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Cortical and subcortical plastic reorganization occurs in the course of motor recovery

after stroke. It is largely accepted that plasticity of ipsilesional motor cortex primarily

contributes to recovery of motor function, while the contributions of contralesional

motor cortex are not completely understood. As a result of damages to motor

cortex and its descending pathways and subsequent unmasking of inhibition, there is

evidence of upregulation of reticulospinal tract (RST) excitability in the contralesional

side. Both animal studies and human studies with stroke survivors suggest and

support the role of RST hyperexcitability in post-stroke spasticity. Findings from animal

studies demonstrate the compensatory role of RST hyperexcitability in recovery of

motor function. In contrast, RST hyperexcitability appears to be related more to

abnormal motor synergy and disordered motor control in stroke survivors. It does

not contribute to recovery of normal motor function. Recent animal studies highlight

laterality dominance of corticoreticular projections. In particular, there exists upregulation

of ipsilateral corticoreticular projections from contralesional premotor cortex (PM) and

supplementary motor area (SMA) to medial reticular nuclei. We revisit and revise the

previous theoretical framework and propose a unifying account. This account highlights

the importance of ipsilateral PM/SMA-cortico-reticulospinal tract hyperexcitability from

the contralesional motor cortex as a result of disinhibition after stroke. This account

provides a pathophysiological basis for post-stroke spasticity and related movement

impairments, such as abnormal motor synergy and disordered motor control. However,

further research is needed to examine this pathway in stroke survivors to better

understand its potential roles, especially in muscle strength and motor recovery. This

account could provide a pathophysiological target for developing neuromodulatory

interventions to manage spasticity and thus possibly to facilitate motor recovery.
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INTRODUCTION

Stroke is a leading cause of adult disability (1). According to the centers for disease control and
prevention (CDC), ∼800,000 people have a stroke every year in the United States, resulting in a
total of 7 million stroke survivors. Motor impairments are common, seen in about 80% of stroke
survivors. Motor impairments mainly include weakness, spasticity, abnormal motor synergy, and
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disordered motor control. Spasticity and its related abnormal
joint postures often interact with weakness and loss of dexterity,
resulting in disordered motor control and functional limitations,
such as inability to grasp, reach, walk, and transfer. Collectively,
these motor impairments result in difficulties in mobility and
activities of daily living, and limit their vocational and social
participation in more than half of stroke survivors at age 65
and over (1). As such, these motor impairments not only
have downstream effects on stroke survivors’ quality of life,
also lay substantial burdens on the caregivers and society (2).
Numerous pharmacological agents and physical modalities and
interventions have been utilized for stroke motor rehabilitation
programs, but with varying degrees of success. Motor recovery
after stroke still remains a clinical challenge. One of the biggest
challenges is that the mechanisms underlying motor recovery are
not well understood.

Neural plasticity plays an important role in motor recovery
as well as development of motor complications, such as
spasticity after stroke (3). Post-stroke plastic changes occur
in ipsilesional, contralesional motor cortices, and subcortical
areas, such as primarily pontomedullary reticular formation
(PMRF) (4–21). It is largely accepted that plasticity in the
ipsilesional primary motor cortex (iM1) primarily contributes to
recovery of motor function, while contributions of contralesional
primary motor cortex (cM1) are not completely understood.
The role of cM1 reorganization depends on lesion location,
size and motor impairment (20, 22). It is likely mediated by
ipsilateral cortico-reticulospinal (RS) projections and uncrossed
ipsilateral CST from contralesional motor cortex (19, 22–24). As
a consequence of damages to iM1 and its descending pathways,
both animal studies and human imaging studies suggest that
there is increased excitability in the brainstem reticular system
and its descending reticulospinal tract (RST) (25–27). Both
animal and human studies support the maladaptive role of
RS hyperexcitability in spasticity. However, animal studies have
demonstrated the important role of RST in motor recovery, while
its role remains controversial in human stroke studies. In this
article, we first summarize experimental evidence supporting
upregulations of RS excitability. The potential roles of RST
in post-stroke recovery and spasticity are then compared in
both animal and human stroke studies. A unifying account
is proposed to better understand the brainstem roles and to
consolidate controversial findings for spasticity and disordered
motor control.

