

Cross-Reactivity as a Mechanism Linking Infections to Stroke

Guglielmo Lucchese^{1,2*}, Agnes Flöel¹ and Benjamin Stahl^{1,3,4,5}

¹ Department of Neurology, University of Greifswald, Greifswald, Germany, ² Department of Computing, Goldsmiths, University of London, London, United Kingdom, ³ Department of Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany, ⁴ Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany, ⁵ Psychologische Hochschule Berlin, Berlin, Germany

OPEN ACCESS

Edited by:

Gregory Jaye Bix, University of Kentucky, United States

Reviewed by:

Adam Denes, Institute of Experimental Medicine (MTA), Hungary Pietro Enea Lazzerini, University of Siena, Italy

*Correspondence:

Guglielmo Lucchese guglielmo.lucchese@uni-greifswald.de

Specialty section:

This article was submitted to Stroke, a section of the journal Frontiers in Neurology

Received: 27 January 2019 Accepted: 17 April 2019 Published: 14 May 2019

Citation:

Lucchese G, Flöel A and Stahl B (2019) Cross-Reactivity as a Mechanism Linking Infections to Stroke. Front. Neurol. 10:469. doi: 10.3389/fneur.2019.00469 The relevance of infections as risk factor for cerebrovascular disease is being increasingly recognized. Nonetheless, the pathogenic link between the two entities remains poorly understood. Consistent with recent advances in medicine, the present work addresses the hypothesis that infection-induced immune responses may affect human proteins associated with stroke. Applying established procedures in bioinformatics, the pathogen antigens and the human proteins were searched for common sequences using pentapeptides as probes. The resulting data demonstrate massive peptide sharing between infectious pathogens—such as *Chlamydia pneumoniae*, *Streptococcus pneumoniae*, *Tannerella forsythia*, *Haemophilus influenzae*, Influenza A virus, and Cytomegalovirus—and human proteins related to risk of ischemic and hemorrhagic stroke. Moreover, the shared peptides are also evident in a number of epitopes experimentally proven immunopositive in the human host. The present findings suggest cross-reactivity as a potential mechanistic link between infections and stroke.

Keywords: stroke, infections, cross-reactivity, peptides, inflammation

INTRODUCTION

When considered separately from other cardiovascular diseases, stroke ranks fifth among all causes of death (1) and, critically, its incidence is on the rise (2).

The etiology of stroke is multifactorial with various environmental and genetic risk factors. Hypertension, diabetes and insulin resistance, smoking, dyslipidemia, obesity, heavy alcohol consumption, atrial fibrillation, and carotid stenosis are all established and well-investigated modifiable risk factors of stroke (3–5).

Additionally, there is evidence that environmental factors may also increase risk of stroke, including viral and bacterial infections, such as periodontitis (6) and respiratory infections (7), and infection with *Chlamydia pneumoniae* (8) or Cytomegalovirus (9). However, relatively little is known so far about the role of different pathogens as well as the molecular basis and the mechanisms that potentially link infections to stroke.

1

Here we set out to investigate whether or not infections can induce immune responses capable of cross-reacting with human proteins that, when altered, have been associated with stroke. Our hypothesis was that immune responses induced by infectious agents might cross-react with crucial stroke-related proteins, thus contributing to the multifactorial pathogenesis of cerebrovascular disease.

To address this hypothesis, we analyzed pathogens, as well as proteins that are known to be associated with increased risk of ischemic and hemorrhagic stroke by searching for common peptides that might underlie cross-reactions.

Specifically, we analyzed antigens from the following pathogens that have been reported to have a possible influence on stroke: the periodontal bacterium *Tannerella forsythia* (10), *Haemophilus influenza* (11), *Streptococcus pneumoniae* (7), *Chlamydia pneumoniae* (8), Influenza A viruses (12, 13), and Human Cytomegalovirus (9).

METHODS

We analyzed the amino acid (aa) primary sequence of pathogen antigens (with short name and UniProt ID in parentheses):

- Surface antigen repeat/outer membrane protein (OMP; UniProtKB: A0A0F7WYE8_CHLPN) from *Chlamydia pneumoniae*;
- Pneumococcal vaccine antigen A (PVAA;UniProtKB: PVAA_STRR6) from *Streptococcus pneumoniae*;
- Surface antigen BspA (BspA; UniProtKB: O68831_TANFO) from *Tannerella forsythia*;
- Outer membrane antigenic lipoprotein B (LPPB; UniProtKB: LPPB_HAEIN) from *Haemophilus influenzae* (strain ATCC 51907);
- Hemagglutinin (HA H1N1; UniProtKB: HEMA_I34A1) from Influenza A virus (strain A/Puerto Rico/8/1934 H1N1);
- Hemagglutinin (HA H5N1; UniProtKB: HEMA_I96A0) from Influenza A virus (strain A/Goose/Guangdong/1/1996 H5N1);
- Hemagglutinin (HA H3N2; UniProtKB: HEMA_I68A6) from Influenza A virus (strain A/Northern Territory/60/1968 H3N2); and
- 65 kDa phosphoprotein (pp65; UniProtKB: PP65_HCMVM) from Human Cytomegalovirus (HCMV; strain Merlin).

