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The relevance of infections as risk factor for cerebrovascular disease is being increasingly recognized. Nonetheless, the pathogenic link between the two entities remains poorly understood. Consistent with recent advances in medicine, the present work addresses the hypothesis that infection-induced immune responses may affect human proteins associated with stroke. Applying established procedures in bioinformatics, the pathogen antigens and the human proteins were searched for common sequences using pentapeptides as probes. The resulting data demonstrate massive peptide sharing between infectious pathogens—such as Chlamydia pneumoniae, Streptococcus pneumoniae, Tannerella forsythia, Haemophilus influenzae, Influenza A virus, and Cytomegalovirus—and human proteins related to risk of ischemic and hemorrhagic stroke. Moreover, the shared peptides are also evident in a number of epitopes experimentally proven immunopositive in the human host. The present findings suggest cross-reactivity as a potential mechanistic link between infections and stroke.
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INTRODUCTION

When considered separately from other cardiovascular diseases, stroke ranks fifth among all causes of death (1) and, critically, its incidence is on the rise (2).

The etiology of stroke is multifactorial with various environmental and genetic risk factors. Hypertension, diabetes and insulin resistance, smoking, dyslipidemia, obesity, heavy alcohol consumption, atrial fibrillation, and carotid stenosis are all established and well-investigated modifiable risk factors of stroke (3–5).

Additionally, there is evidence that environmental factors may also increase risk of stroke, including viral and bacterial infections, such as periodontitis (6) and respiratory infections (7), and infection with Chlamydia pneumoniae (8) or Cytomegalovirus (9). However, relatively little is known so far about the role of different pathogens as well as the molecular basis and the mechanisms that potentially link infections to stroke.

Here we set out to investigate whether or not infections can induce immune responses capable of cross-reacting with human proteins that, when altered, have been associated with stroke. Our hypothesis was that immune responses induced by infectious agents might cross-react with crucial stroke-related proteins, thus contributing to the multifactorial pathogenesis of cerebrovascular disease.

To address this hypothesis, we analyzed pathogens, as well as proteins that are known to be associated with increased risk of ischemic and hemorrhagic stroke by searching for common peptides that might underlie cross-reactions.

Specifically, we analyzed antigens from the following pathogens that have been reported to have a possible influence on stroke: the periodontal bacterium Tannerella forsythia (10), Haemophilus influenza (11), Streptococcus pneumoniae (7), Chlamydia pneumoniae (8), Influenza A viruses (12, 13), and Human Cytomegalovirus (9).

METHODS

We analyzed the amino acid (aa) primary sequence of pathogen antigens (with short name and UniProt ID in parentheses):

• Surface antigen repeat/outer membrane protein (OMP; UniProtKB: A0A0F7WYE8_CHLPN) from Chlamydia pneumoniae;

• Pneumococcal vaccine antigen A (PVAA;UniProtKB: PVAA_STRR6) from Streptococcus pneumoniae;

• Surface antigen BspA (BspA; UniProtKB: O68831_TANFO) from Tannerella forsythia;

• Outer membrane antigenic lipoprotein B (LPPB; UniProtKB: LPPB_HAEIN) from Haemophilus influenzae (strain ATCC 51907);

• Hemagglutinin (HA H1N1; UniProtKB: HEMA_I34A1) from Influenza A virus (strain A/Puerto Rico/8/1934 H1N1);

• Hemagglutinin (HA H5N1; UniProtKB: HEMA_I96A0) from Influenza A virus (strain A/Goose/Guangdong/1/1996 H5N1);

• Hemagglutinin (HA H3N2; UniProtKB: HEMA_I68A6) from Influenza A virus (strain A/Northern Territory/60/1968 H3N2); and

• 65 kDa phosphoprotein (pp65; UniProtKB: PP65_HCMVM) from Human Cytomegalovirus (HCMV; strain Merlin).

