retardation
and interruption that occurs in PD, PD-plus syndromes and
vascular parkinsonism. Most FOG episodes are related to the
OFF state in PD, but severe cases begin to suffer from ON
state FOG (ON-FOG). FOG increases the risk of falls for PD
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patients and has a large impact on the motor function and daily
life of the patients. HFS-DBS of the STN can alleviate FOG in
some patients, particularly if FOG is related to medication OFF
state (187–189). On the other hand, HFS-DBS may induce FOG
in PD (190, 191). Pharmacological treatment options for FOG
include L-DOPA (192), methylphenidate and amantadine (193,
194). Alternatively, the stimulator may be switched to LFS. LFS
(60–80Hz), compared to HFS (130Hz), has been shown to have
beneficial effects on improving FOG and other axial symptoms,
such as speech and swallowing function, in PD patients with
bilateral STN-DBS in some studies (190, 191, 195–198) or
selected patients (199), but not in others (200–203). Some found
short-term but not long- term beneficial effect (204), while others
found both short-term and long-term benefits after 6 weeks, 8
months and even 10 months study periods (190, 195, 197). It
is not well-understood, which factors account for the different
responses of FOG and other axial symptoms to LFS. Possible
factors include the presence or absence of pre-existing FOG, the
frequency used (60 vs. 80Hz), the maintenance of the TEED
[TEED = (voltage2 × pulse width × frequency)/impedance)]
with frequency adjustment and the location of the active contacts
(ventral vs. dorsal). In most studies, adjusting for TEED appeared
to be less relevant than the frequency (205). This in line with
the finding that neuronal responses relative to frequency are
highly non-linear as demonstrated by Huang et al. (206). In
summary, it is currently unclear, which patients benefit most
from LFS vs. HFS, but likely applies to patients that have pre-
existing FOG at HFS-DBS on exam (190, 195–197). In some
studies, switching from a high to low frequency (<100Hz)
stimulation also ameliorated speech intelligibility (207) and
acoustic parameters such as hypophonia (196). On the other
hand, tremor control has been observed to be worse with lower
frequencies (190, 197, 204).

Alternative Electrode Targets for Axial Symptoms and

Gait Disorders
If there is a beneficial effect of LFS on gait, it may be caused
at least in part, by affecting neurons that project to the
pedunculo-pontine nucleus (PPN) as unilateral or bilateral LFS
of this structure directly and in combination with stimulation
of additional target structures has been shown to improve
FOG (99, 187, 208–213). The PPN has reciprocal cholinergic
connections with the STN, its degeneration may be crucial in the
pathophysiology of gait and balance deterioration in PD (214,
215) and stimulation of the PPN may improve axial symptoms
in PD (216, 217). The PPN may be stimulated by leads in this
region alone or in conjunction with the STN, the SNr, or the
GPi (99, 211, 212). Interestingly, the optimal contact positions
for LFS were more ventrally located in the STN than optimal
contacts for 130 Hz-stimulation (198). More recently, there has
been interest in the stimulation of the SNr, which is located
ventrally and medially to the STN (218). One study found that
among PD patients treated with STN-DBS at 130Hz via the
most distal contact of the quadripolar electrode resulted in an
improvement of gait and posture (100). Subsequently, another
group of researchers used interleaving to stimulate both the
STN and the SNr (101) and found that FOG was significantly

improved with combined STN/SNr stimulation, although other
axial symptoms on UPDRS did not significantly differ. At
the same time, stimulating the SN also comprises the risk of
worsening akinesia and of inducing depressive symptoms. In
summary, the combined stimulation of PPN plus STN, PPN plus
GPi, or STN plus SNr, may be useful for the treatment of FOG in
PD patients. The optimal combination of nuclei to be stimulated
and the stimulation parameters need to be determined by future
clinical trials. In addition to its effect on gait and balance, LFS
may reduce stimulation-induced dyskinesia (219, 220). This may
be particularly relevant for dorsal-projecting contacts in or close
to the ZI above the STN, that have been reported to have an anti-
dyskinetic effect with different stimulator settings (178, 221, 222).