The primary sequence of pathogen antigens was dissected into partially overlapping pentapeptides with a one-residue-offset: i.e., MFKRI, FKRIR, KRIRR, and so on. Then, each pentapeptide was analyzed for occurrences within a library consisting of primary sequences of human proteins involved in stroke. The human protein library was *a priori* chosen from the UniProtKB Database (https://www.uniprot.org) (14) using the keyword "stroke." We obtained an unbiased list of 74 human proteins (in)directly associated with stroke (**Table S1**). Stroke-related proteins are indicated as UniProtKB entry names throughout the present article, except when discussed in detail. The pathogen antigens and the human proteins were searched for common sequences using the pentapeptide as a probe unit because a pentapeptide is an immunobiological determinant sufficient for epitope-paratope interaction and for inducing specific immune responses (15–18).

The immunologic potential of the shared peptides was analyzed using the Immune Epitope Database (IEDB; www.iedb. org) (19). All evaluations were based only on epitopic sequences that had been experimentally validated as immunopositive in the human host.

This linear peptide similarity analysis procedure has been used and described before (20, 21).

RESULTS

In a detailed overview, **Table 1** shows that 49 out of the 74 human stroke-related proteins share peptide sequences with antigens from pathogens that proved to be (in)directly involved in stroke (6-10). It can be seen that

- The pathogen vs. human peptide overlap is unexpectedly high when considering that the probability for two proteins to share a pentapeptide is 1 out of 20⁻⁵, that is, 0.0000003125 or close to zero.
- The peptide overlap varies widely, with *T. forsythia* BspA and Influenza A HA H3N2 being the pathogen more and less involved in the peptide sharing, respectively.
- The high number of stroke-related proteins involved in the viral peptide overlap precludes a detailed protein-byprotein analysis. However, an example worth noting is the human ATP-binding cassette sub-family C member nine (ABCC9 or SUR2) that shares peptide sequences with all of the pathogen antigens analyzed, with the exception of the Influenza A HA H3N2 virus. ABCC9 is a subunit of ATPsensitive potassium channels (K_{ATP}) that can form cardiac and smooth muscle-type KATP channels with KCNJ11 and mediates neuroprotection (22).

In summary, **Table 1** describes a peptide platform that connects the infectious agents under analysis human proteins related to stroke.

Subsequently, in order to define the immunologic potential of the shared peptides, we conducted analyses throughout the peptide immunome cataloged in the Immune Epitope Database (IEDB; www.iedb.org) (19). The search was finalized to identify epitopic sequences corresponding to (or containing) the peptide sequences shared between stroke-related infectious agents and stroke-related human proteins. It was found that a great number of the shared peptides listed in **Table 1** are also distributed through hundreds of epitopic sequences with an immunological potential. A list of such epitopic sequences is reported in **Table 2**.

CONCLUSION

Stroke risk appears to be the result of a complex combination of multiple genetic non-modifiable and environmental modifiable factors that can be further classified as either "traditional" or new, "emerging" ones (23). As highlighted by Grau et al. (24, 25), the occurrence of stroke is only partially explained by traditional modifiable cardiovascular **TABLE 1** | Peptide sharing between pathogen antigens and human proteins that have been associated with stroke¹.