UPREGULATION OF RETICULOSPINAL
EXCITABILITY AFTER STROKE

The reticulospinal (RS) system is another major descending
system, in addition to CST. The RS system is best known for
its role in posture and locomotion (28), but it also recruits both
proximal and distal muscles of the upper extremity bilaterally
(29), including the finger muscles (30, 31). There are two
descending RS tracts with distinctly different origins. The dorsal
RST originates from the dorsolateral reticular formation in the
medulla, and receives facilitation from the motor cortex via

corticoreticular fibers. The lateral CST and cortico-reticulo-
spinal tract descend adjacent to each other in the dorsolateral
funiculus at the spinal level. The medial RST originates primarily
from the pontine tegmentum with connections to PMRF. The
medial RST descends along with the vestibulospinal tract (VST)
in the ventromedial cord. The dorsal RST provides dominant
inhibitory effects to spinal reflex circuits, while medial RST and
VST provide excitatory inputs. Therefore, medial and lateral
RSTs provide balanced excitatory and inhibitory inputs to spinal
motor neuron network. In the context of stroke with cortical
and internal capsular lesions, damages often occur to both CST
and corticoreticular tracts due to their anatomical proximity.
This leaves the facilitatory medial RST and VST unopposed,
thus hyperexcitability [see reviews in (25–27, 32)]. However, due
to technical difficulties, activities of brainstem nuclei and RST
excitability cannot be localized and assessed directly in stroke
survivors, even with most advanced technologies (33–37).

The RST hyperexcitability in humans has been assessed
indirectly through acoustic startle reflex (ASR). ASR is an
involuntary motoric response to unexpected loud auditory
stimuli (38). The proposed circuit of the ASR in humans involves
the cochlear nucleus, the caudal pontine reticular nuclei, the
motoneurons of the brainstem, and the spinal cord activated
through the medial RST (39–41). ASR has been established
in the literature to investigate RST excitability in healthy and
stroke subjects (31, 42–52). In stroke survivors with cerebral
infarcts, normal ASR motoric responses could be elicited in
flaccid muscles in the acute phase, however no response from
the same muscles to magnetic cortical stimulation of the primary
motor cortex was elicited in these patients (42), suggesting
that the circuit of ASR remained intact in these patients
and not under cortical control of iM1 and its descending
pathways. In a different study in chronic stroke, exaggerated
ASR responses were observed in spastic muscles (43), suggesting
RST hyperexcitability. In a recent study (52), we compared ASR
responses in chronic stroke at different stages of motor recovery
(Flaccid, Spastic, and Recovered; Flaccid = those who remain
flaccid; Recovered = those who have a history of spasticity but
have recovered and have isolated voluntary movement). We
found that ASR responses were within normal limits in stroke
survivors without spasticity (Flaccid or Recovered). However,
exaggerated ASR responses were frequently observed in spastic
subjects bilaterally, but more evidently (earlier and longer
duration) on the impaired side than on the non-impaired side.
These results suggest that RST hyperexcitability occurs in the
Spastic stages, but not in the Flaccid or Recovered stages in
chronic stroke.

CONTROVERSIAL ROLES OF
RETICULOSPINAL TRACTS IN MOTOR
RECOVERY AND DISORDERED
MOTOR CONTROL

Accumulated evidence from animal studies appears to support
the role of RS hyperexcitability in motor recovery after CST
damage due to stroke (29, 53–56). Riddle and Baker (56) reported
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that medial RS and corticospinal pathways descended in parallel
and had largely overlapping effects on spinal interneurons and
motoneurons in non-human primates; importantly, responses
from spinal motoneurons to stimulation of either pathway at
supraspinal levels were of similar amplitudes during a reach and
grasp task. Buford and colleagues further reported a significantly
increased RS motor output that contributed to recovery of
voluntary motor control in monkeys with significantly damaged
primary motor cortex and its descending CST (57, 58). For
example, Buford et al. reported that, reaching was severely
impaired after a substantial focal ischemic M1 lesion in an
adult macaque. However, reaching performance had a near
normal recovery after 12 weeks of intensive therapy. This
improvement was paralleled with significantly increased output
from the reticulospinal system, while little to no change was
observed in both ipsilesional and contralesional M1 (58).
Therefore, strengthening the existing intact RS projections is a
plausible mechanism for motor recovery as seen in these animal
models (56–60).

These findings do not translate into clinical practice. Studies
with stroke survivors have demonstrated that RST may not
always be beneficial (22, 61). Byblow et al. suggested that
the contralesional motor cortex facilitates the descending
ipsilateral cortico-reticulo-spinal projections or cortico-reticulo-
propriospinal projections after stroke. These projections may
contribute to motor recovery in patients with severe paresis, but
not in the less impaired limb (22, 62).