Optimal Initiation Time for Programming
and Adjusting Pharmacotherapy in
STN-DBS
General Considerations on Post-Operative Care
The time point to initiate DBS after STN implantation surgery
varies between institutions. Early programming (within the
first days after surgery) satisfies the patient’s wish for a timely
treatment but may be hindered by a improvement in PD
symptoms due to the lesion caused by the electrode (stun
effect) which may last up to 2 weeks (223, 224) or even longer:
the mean medication “ON” time improved 3 months after
STN electrode implantation even in the absence of electrical
stimulation (115), thus demonstrating an improvement with
surgery alone. At which time point DBS is initiated after surgery
thus depends on the procedures established in each institution.
In any way, the initial programming should be performed after
an overnight washout of dopaminergic drugs so that the effect
of DBS can be assessed without the interference of medications
(37). Adjusting anti-parkinsonian drugs typically occur after
initial programming of STN-DBS. There is no specific evidence
on how and when to adjust medication after STN-DBS is
programmed. The insertional effect and the effect of the electrical
stimulation synergize to ameliorate PD symptoms, thus requiring
a reduction of the pre-operative LED to avoid dyskinesia. In
addition, there may be significant placebo or nocebo effects
subsequent to electrode implantation. Stopping dopaminergic
medication altogether is not recommended, as this may induce
a hypodopaminergic state including apathy and depression.
Importantly, these symptoms may develop even weeks after
the cessation of dopaminergic drugs (225–227). In particular,
in patients that suffer from impulse control disorder, cutting
dopamine agonists is advisable (152). Otherwise, L-Dopa should
be reduced first (228, 229). Finally, reducing L-Dopa might
unmask preexisting Restless Legs Syndrome that would have to
be considered for treatment.

Constant Voltage vs. Constant Current Stimulation
In addition to the micro-lesion effect, the fluctuation of
impedances may bias the determination of the therapeutic
window in the early post-operative period (230) which might
become more relevant hen using constant-voltage stimulation
(CVS) where the current delivered is inversely proportional to the
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electrode impedance. Conversely, current-constant stimulation
(CCS) may offer more stable stimulation, in particular when
programming soon after surgery (231, 232). Apart from possibly
affecting the outcome in an individual patient, using CCS instead
of CVS might allow for an improved generalization of outcome
between subjects such that knowledge gained from one set of
subjects can be generalized to others. Because the total current
delivered current depends on both voltage and impedance, and
since voltage is held constant with CVS, potential variations in
current over time will be mainly a consequence of impedance
fluctuations. Data from examining non-human primates using a
small version of the human DBS lead supported this hypothesis
(233) as the electrode impedance progressively increased over
7 days post-implantation, resulting in a reduction of current
delivered. Benabid et al. reported impedance changes in patients
with VIM stimulation for ET. These authors observed an increase
in impedance of 33% (on average) over 3 months following the
implantation of DBS leads. Thereafter the impedance stabilized
(234). Sillay et al. measured impedances in 63 DBS patients
with PD, essential tremor, and dystonia at various time intervals
following DBS surgery (235). All measurements were performed
at >25 days post-operatively, and in the absence of changes in
the stimulation parameters between time points. On average,
the authors found no significant intra-patient or intra-electrode
impedance changes. However, over half had a small increase
in impedance over time, and 40% had a small decrease in
impedance, with the largest change observed being 23% in a
single subject. Hemm et al. described similar results in patients
with dystonia (236) observing that impedance values changed
only slightly over time within a single patient but that there
were differences between patients and between active and non-
active DBS contacts. However, Cheung et al. analyzed a large
database of impedance measurements from 94 subjects, ranging
from 6 months to 5 years after implantation. They found that a
significant amount of impedance variability could be expected
in chronically implanted DBS electrodes, with a range spanning
from 18 to over 600� (237). Studies that compared CCS and CVS
did not show any significant differences in non-motor outcomes,
including cognition, mood, and quality of life in a double-blind
crossover trial (238). A retrospective analysis of 19 patients with
PD and dystonic syndromes switched from CVS to CCS reported
no change inmeasured clinical outcomes and therapy satisfaction
at 6 months (115, 239), whereas a more recent study found
better outcomes with CCS (240). Taken together, the relevance
of changes in the electrode impedance and, as a result, the
total electric charge transferred, is uncertain and the specific
consequences of using CCS vs. VCS stimulation are not yet
clear (231, 241, 242) and currently, there is no clear evidence to
support an early or late post-operative initiation of DBS.