Shared peptides ^{a,b}	Human protein involved in the peptide ^{Sharing b,c}			
C. pneumoniae OMP:				
TNYL	ABCC9. ATP-binding cassette sub-family C member 9			
RKFLL	CCM2. Cerebral cavernous malformations 2 protein			
RKFLL; KGFVS	CCM2L. Cerebral cavernous malformations 2 protein-like			
SSVD; LEHNQ	CSF1R. Macrophage colony-stimulating factor 1 receptor			
LHL	DAPK1. Death-associated protein kinase 1			
EGKT	FA5. Coagulation factor V			
ITGI	GNAQ. Guanine nucleotide-binding protein G(q) subunit alpha			
GPCG	HTRA1. Serine protease HTRA1			
ITAE	KCNE2. Potassium voltage-gated channel subfamily E member 2			
FRCL; LRSSA	NOTC3. Neurogenic locus notch homolog protein 3			
SAAG	NU155. Nuclear pore complex protein Nup155			
GLGG	PAWR. PRKC apoptosis WT1 regulator protein			
SNQV	PDE4D. cAMP-specific 3',5'-cyclic phosphodiesterase 4D			
/FAS	RN213. E3 ubiquitin-protein ligase RNF213			
SPRT: SPRTP	SAMH1. Deoxynucleoside triphosphate triphosphohydrolase SAMHD			
pneumoniae PVAA:				
MIY	ABCC9. ATP-binding cassette sub-family C member 9			
/APL; VAPLL	KCNA5. Potassium voltage-gated channel subfamily A member 5			
	KLOT. Klotho			
2006K				
ISGS	LMNA. Prelamin-A/C			
LAV	NMDE2. Glutamate receptor ionotropic, NMDA 2B			
	NU5M. NADH-ubiquinone oxidoreductase chain 5			
forsythia BspA:				
VTAR; SGTKT	A4. Amyloid-beta A4 protein			
ITTI; LTITN	ABCC9 . ATP-binding cassette sub-family C member 9			
SAL	BI1. Bax inhibitor 1			
PGRA	CO4A2. Collagen alpha-2(IV) chain			
KKAV	COQ8A. Atypical kinase COQ8A, mitochondrial			
VS	CXA5. Gap junction alpha-5 protein			
CGAL	GATA5. Transcription factor GATA-5			
GLQS	GATA6. Transcription factor GATA-6			
GATA; GATAQ	IL4. Interleukin-4			
ALTT	ITIH4. Inter-alpha-trypsin inhibitor heavy chain H4			
GGAL; VTTIG	KCNQ1. Potassium voltage-gated channel subfamily KQT member 1			
PDA	KRIT1. Krev interaction trapped protein 1			
GFAL	LYAM3. P-selectin			
QNP	NMDE2. Glutamate receptor ionotropic, NMDA 2B			
GVNT; SGTTG	NOTC3. Neurogenic locus notch homolog protein 3			
FLL	SCN4B. Sodium channel subunit beta-4			
PNS	SCN5A. Sodium channel protein type 5 subunit alpha			
PDG; VTLPN	SYLM. Probable leucine – tRNA ligase, mitochondrial			
DAL; LTLSA; SGLTS; TLPDA	ZFHX3 . Zinc finger homeobox protein 3			
influenzae LPPB:				
SNFP; GIDIS	ABCC9. ATP-binding cassette sub-family C member 9			
LPL	ACE. Angiotensin-converting enzyme			
ilee Flll; TTTVS				
	ANF. Natriuretic peptides A			
QPAF	CSF1R. Macrophage colony-stimulating factor 1 receptor			
VAD	ENPP4. Bis(5'-adenosyl)-triphosphatase ENPP4			
TSSV	GATA6. Transcription factor GATA-6			

(Continued)