The possible contributions to force production from cM1
and its descending ipsilateral cortico-reticulo-spinal pathways
seem insignificant, however. The contributions were examined
in a recent TMS study (63). TMS to cM1 was delivered during
isometric elbow flexion at submaximal levels on the spastic-
paretic side in chronic stroke and in healthy subjects. The
TMS-induced force increment was significant greater only at
10% of maximal voluntary contraction tasks in stroke subjects
than in healthy controls. No significant difference in the force
increment was found at higher force levels. In a recent study,
during isometric elbow flexion tasks, the force increment induced
by stimulation of RST via startling acoustic sound in stroke
survivors with spastic elbow flexors was not significantly different
from the increment in neurologically intact subjects (64). Taken
together, these findings indicate that RST hyperexcitability does
not provide additional contributions to voluntary elbow flexion
force production in chronic stroke survivors.

On the other hand, RS hyperexcitability is associated with
abnormal motor synergy and disordered motor control in
chronic stroke survivors. In a DTI study, RST reorganization
and strengthening is significantly correlated with impairments
and abnormal synergy, not motor recovery (24). In a series
of studies by Dewald and colleagues (24, 65–71), they have
consistently reported involvement of RS hyperexcitability in
abnormal synergy in shoulder, elbow, wrist and finger movement
on the paretic side in chronic stroke with moderate to severe
motor impairment. Specifically, they provide evidence that
contralesional cortico-reticulospinal pathways are progressively
recruited, but they do not contribute to discrete voluntary
movement (70).

RS hyperexcitability seems to be maladaptive in the course of
complete motor recovery. In a recent longitudinal study in 2018
(21), the authors tracked the time course of mirror movement
in the non-paretic hand during individual finger movement
of the paretic hand in stroke survivors since 2 weeks post
stroke. They reported mirroring in the non-paretic hand was
exaggerated early after stroke, but progressively improved over
the year. The improvement paralleled individuation deficits in
the paretic hand in the time course. However, these changes
were not concomitantly accompanied by any evidence of cortical
mechanisms according to fMRI data. The authors attributed
these changes to upregulation of subcortical mechanisms,
particularly RS hyperexcitability in the early recovery phase.
During the course of recovery, improvement in mirroring
reflects the reliance on the capacity of cortical sensorimotor
areas in both hemispheres to re-gain modulatory influences on
the RST.

THE ROLE OF RST HYPEREXCITABILITY
IN POST-STROKE SPASTICITY

Post-stroke spasticity is a common phenomenon of velocity-
dependent increase in resistance when a joint is passively
stretched. It is accepted that spasticity is mediated by exaggerated
spinal stretch reflex (25–27, 32, 72, 73). Animal lesion
studies in last century have provided strong experimental
evidence to support the role of RST hyperexcitability in
spasticity. For example, isolated lesions to CST only produce
weakness, loss of dexterity, hypotonia, and hyporeflexia,
instead of spasticity (74–76). Surgical section of unilateral
or bilateral VST in the anterior cord has little effect (77)
or a transient effect (78) on spasticity. With more extensive
cordotomies that damage the medial RST, spasticity
is dramatically reduced (78). In another study, Burke
et al. provided evidence that spasticity and decerebrate
rigidity are differentially mediated through RST and VST
projections (79).

Overall, findings from studies with human subjects are
consistent with findings from animal studies on the role of
RST for spasticity. As mentioned earlier, there are exaggerated
acoustic startle reflexes in stroke survivors with spasticity (43, 52).
The RST plays an important role in maintaining joint position
and posture against gravity (28). The findings of high correlations
between the resting joint of elbow joint and severity of spasticity
(clinical and biomechanical measurements) (80) suggest that
post-stroke spasticity is strongly related to RS hyperexcitability
and its antigravity effects.

The descending medial RST inputs to the spinal motor
neurons from medial PMRF are primarily mediated by the
monoamines serotonin (5-HT) and norepinephrine (NE).
The monoaminergic inputs via unopposed hyperexcitable
RST provide powerful neuromodulatory changes of spinal
motor neurons, greatly increasing their excitability and
facilitating persistent inward currents (PIC) (81–83). The PIC
is a depolarizing current generated by voltage-activated
channels that tend to remain activated, thus associated
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with a plateau behavior (84). PICs are associated with
subthreshold depolarization of spinal motor neurons, and
hyperactive stretch reflexes in the spastic-paretic limb
following stroke, thus mediating spasticity. A serotonergic
agent (estitalopram) can augment spasticity (85), while
an anti-serotonergic agent (cyproheptadine) facilitates
relaxation time of spastic muscles (86). Reduction in
descending NE drive via administration of tizanidine
has shown to improve independent joint control in
chronic stroke survivors with moderate to severe motor
impairments (87).