The primary sequence of pathogen antigens was dissected into partially overlapping pentapeptides with a one-residue-offset: i.e., MFKRI, FKRIR, KRIRR, and so on. Then, each pentapeptide was analyzed for occurrences within a library consisting of primary sequences of human proteins involved in stroke. The human protein library was a priori chosen from the UniProtKB Database (https://www.uniprot.org) (14) using the keyword “stroke.” We obtained an unbiased list of 74 human proteins (in)directly associated with stroke (Table S1). Stroke-related proteins are indicated as UniProtKB entry names throughout the present article, except when discussed in detail. The pathogen antigens and the human proteins were searched for common sequences using the pentapeptide as a probe unit because a pentapeptide is an immunobiological determinant sufficient for epitope-paratope interaction and for inducing specific immune responses (15–18).

The immunologic potential of the shared peptides was analyzed using the Immune Epitope Database (IEDB; www.iedb.org) (19). All evaluations were based only on epitopic sequences that had been experimentally validated as immunopositive in the human host.

This linear peptide similarity analysis procedure has been used and described before (20, 21).

RESULTS

In a detailed overview, Table 1 shows that 49 out of the 74 human stroke-related proteins share peptide sequences with antigens from pathogens that proved to be (in)directly involved in stroke (6–10). It can be seen that

• The pathogen vs. human peptide overlap is unexpectedly high when considering that the probability for two proteins to share a pentapeptide is 1 out of 20−5, that is, 0.0000003125 or close to zero.

• The peptide overlap varies widely, with T. forsythia BspA and Influenza A HA H3N2 being the pathogen more and less involved in the peptide sharing, respectively.

• The high number of stroke-related proteins involved in the viral peptide overlap precludes a detailed protein-by-protein analysis. However, an example worth noting is the human ATP-binding cassette sub-family C member nine (ABCC9 or SUR2) that shares peptide sequences with all of the pathogen antigens analyzed, with the exception of the Influenza A HA H3N2 virus. ABCC9 is a subunit of ATP-sensitive potassium channels (KATP) that can form cardiac and smooth muscle-type KATP channels with KCNJ11 and mediates neuroprotection (22).


Table 1. Peptide sharing between pathogen antigens and human proteins that have been associated with stroke1.
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In summary, Table 1 describes a peptide platform that connects the infectious agents under analysis human proteins related to stroke.

Subsequently, in order to define the immunologic potential of the shared peptides, we conducted analyses throughout the peptide immunome cataloged in the Immune Epitope Database (IEDB; www.iedb.org) (19). The search was finalized to identify epitopic sequences corresponding to (or containing) the peptide sequences shared between stroke-related infectious agents and stroke-related human proteins. It was found that a great number of the shared peptides listed in Table 1 are also distributed through hundreds of epitopic sequences with an immunological potential. A list of such epitopic sequences is reported in Table 2.


Table 2. Epitopes immunopositive in the human host and containing peptide sequences common to antigens from stroke-related pathogens and human proteins associated with stroke.
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CONCLUSION

Stroke risk appears to be the result of a complex combination of multiple genetic non-modifiable and environmental modifiable factors that can be further classified as either “traditional” or new, “emerging” ones (23). As highlighted by Grau et al. (24, 25), the occurrence of stroke is only partially explained by traditional modifiable cardiovascular risk factors, such as increasing blood pressure, cigarette smoking, and diabetes mellitus. Most importantly, infectious diseases appear to play a key role in contributing to the risk of stroke and are to be counted among “emerging” modifiable risk factors that receive increasing scientific interest (6–10, 23, 26, 27).

Searching for possible immunopathogenic links between infection and risk of stroke, the present study aimed to analyze the potential immunologic relationship between pathogens and human proteins that, when altered, have been associated with risk of stroke. In line with our hypothesis, we found that immune cross-reactions between infectious pathogens and human stroke-related proteins might occur, thus increasing the risk of stroke (see Tables 1, 2).

The immunologically relevant peptide sharing reported in the present study depicts a complex scenario. Some potential molecular targets of cross-reactions are proteins belonging to the cardiovascular system, thus possibly directly accounting for cerebrovascular damage. Other possible targets are proteins of the immune system, thus suggesting mechanisms resulting in immune dysregulation which could lead to cerebrovascular damage.