VIM-DBS in Essential Tremor
Specific Programming Strategies in VIM-DBS
Compared to STN-DBS, the evidence for adjusting
neurostimulation parameters in VIM-DBS is limited. In
case of ET, kinetic tremor, the principal target of stimulation
adjustments, the limb can be assessed with the finger-to-nose
or finger-to-finger maneuver or by asking the patient to draw

a spiral, drink water from a cup or pour water from a glass
into another one. In addition, postural tremor can be assessed
with the arms outstretched or elbows bent (wing-beating
position). In general, the programming strategies outlined
above can be applied for VIM-DBS. Using a pulse width of 60
µs and a frequency of 130Hz, the current intensity is usually
increased progressively until tremor stops or until side effects
are encountered. If the tremor is not optimally controlled at
3.5 volts, pulse width and then the frequency of the stimulation
may be increased (243). Studies evaluating the effect of different
stimulation parameters in ET showed that tremor responds best
to increase the amplitude and is further improved by 25% with
longer pulse widths (90–120 µs). The frequency-response curve
shows an inverse linear relationship between tremor magnitude
and frequency between 45 and 100Hz and a plateau above
130Hz, although an additional but variable effect between 130
and 200Hz has been documented (2) (244–247). Similar to
what has been demonstrated for STN-DBS, reducing the pulse
width has been shown to widen the therapeutic window in ET
(248) where the minimum pulse width for suppression of tremor
was shown to be significantly different to that for induction
of ataxia, with values of 27 and 52 µs, respectively (249).
Comparing directional stimulation with segmented electrodes to
conventional ring stimulation, Rebelo et al. found an increased
therapeutic window and reduced current with stimulation
in the best direction compared to the best omnidirectional
stimulation alternative (44) (Figure 1). Likewise, alternative
targets directly adjacent to the VIM have been described for
ET. For instance, the caudal ZI has been examined as a target
for patients with tremor suggesting that ZI stimulation may
even exceed tremor control through stimulation of the VIM
(250–253). These findings are consistent with results from
diffusion tensor imaging data suggesting that the best tremor
control is obtained with stimulation of the cerebello-thalamic
afferents, which are embedded in the ZI (249).

Typical Side Effects in VIM-DBS
The VIM nucleus of the thalamus is located close to the
STN in the vicinity of the internal capsule (lateral), the
centromedian and parafascicular nucleus of the thalamus and
the commissural nucleus (medial), the zona incerta (ZI) and
H1/H2 field of Forel (ventral), the ventroanterior (VA), the
ventrolateral anterior (VLA) and posterior (VLP) nuclei of the
thalamus (dorsal), and the ventromedial thalamic nucleus (VM)
(anterior, posterior) (55) (Figure 3). Common side effects include
the following:

Paresthesia is the most common short term side effect because
the electrical field reaches into the thalamic sensory nuclei dorsal
to the VIM (Figure 3A). It can be transient, lasting from a
few seconds to minutes, or permanent, and only resolving with
reducing stimulation (2, 234, 254).

Speech impairment: Dysarthria is a significant complaint in
more than half of ET patients with bilateral VIM-DBS (255),
although dysarthria is common in ET even in the absence of
DBS. This is relevant because clinicians often choose suboptimal
stimulation parameters to avoid stimulation-induced side effects,
more frequently seen in patients with bilateral VIM-DBS (255,
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256). Speech impairment appears to occur more frequently with
higher stimulation amplitudes and with more ventral stimulation
contacts. As with STN-DBS, dysarthria may be caused by
interference with the cerebello-thalamic or with motor fibers
of the internal capsule (Figures 3C,D) located laterally to the
VIM causing spastic dysarthria (257) and appropriate contact
adjustment may be beneficial.