Given unilateral nature of VST projections (88), the role
of VST in spasticity was recently tested in chronic stroke
(89, 90), in which VST was stimulated via high-level acoustic
stimuli (130 dB). The results showed a strong correlation
between triggered responses and overall severity of spasticity,
thus suggesting the role of hyperexcitability of VST in spasticity.
Yet this level of acoustic stimuli is also likely to activate
RST pathways (39, 91). The role of VST in spasticity cannot
be ruled out in human subjects. It is possible that VST
affects spasticity via the VST-RST connectivity as mentioned
above (92). As mentioned earlier, the findings from animal
study do not support the role of VST in spasticity. Findings
from advanced neuroimaging study in chronic stroke with
severe motor impaired fail to reveal increased VST size as
well (24).

A UNIFYING ACCOUNT FOR SPASTICITY,
MOTOR RECOVERY, AND DISORDERED
MOTOR CONTROL

In summary, findings from both animal studies and studies
with human subjects support the role of RST hyperexcitability
in post-stroke spasticity. In contrast, the compensatory role of
RST hyperexcitability in motor recovery is only documented
in animal studies, while RST hyperexcitability is more likely
related to abnormal synergy and disordered motor control, but
not to recovery of voluntary movement in stroke survivors.
Both RST and CST work together to recruit muscles during
voluntary movement. RST is known of particular importance
in concert with actions of the ipsilateral CST (93). For
example, in chronic stroke survivors, it was found that the
fiber volume of ipsilateral corticoreticular projections from
the contralesional hemisphere was increased, and such change
was correlated to walking ability (19). In another study (94),
findings suggested a relationship between increased activity in
the contralesinal cortical areas (M1, premotor, and primary
sensory cortex) and spasticity mitigation in response to motor
learning therapy in chronic stroke. However, efforts and
strategies to promote motor recovery have focused mainly
on iM1 and cM1, for example, they are targets of non-
invasive brain stimulation (95–97). The RST involvement is
considered beneficial in those with severe motor impairment
(22). In contrast, RST hyperexcitability has been emphasized
to likely mediate post-stroke spasticity (25–27, 32). It lacks a
theoretical framework to understand the role of the brainstem

FIGURE 1 | A unifying pathophysiological account for post-stroke spasticity,

abnormal synergy, and disordered motor control. For the medial PMRF, it

receives inputs primarily from ipsilateral premotor (PM) and supplementary

motor area (SMA), and descends ipsilaterally. This medial

cortico-reticulo-spinal tract (CRST) provides excitatory descending inputs to

spinal motor neurons. The dorsolateral PMRF receives inputs primarily from

contralateral primary motor cortex (M1). This dorsal CRST provides inhibitory

descending inputs to the spinal motor circuitry. When damages occur to the

corticospial tract (CST) and CRST after stroke on one hemisphere (red

asterisk), their output signals diminish. Subsequently, the medial CRST

excitability of the contralesional hemisphere becomes unopposed, upregulated

gradually, and hyperexcitable. Eventually, spinal motor neurons are

hyperexcitable, or may be spontaneously firing. (+): excitatory; (–): inhibitory.

Note: other descending pathways are not illustrated. They are considered

either insignificant or connected with the reticulospinal tract [modified from

Francisco and Li (98)].

reticulospinal system and its interactions with the corticospinal
motor system in motor recovery, disordered motor control,
and spasticity.

Recent research findings provide new insights into
understanding the role of RST and its interactions with
CST in stroke survivors. It was believed that the ventromedial
reticular formation in the medulla receives the excitatory
inputs vial corticoreticular projections from the contralateral
M1 and gives out dorsal RST and descends ipsilaterally
next to the lateral CST; while the medial RST originates
diffusely within medial pontomedullary reticular formation
(PMRF) (25–27, 32). After stroke-related damage to the M1
and its descending CST and corticoreticular projections, the
medial RST becomes unopposed and gradually hyperexcitable,
providing excitatory inputs to the spinal motor neurons
(see Figure 1 without dashed projection from PM/SMA)
(25–27, 32). Recent studies demonstrate that cortico-reticulo-
spinal projections are bilateral, but have laterality dominance
(99–101). For the medial PMRF, it receives inputs primarily
from ipsilateral premotor (PM) and supplementary motor
area (SMA), and descends ipsilaterally to the spinal cord.
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This medial cortico-reticulo-spinal tract (CRST) provides
excitatory descending inputs to spinal motor neurons. The
dorsolateral PMRF receives inputs primarily from contralateral
primary motor cortex (M1). This dorsal CRST provides
inhibitory descending inputs to the spinal motor circuitry.
Following focal cortical lesions in monkeys, there are reports
of upregulation of contralateral SMA/PM-corticoreticular
projections (100–102). Taken these findings into consideration,
we propose a unifying account in understanding the role
of RST hyperexcitability in post-stroke spasticity, abnormal
synergy, and disordered motor control. Figure 1 schematically
illustrates this account. As compared to previous accounts,
the novel addition is that the medial PMRF receives excitatory
inputs primarily from the ipsilateral PM and SMA of the
contralesional cortex. In addition to further support the
role of RST hyperexcitability in spasticity as in previous
accounts, this unifying account provides a theoretical framework
to understand the role of RST hyperexcitability and its
interactions with bilateral motor cortices in motor recovery and
abnormal synergies.