TABLE 1 | Continued

ABLE 1 Continued						
Shared peptides ^{a,b}	Human protein involved in the peptide ^{Sharing b,c}					
GNLI	ITIH4. Inter-alpha-trypsin inhibitor heavy chain H4					
PGANG; SGSRG	KCNA5. Potassium voltage-gated channel subfamily A member 5					
APDYS; PDYSK; DYSKI; TYTPG	KRIT1. Krev interaction trapped protein 1					
SNVGG; SPSVP	NU155. Nuclear pore complex protein Nup155					
AYLAG	PDE3A. cGMP-inhibited 3',5'-cyclic phosphodiesterase A					
LPLS; AYLAG ; VTSSV ; QEVKA	RN213. E3 ubiquitin-protein ligase RNF213					
GPIKS	SCN5A. Sodium channel protein type 5 subunit alpha					
KKSFL	SYLM. Probable leucine-tRNA ligase, mitochondrial					
nfluenza A HA H1N1:						
DGVKL	ADA2. Adenosine deaminase 2					
LVSL	ATP6. ATP synthase subunit a					
ENAYV	ABCC9. ATP-binding cassette sub-family C member 9					
ASSLV	PDE3A. cGMP-inhibited 3',5'-cyclic phosphodiesterase A					
AELLV; ELLVL; LLVLL; LVLLV	DAPK1. Death-associated protein kinase 1					
TVLEK; YVSVV; QTPLG; FLDIW	RN213. E3 ubiquitin-protein ligase RNF213					
FSNAS	NMDE2. Glutamate receptor ionotropic, NMDA 2B					
CALAA	GAS6. Growth arrest-specific protein 6					
LVLL;YAADQ; KVDGV	KLOT. Klotho					
ELRE	LMNA. Prelamin-A/C					
/SEES	ZFHX3. Zinc finger homeobox protein 3					
nfluenza A HA H5N1:						
LAIV	AL5AP. Arachidonate 5-lipoxygenase-activating protein					
LLAI	ABCC9. ATP-binding cassette sub-family C member 9					
AQDIL; ISGVK	PDE4D. cAMP-specific 3',5'-cyclic phosphodiesterase 4D					
LLLAI	CYTC. Cystatin-C					
QRLVP; AELLV ; ELLVL	DAPK1. Death-associated protein kinase 1					
LEKT; LKHLL; VSSAC	RN213. E3 ubiquitin-protein ligase RNF213					
EGGWQ	KLOT. Klotho					
SLALA	NU5M. NADH-ubiquinone oxidoreductase chain 5					
KIVLL; LVLAT	NU155. Nuclear pore complex protein Nup155					
ARLNR; SIYST	KCNQ1. Potassium voltage-gated channel subfamily KQT member 1					
VSSAC	SCN1B. Sodium channel subunit beta-1					
/PEWS	TBX5. T-box transcription factor TBX5					
SVAGW	S19A2. Thiamine transporter 1					
SLALA	GATA5. Transcription factor GATA-5					
nfluenza A HA H3N2:						
GGSNA; AELLV	DAPK1. Death-associated protein kinase 1					
NSNG	SAMH1. Deoxynucleoside triphosphate triphosphohydrolase SAMHD1					
KITYG	MYL4. Myosin light chain 4					
LGDP	KCNA5. Potassium voltage-gated channel subfamily A member 5					
SFAI	HTRA1. Serine protease HTRA1					
VLNVT	SCN3B. Sodium channel subunit beta-3					

¹References in **Table S1** (Supplementary Material).

^aViral/bacterial antigens are described under Methods. Further details at https://www.uniprot.org (14).

^bMultiple occurrences in bold.

^cHuman proteins given as UniProt entry and name. Further details at https://www.uniprot.org (14).

risk factors, such as increasing blood pressure, cigarette smoking, and diabetes mellitus. Most importantly, infectious diseases appear to play a key role in contributing to the risk of stroke and are to be counted among "emerging" modifiable risk factors that receive increasing scientific interest (6–10, 23, 26, 27).

Searching for possible immunopathogenic links between infection and risk of stroke, the present study aimed to analyze

4

TABLE 2 | Epitopes immunopositive in the human host and containing peptide sequences common to antigens from stroke-related pathogens and human proteins associated with stroke.