An example of the first type of potential targets are ion-channels, particularly potassium (K+) and sodium (Na+) channels (ABCC9, KCNE2, KCNA5, KCNQ1, SCN4B, SCN5A, SCN1B, SCN3B, see Table 1). Accordingly, a growing body of evidence points to the involvement of cardiac K+ and Na+ channel dysfunction (cardiac channelopathies as a result of genetic mutations and/or inflammatory mechanisms) in the pathogenesis of atrial fibrillation (AF), an established risk factor for stroke (28, 29). Moreover, autoantibodies targeting ion-channels may be involved in cardiac arrhythmias (30). In light of the potential cross-reactivity suggested by the observed peptide sharing, AF and subsequent stroke could result from antibodies primarily targeting epitopes of infective agents but also cross-reacting with cardiac ion channels. For instance, activating antibodies could lead to a gain-of-function of K+-channels and inhibiting antibodies to a loss-of-function of of Na+-channels. This could promote re-entry or increase susceptibility to early and/or delayed afterdepolarizations, two mechanisms that can generate AF (31, 32).

The second class of potential targets includes proteins that actively modulate the inflammatory response, such as cytokines and colony-stimulating factor receptors (IL-4, macrophage colony-stimulating factor 1 receptor, see Table 1) (33, 34). IL-4, for example, is a well-investigated tolerogenic cytokine that is able to suppress inflammatory responses and organ-specific autoimmunity in both animal models and humans (35, 36). It is then conceivable that autoantibodies downregulating the function of these proteins can promote inflammatory responses, thus increasing the risk of cerebrovascular damage and stroke. Indeed, inflammatory responses appear to be crucial in the pathogenesis of stroke by inducing atherosclerosis progression, pro-thrombotic activation, and AF—among other mechanisms (37). Inflammation can therefore be considered as one key factor underpinning the relationship between classical stroke risk factors and comorbidities. It appears that not just single infections, but overall infectious burden from multiple agents predicts stroke incidence. Moreover, poor outcome may be proportional to systemic inflammatory burden both in patients and experimental models. For instance, Influenza and Streptococcus infection seem to contribute to stroke incidence and outcome, and evidence from experimental models indicate that blocking inflammatory processes might be an effective prevention strategy (38, 39).

The increasingly recognized relevance of inflammation in stroke is consistent with a possible role of peptide sharing-based cross-reactivity as contributing factors to cerebrovascular damage. In fact, the past two decades of immunologic research have radically changed the way we think of inflammation and innate immunity. It is now known that innate immune responses can “specifically” drive the following adaptive responses through recognition of pathogen-associated molecular patterns (PAMPs) (40, 41). That is to say that peptide epitopes, cell-wall components, and other PAMPs activate immune cells already from the very first stages of immune reactions and drive inflammation. Indeed, there are examples of cross-reactivity between host and pathogen-associated molecular patterns: identical inflammasomes and toll-like receptors (TLRs) recognizing molecular fingerprints of both pathogens (the PAMPs) and injured host cells (so-called danger-associated molecular patterns; DAMPs). For instance, both bacteria LPS and HMGB1 from injured host cells activate TLR4, with consequent inflammation in various tissues including the brain (41, 42). TLR- and inflammasome-dependent pathways seem to be important drivers of inflammation, vascular disease, and reportedly contribute to stroke outcome (43, 44).

Our preliminary results underline the importance of further experimental efforts to define the molecular basis through which microbial infections might contribute to an increased risk of stroke (45–50). Future studies should evaluate immunoreactivity against the peptides shared by infectious pathogens and human stroke-related proteins in sera from stroke patients. Possibly, such serological analyses could also help identify specific markers predicting a higher risk of stroke and might therefore be useful to design preventive strategies following an infection. The ultimate translational relevance of our finding lies in the possibility of adopting effective individualized primary and secondary preventive strategies in patients at risk for stroke after infections. Generic hygienic measure, as well as antibiotic prophylaxis and vaccination campaigns have already been proposed and tested with contrasting results (37). Identifying and stratifying patients according to individual biomarker profiles would allow to personalize treatment for each patient, thus possibly increasing overall efficacy.

Until now, stroke is a leading cause of preventable death and adult disability (1–5, 47–52), but preventive strategies mostly concentrate on traditional cardiovascular risk factors (53–56). Moreover, “cryptogenic” stroke (i.e., ischemic stroke with no obvious cause) poses a challenge in terms of primary and secondary prevention (57, 58).