Abnormal Motor Synergy and Disordered
Motor Control
The RST has diffuse and divergent projections to multiple
synergic muscles. Given the resultant hyperexcitable spinal
motor neurons, attempts to voluntarily activate a spastic
muscle often result in synergistic activation of multiple spastic
muscles, i.e., abnormal motor synergy. This phenomenon
has been consistently reported by Dewald and colleagues
(24, 65–71). The abnormal coupling of muscle activation
has also been found between upper and lower extremities
(103) and between two upper extremities (104). Therefore,
motor synergies are simplified and more stereotyped gait
patterns are seen in stroke survivors with spasticity (105).
Similarly, inter-joint coordination between spastic muscles is
impaired, leading to disordered motor control (106–109).
Furthermore, it is conceivable that PM/SMA and cM1 are both
activated during voluntary elbow flexion on the less-affected
side, thus subsequently activating ipsilateral spastic muscles
involuntarily via the PM/SMA-CRST projections, i.e., motor
overflow (110).

Motor Recovery
RST excitability increases along with the emergence of post-
stroke spasticity and subsides in the recovered stage. In addition,
no exaggerated motor overflow is observed in stroke survivors
with recovered motor function (52). This may be related
to the fact that ipsilesional M1 evolves and regains cortical
control of motor function as motor recovery progresses (13).
As such ipsilesional M1 regains its neuromodulatory inputs to
PMRF and rebalances RST influences to spinal motor networks.
This could also account for disappearance of spasticity in the
recovered, late Brunnstrom stages (111). However, this seemingly
maladaptive RST hyperexcitability is conceivable to facilitate
movement via the ipsilateral CRST. In a recent study on chronic

stroke survivors with severe motor impairment, facilitatory
stimulation via repetitive TMS to the dorsal premotor area on the
contralesional hemisphere improved reaching time on the paretic
side (20). It remains unclear whether this improvement relates to
a stronger synergistic activation or improved isolate movement
and strength.

Muscle Strength
There is evidence that startling acoustic stimulation enhances
maximum force production in healthy subjects via stimulation
of RST (112, 113). In chronic stroke survivors, startling acoustic
sound stimulation does not cause additional force increment
as compared to healthy subjects (64). Given different cortical
origins for medial and dorsal PMRF areas (Figure 1), it is
likely that the RST projections function to tune and modulate
motor commands (114), rather to compensate for them. The
StartReact phenomenon could support this view. The StartReact
phenomenon refers to an early release of a motor plan during
simple reaction time tasks in the presence of startling acoustic
stimulation (115). This phenomenon is seen in stroke survivors
as well (46, 48). However, no early release of motor plan is
observed when no motor plan is ready in a choice reaction time
task (116), or a Go/No-go reaction time task (117).

Concluding Remarks
Based on recent advances in animal studies and human studies
with stroke survivors, we revisit and revise the previous
theoretical framework and propose a unifying account. This
account highlights the importance of ipsilateral PM/SMA-
cortico-reticulospinal tract hyperexcitability as a result of
disinhibition after stroke. This account is able to provide
a pathophysiological basis for post-stroke spasticity and
related movement impairments, such as abnormal motor
synergy, disordered motor control. This account could
provide a pathophysiological target for neuromodulatory
interventions to manage spasticity, and thus possibly to
facilitate motor recovery. Some issues and controversies remain
to be further addressed, such as the role of higher cortical
centers (e.g., PM and SMA) and bilateral RST projections.
The contributions from other descending pathways, especially
VST projections need to be further studied. With advances
in technologies, further research on these issues is needed to
better understand the potential roles of this pathway in stroke
motor recovery.
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