Gait ataxia: Another common complaint in patients with
VIM-DBS is balance issues with an unsteady gait. As with speech
disturbances, current spread into dentato-thalamic afferents
lateral and ventral the VIM (Figure 3C) may be the cause of such
gait and limb ataxia (258–260), although gait and limb ataxia can
be a sign of ET itself, commonly referred to as ET-Plus (261).
Switching off DBS even for several days can help to distinguish
between the two, but rebound tremor needs to be considered.

Loss of Stimulation Benefit: In ET, the energy required for
tremor suppression and the number of active contacts typically
increase as the disease progresses and this effect is more common
in ET as compared to other tremor types (262–265). Indeed,
some studies showed the initial improvement in activities of daily

living evident at 1 year after the DBS implantation to be lost in
the long run except the ability to eat (266). The loss of long-
term benefit in ET has been attributed to DBS tolerance, natural
disease progression, and other factors including brain atrophy
(234, 266–271). Possible strategies to avoid the adaptation of
neuronal networks in ET include switching the stimulation off
at night (255), inverting the electrode configuration in patients
using bipolar settings or on-demand stimulation.

GPi-DBS in Generalized and Segmental
Dystonia
Specific Programming Strategies in GPi-DBS
GPi-DBS has been applied worldwide as a surgical treatment
alternative for medical refractory segmental or generalized
dystonia. Although GPi-DBS seems to be more effective for
isolated than non-isolated dystonia (272), there is no evidence
that non-isolated dystonia needs a different programming
approach (273–275). The role of specific stimulation parameters
on dystonic symptoms is probably even less established than
with VIM-DBS for ET. This is likely a consequence of the

FIGURE 4 | Anatomical relationship of the globus pallidus internus (GPi) to adjacent structures. The schematic shows coronar (A–C) and sagittal (D) planes through

the basal ganglia at the level of the GPi. IC, internal capsule; GPe, globus pallidus externus; al, ansa lenticularis; Pu, putamen; opt, optic tract; AMY, amygdala; VP,

ventral pallidum; PuV, ventral putamen; STN, subthalamic nucleus. Deflection of stimulation to tissue medial of the GPi will activate the IC, which is less likely the case

at the anterior border of the GPi (A,B,D). The AMY and opt are activated by stimulating tissue ventral of the GPi (C). Adjusted from Mai et al. (55).
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heterogeneity of symptoms. In addition, and unlike in STN-
and VIM-DBS, where the effect is observed within seconds to
minutes, the effect of GPi-DBS on dystonia may not occur for
hours, days, or in some cases even months (Figure 2B). For
instance, Krauss et al. noted that phasic dystonic movements
were often relieved within minutes of stimulation onset, whereas
improvement in tonic posturing took several months to fully
manifest (276). When adjusting neurostimulation in dystonia,
phasic dystonic movements, such as dystonic neck movements,
are therefore best suited for evaluation because tonic dystonic
components usually need more time to improve (277). This
may be in part be due to musculoskeletal abnormalities caused
by long-standing dystonic posture. Accordingly, most GPi-
DBS patients fail to show a clear insertional effect (277). In
accord, tonic dystonic symptoms may take a lot longer to
reappear upon cessation of GPi-DBS than phasic one (278–281)
(Figure 2B). In some cases, discontinuing GPi-DBS may result
in a clinical rebound effect with acutely severe symptoms (282,
283). The principal programming algorithm follows the same
recommendations as with PD or ET with some modifications
(3). For instance, a high frequency of 185Hz has been proposed
to be effective in GPi-DBS (284). There is a debate on the
selection of the contact for chronic stimulation as there is a
poor correlation between benefit and stimulation in different
regions of the GPi. Cheung et al. recently identified a small
area located squarely in the middle of the GPi as a potential
specific therapeutic target for DBS for dystonia (285), whereas
recent evidence from our own group suggests that most efficient
DBS electrodes displayed a close anatomic proximity to the
pallidothalamic tracts (ansa and fasciculus lenticularis) between
the GPi and the pyramidal tract (286). Thus, stimulation is most
commonly initiated in the ventral region of the GPi above the
optic tract (contacts 0 and 1) (287) with a short pulse width
(60–120 µs), high frequency (130–185Hz) and amplitude just
prior to eliciting adverse effects (284, 288, 289). Due to the
anatomical location of the target, delayed side effects are less
likely to occur than with STN- or VIM-DBS, thus favoring a
top-down approach and starting the stimulation with the highest
tolerated voltage. The use of high- vs. low-frequency stimulation
in dystonia has shown mixed results. Alterman et al. suggested
that the use of 60Hz stimulation can be beneficial in some
patients (290), whereas another group preferred high-frequency
stimulation (289). Moro et al. concluded that high-amplitude and
high-frequency stimulation predict better outcome in cervical
dystonia (291). Various pulse widths have been recommended
in GPi-DBS. Coubes et al. recommend the use of 450 µs
(292). However, another study comparing 60, 120, and 450
µs did not show any significant differences between the three
groups (293).