Given the burden of cerebrovascular disease, and the potential to identify immunological markers that may then serve as prognostic indicators of risk of cerebrovascular damage after an infection, our results justify further intensive research on the cross-reactive link between infections and risk of stroke.
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Influenza A HA H3N2:
GGSNA; AELLV
INSNG

KITYG

LLGDP

ISFAl

VLNVT

" References in Table S1 (Supplementary Material).

Human protein involved in the peptide Sharing b.c

ABCC9. ATP-binding cassette sub-family C member 9
‘CCM2. Cerebral cavernous malformations 2 protein

COM2L. Cerebral cavernous malformations 2 protein-like

CSF1R. Macrophage colony-stimulating factor 1 receptor

DAPK{1. Death-associated protein kinase 1

FAS. Goagulation factor V

GNAQ. Guanine nucleotide-binding protein G(q) subunit alpha
HTRAT. Serine protease HTRAT

KCNE2. Potassium voltage-gated channel subfamily E member 2
NOTCS. Neurogenic locus notch homolog protein 3

NU155. Nuclear pore complex protein Nup155

PAWR. PRKC apoptosis WT1 regulator protein

PDE4D. cAMP-specific 8',5'-cyclic phosphodiesterase 4D

RN213. E3 ubiquitin-protein ligase RNF213

SAMH1. Deoxynucleoside triphosphate triphosphohydrolase SAMHD1

ABCC9. ATP-binding cassette sub-family C member 9
KCNAS. Potassium voltage-gated channel subfamily A member 5
KLOT. Kiotho

LMNA. Prelamin-A/C

NMDE2. Glutamate receptor ionotropic, NMDA 28

NUSM. NADH-ubiquinone oxidoreductase chain 5

Ad. Amyloid-beta A4 protein

ABCC9. ATP-binding cassette sub-family C member 9
BI1. Bax inhibitor 1

CO4A2. Collagen alpha-2(V) chain

COQBA. Atypical kinase COQBA, mitochondirial

CXAS. Gap junction alpha-5 protein

GATAS. Transcription factor GATA-5

GATAB. Transcription factor GATA-6

IL4. Interleukin-4

ITIH4. Inter-alpha-trypsin inhibitor heavy chain H4
KCNQ1. Potassium voltage-gated channel subfamily KQT member 1
KRIT1. Krev interaction trapped protein 1

LYAMS. P-selectin

NMDE2. Glutamate receptor ionotropic, NMDA 28
NOTCS. Neurogenic locus notch homolog protein 3
SCN4B. Sodium channel subunit beta-4

SCN5A. Sodium channel protein type 5 subunit alpha
SYLM. Probable leucine—tRNA ligase, mitochondial
ZFHX3. Zine finger homeobox protein 3

ABCC. ATP-binding cassette sub-family G member 9
AGE. Angiotensin-converting enzyme

AN Natriuretic peptides A

CSF1R. Macrophage colony-stimulating factor 1 receptor
ENPP4. Bis(5'-adenosy)-triphosphatase ENPP4

GATAS. Transcription factor GATA-6

ITIH4. Inter-alpha-trypsin inhibitor heavy chain Ha

KCNAS. Potassium voltage-gated channel subfamily A member 5
KRIT1. Krev interaction trapped protein 1

NU155. Nuclear pore complex protein Nup155

PDEBA. cGMP-inhibited 3','-cyclic phosphodiesterase A
RN213. E3 ubiquitin-protein ligase RNF213

SCNSA. Sodium channel protein type 5 subunit alpha

SYLM. Probable leucine-tRNA ligase, mitochondrial

ADA2. Adenosine deaminase 2
ATP8. ATP synthase subunit a

ABCCO. ATP-binding cassette sub-family G member 9
PDEBA. cGMP-inhibited 3',5'-cyclic phosphodiesterase A
DAPK1. Death-associated protein kinase 1

RN213. £8 ubiquitin-protein igase RNF213

NMDE2. Glutamate receptor ionotropic, NMDA 28

GAS6. Growth arrest-specific protein 6

KLOT. Kiotho

LMNA. Prelamin-A/C

ZFHX3. Zinc finger homeobox protein 3

ALSAP. Arachidonate 5-lipoxygenase-activating protein
ABCCO. ATP-binding cassette sub-family C member 9
PDE4D. cAMP-specific 3/ 5'-cyclic phosphodiesterase 4D
CYTC. Cystatin-C

DAPK{. Death-associated protein kinase 1

RN213. E3 ubiqitin-protein ligase RNF213

KLOT. Kiotho

NUSM. NADH-ubiquinone oxidoreductase chain 5
NU155. Nuclear pore complex protein Nup155.

KCNQ1. Potassium voltage-gated channel subfamily KQT mermber 1
SCN1B. Sodium channel subunit beta-1

TBXS. T-box transcription factor TBXS

S19A2. Thiamine transporter 1

GATAS. Transcription factor GATA-S

DAPKA. Death-associated protein kinase 1

SAMH1. Deoxynucleoside triphosphate triphosphohydrolase SAMHD1
MYL4. Myosin light chain 4

KCNAS. Potassium voltage-gated channel subfamily A member &
HTRA1. Serine protease HTRA1

SCN3B. Sodium channel subunit beta-3

Viral/bacterial antigens are described under Methods. Further details at https://www.uniprot.org (14).

EMultiple occurrences in bold.

Human proteins given as UniProt entry and name. Further details at https://www.uniprot.org (14).
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58129 SGLTSIf 459109 SLLPLSHlY 554097 esyTLPDGrii 634903 mplhVAPLLaa
66225 1SGLTSI 466105 StdpLVLAY 554098 esyTLPDGriky 637221 slsdLLVSL

66817 HSGLTS 467909 LLLPLrlev 554195 miehINSNGikpy 633032 tpLLLPLaa

69631 VLLVSLgai 471183 SPRTPppity 555093 GgDGVKLhlkakaev 633320 VhEGPCGisy
79809 ELLVLLenerlld 471667 HAELLVLL. 555672 tisriqekEELRE 642301 eckinrypASSLVwr
113324 dgFLDIWtynAELLY 475091 ackeNTTAE! 557456 vesyTLPDGrii 642391 etovyLGATAgMl
113533 idwsynAELLVal 476155 ASSLVatpk 559587 GnENAYVingkhs 644577 iekdliL GATAvedH
143137 SASGSgedaidesg 476488 avdDGNT 563134 eVAELLVKh 644669 ifgASSVDI
150077 ceakinreeiDGVKL 478710 GLTTlkny 570114 AELLVshga 645002 inhwSVAGWaisd
151075 YRAELLVL Lenert 482488 nellVADty 571918 EELRElaesw 645986 KpTLSALpsplvtsg
151076 YogdicyEELREQ! 482780 YPASSLY 573110 haCALAAsHW 648442 agkdlgqYVSVWid
163409 setdal RSSA 482921 pkyvksniLVLATg 574223 kpagpLGATA 649953 SlorSLALAzeep
164690 fLLVLLdyagmip 483957 reSNVGGigal 575691 PrypASSLVW 691126 KnrypASSLVwT
164772 QUGIDIShsdf 485150 rySGNQVIt 577376 VLNVTref 691145 KpTLSALpspivts
178600 awvlieLPDALadg 485418 SedpsGKKAVI 577393 OGYFAS 691655 neqkinrypASSLW
182409 StASSLVLLVSLga 487836 TVLEKfrylpk 578014 SPRTPArsy 692295 SkpTLSALpspivisg
182414 YailaiystvASSLY 488193 ViftSGTTGipk 578015 SPRTPsntp 694354 eskiKKSFLicig
184585 IFTTTVSgk! 488539 WAPLLiky 578016 SPRTPsntpsa 695746 plsptisal RSSAp.
190442 hELLVLvkkag 488926 YPASSLVW 578044 SPSVPkisa 695843 PSASGSsgntptopn
194133 laAWTARa 489284 LLLPLpvpa 579718 WLKHLLpk 695804 pitsqLRSSApshag
196781 SILEKTsay 490154 aralLLPUI 581635 aelLLPLKvl 696039 GLRSSApshagtpwp
213534 kssSGTKTk 490412 irfgLLPLSm 581817 anatLLPLSI 699244 achSGLGGvshy
223189 IdLLLPLAI 492430 iSGTTGam 582446 eelLLPLYy 699571 asiVAPLLI