Typical Side Effects in GPi-DBS
The GPi is surrounded by the globus pallidus externus and
putamen (anterior, posterior, lateral), the internal capsule,
ZI and MFB (medial), the ansa lenticularis (mediodorsal),
the optical tract (ventral), the amygdala (laterodorsal), the
ventral pallidum (laterodorsal) (55) (Figure 4). As with
STN- and VIM-DBS, side effects in GPi stimulation can

result from current spreading into neighboring regions in
many cases:

Hypo-/Bradykinesis: The occurrence of parkinsonian
motor signs, such as micrographia and postural deficits, has
been described as a possible adverse effect of GPi-DBS in
dystonia (294–297). This may be the result of stimulating
distinct regions within the GPi: whereas stimulation of the
dorsal part of the GPi improves PD signs and symptoms
like hypokinesia and rigidity, stimulation of the postero-
ventral part suppresses levodopa-induced hyperkinesias
but may lead to a deterioration of hypokinesia and gait
(284, 298). As a consequence, stimulation-induced hypokinesia
is more frequent with use of the ventral contacts and may be
significantly reduced by switching to dorsal contacts. Because
the ventral contacts are the most effective at controlling dystonic
symptoms, this approach may lead to a worsening of dystonia
(294, 299, 300).

Speech Impairment: In patients with primary dystonia
treated with GPi-DBS, dysarthria is one of the most
common stimulation-induced side effects reported in close
to 30% in follow-up studies (277, 301). As with STN-
or VIMN-DBS, this may be caused by current spreading
into the internal capsule medial and posterior to the GPi
(Figures 4A–D). In addition, stuttering may occur with GPi
stimulation (257, 302), emphasizing the role of the GPi in
speech fluency.

Phosphenes: These may be caused by current spread into the
optic tract that is located ventral of the GPi (Figures 4A,C).

There is no specific evidence for general programming
strategies to avoid speech disturbances in GPi-DBS other than the
general strategies for avoiding side effects outlined above.

CONCLUSION

Programming the IPG is the only modifiable factor once
DBS leads have been implanted and thus crucially impacts on
the overall treatment success. Although our review does not
provide a specific level of evidence for an overall programming
strategy, we here summarized appraised strategies on how
to adjust stimulation parameters and program settings in
different movement disorders. Therefore, we reviewed previous
studies that examined the significance of distinct stimulation
strategies for ameliorating disease signs. We summarized the
well-characterized significance of the stimulation amplitude,
frequency and pulse width on clinical symptoms. In addition,
we provided an in-depth review of potential side effects in
DBS of the STN, VIM, and GPi. Based on these effects, we
specifically examined more recent techniques for modulating
neuronal elements, such as directional current steering,
low-frequency, and short pulse-width stimulation as these
strategies were shown to enlarge the therapeutic window
and thus allow for a more favorable outcome in different
movement disorders. In conjunction with a recommendation
for managing pharmacotherapy in PD after initiation of
DBS, we thus provide a concise review for STN-, VIM-, and
GPi-DBS programming.
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