223510 pelLLLPL. 490987 leposriLLLPLI 583971 iamhaal LAl 699594 asIVAPLLI
223880 seelLLPLI 493322 mpepasralLLLPL 584143 iloksVAPLL 699595 asIVAPLLI

226701 WIRLLVSL 493610 pILLVSLW 584764 kgVSAAGick 700497 doVTLPNw
240338 SASSLVnldslv 493947 araaLLVSL 584945 KIEELREK 700729 GilqQTPLGr
243935 FLDIWtyna 495187 siLLLPLI 587249 prolLLVLL 700885 ApSGTKTeidtkeg
419699 gppriLLLPL 495478 tralLLPLI 587956 raqgglLLVLL. 702273 EELREkynry
423950 allKHLLsy 496437 &irTVLEKI 589061 rrgELLVLY 700074 EELRElanky
424543 LLPLSI 497010 tpyLGATAGMl 500120 srsKIVLLY 703553 erySGNQVI
426499 nfAWTARy 504703 LA 500169 StsSPSVPk 704661 eWISEGKTK
430136 fspdLLGDPdny 505049 GHILEKT 500856 wpglcidl 705071 AQPAFmI
430260 fIVLEKfry 505187 fasVAPLLef 590986 vsgTLPDGhmp 706516 fSLLPLSHI
435575 riLLLPL 505268 flaptiSGLTSI 592074 dityirhwSVAGWg 710491 L EKTtty
435576 riLLLPLI 507273 mplLLLPL 504553 tiEELRENW 711114 ipingSPRTPr
436423 2piGPIKSidm 507346 miiLLLPL. 505684 OLLAVKY 711645 HtVAELLY
437494 GAGGALfvhrd 507484 palSPSVPI 600696 GHTVLEKY 712552 KipelVAPLL
437792 9SGLGGHaK 510841 YOASSLW 601366 fTLPDGthel 718254 Kiikelre

440682 SPRTPvspvki 511858 ardSLALArpkssdvy 601983 syLLPLSalgtvag 713313 KLLLAKtK
441210 TVLEKvyel 518369 inhwSVAGWaisdg 602564 HEELREMW 716976 HneKIVLL
442404 apaAPGRAI 519272 HLEKTvspcile 610338 QEVKAtk! 720288 ahyelcSGNQY
443560 erySGNQIt 520276 kqaeLLVSL 611939 KAELLY 721762 rgal LPLSi
444320 gsLLPLSek 521984 IrqaAGGALawhsr 614291 astaplSFAK 722338 ALLLPU

445722 kpkhPTTGI 523925 GRAGGALqwhsrgl 615815 eVAELLVIh 722416 fprlLVLL.
448068 nPTTGH 532960 mPTTGIney 616957 GnSGLTSY 723746 rvpallVLL
448681 SPRTPparf 535612 ELLVLrgkhsepsif 620774 kileAELLVLr 723778 rvpsLLVLL
448662 SPRTPIpikhal 537116 nkvleAELLVLrgkh 623038 TAGGALsi 724649 SEGKTIaly
448018 sylLPLSa 541075 alpAGGALGh 627837 VPTTGliey 724650 SEGKTkpli
449866 VSAAGIvagl 541668 EELREkqay 628336 AELLVKgyei 725019 SgdGPIKSY
453784 fipLLVLL 541699 EELREkqay 628959 aihLLVSL 725662 SIVAPLLE

456288 LLLAiphv 544699 rggaAGGALp 630008 VAGGALthsl 727559 TAPDAal
456316 LLLPLplI 545442 svpLLLPL 632600 iLLLPLhtg 728413 TLPDGHhel
457304 nLLVSL 548131 hLLGDPmany 633968 ILLLPLpvpa 728445 TLSALyarr
457363 pekTLSALl 551494 esyTLPDGrii 634370 IprlVLLa 720508 tvpdLLLPL
458001 HAELLVsv 553367 KpvigkyAELLY 634991 mplhVAPLL 732341 YAPDYSsrl

Column 1: Epitopes listed according to the IEDB-ID number. Epitope details and references at www.immuneepitope.org (19). Column 2: Sequences common to pathogen antigens and
human proteins related to stroke are indicated in capital letters.
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