1	2	1	2	1	2	1	2
58129	SGLTSIf	459109	sLLPLShlv	554097	lvesyTLPDGrii	634993	mplhVAPLLaa
66225	tSGLTSI	466105	gtdpLVLAV	554098	lvesyTLPDGriikv	637221	slsdLLVSL
66817	ttSGLTS	467909	LLLPLnlev	554195	mfehlINSNGikpv	638032	tpLLLPLaa
69631	vLLVSLgai	471133	SPRTPppltv	555093	qgDGVKLhlkakaev	638320	vhEGPCGisy
79809	ELLVLLenertId	471667	tIAELLVLL	555672	rlsrlqekEELRE	642301	eqkInrypASSLVvvr
113324	dgFLDIWtynAELLV	475091	aekeNTTAEI	557456	vlvesyTLPDGrii	642391	etpvyLGATAgmrll
113533	idlwsynAELLVal	476155	ASSLVdtpk	559587	gnENAYVkngklhls	644577	iekdlilLGATAvedrl
143137	tSASGSgedaidesg	476488	avdDGVNTf	563134	evAELLVkh	644669	iifgASSVDf
150977	eeakInreeiDGVKL	478710	GLTTIlknv	570114	AELLVshga	645002	inhvvSVAGWgisd
151075	ynAELLVLLenertl	482488	nelLVADty	571918	EELRElaesw	645986	kpTLSALpsplvtsg
151076	ypgdfidyEELREql	482780	nrypASSLV	573110	haCALAAslw	648442	qgkdlqqYVSVVvld
163409	setdaLRSSA	482921	pkyvksnrLVLATg	574223	kpagpLGATA	649953	sldrSLALAaeep
164690	fLLVLLdyggmlp	483957	reSNVGGiqql	575691	nrypASSLVvv	691126	klnrypASSLVvvr
164772	gvdtGIDIShsdf	485150	rySGNQVIf	577376	rVLNVTnlef	691145	kpTLSALpsplvts
178609	avvvlkrLPDALadg	485418	sedpsGKKAVI	577393	rvqGYFASf	691655	negkInrypASSLVv
182409	stvASSLVLLVSLga	487836	TVLEKfrylpk	578014	SPRTPnrsv	692295	skpTLSALpsplvtsg
182414	yqilaiystvASSLV	488193	vifftSGTTGfpk	578015	SPRTPsntp	694354	eskrKKSFLlcig
184585	IrTTTVSgkl	488539	vVAPLLrkv	578016	SPRTPsntpsa	695746	pltspttsqLRSSAp
190442	hELLVLvkkag	488926	ypASSLVvv	578044	SPSVPktsa	695843	pSASGSsgntptppr
194133	llaAWTARa	489284	LLLPLpvpa	579718	vyLKHLLpk	695894	pttsqLRSSApshaq
196781	sILEKTsay	490154	araLLLPLI	581635	aeLLLPLkvl	696039	gLRSSApshaqtpw
213534	kssSGTKTtk	490134	irfgLLPLSm	581817	anatLLPLSI	699244	aqhSGLGGvshy
223189	IdLLLPLnI	492412	irfSGTTGqm	582446	eeLLLPLly	699571	asiVAPLLI
223109	pelLLLPL	492430	lepcsrlLLLPLI	583971	iamhaaLLLAI	699594	asiVAPLLi
223310	seeLLLPLI	492987	mpepasrcILLLPL	584143	ildksVAPLL	699595	asiVAPLLI
226701	yvftLLVSL	493610	pILLVSLw	584764	kgVSAAGilek	700497	deVTLPNvv
240338	sASSLVnldslv	493010	•	584945	kireelrek	700497 700729	
			qrqqLLVSL				difqQTPLGr
243935	FLDIWtyna	495137	srILLLPLI	587249	prcILLVLL	700885	dpSGTKTcidtkeg
419699	gpprILLLPL	495478	traLLLPLI	587956	raqggLLVLL	702273	EELREkyrry
423950	alLKHLLsy	496437	eirTVLEKI	589061	rrgELLVLr	702274	EELRElanky
424543	fLLPLSlif	497010	tpvyLGATAgmrll	590120	srsKIVLLv	703553	erySGNQVI
426499	nfkAWTARy	504703	clyvLLLAI	590169	stsSPSVPk	704661	evvtSEGKTk
430136	fspdLLGDPdny	505049	elitILEKT	590856	vpglcllvll	705071	fAQPAFml
430260	fTVLEKfry	505187	fasVAPLLef	590986	vsgTLPDGhmp	706516	fsLLPLShl
435575	rrILLLPLI	505268	flaptfSGLTSi	592071	dttyinhvvSVAGWg	710491	ielLEKTttiy
435576	rrILLLPLII	507273	mpIILLLPL	594553	atiEELRErvw	711114	ipingSPRTPr
436423	apfGPIKSidm	507346	mtILLLPL	595684	gLLAIVkv	711645	itnvAELLV
437494	gAGGALfvhrd	507484	palSPSVPI	600696	qttTVLEKy	712552	kfpeiVAPLL
437792	gSGLGGltdk	510341	ypASSLVv	601366	rTLPDGthel	713254	klkikelre
440682	SPRTPvspvkf	511858	ardSLALArpkssdvy	601983	sryLLPLSalgtvag	713313	kLLLAlktk
441210	TVLEKvyel	518869	inhvvSVAGWgisdg	602564	tiEELRErvw	716976	ItneKIVLL
442404	apaAPGRAI	519272	itILEKTvspdrle	610338	QEVKAitkl	720288	qhyelcSGNQV
443560	erySGNQVIf	520276	kqqeLLVSL	611939	rrvkAELLV	721762	rgaLLPLSi
444320	glsLLPLSek	521984	IrqaAGGALqvvhsr	614291	asfapISFAlk	722338	rILLLPLI
445722	kpkhPTTGI	523925	qaAGGALqvvhsrql	615815	evAELLVrh	722416	rlprLLVLL
448068	rvrvPTTGI	532960	mPTTGIney	616957	glvnSGLTSv	723746	rvpaLLVLL
448661	SPRTPpqrf	535612	ELLVLrqkhsepsrf	620774	kvleAELLVLr	723778	rvpsLLVLL
448662	SPRTPtpfkhal	537116	nkvleAELLVLrqkh	623038	qrAGGALsi	724649	SEGKTfqly
448918	sryLLPLSa	541075	allpAGGALqh	627837	vPTTGliey	724650	SEGKTkpli
449866	VSAAGlvqgl	541668	eEELREkqay	628836	AELLVkgyei	725019	sgdGPIKSv
453784	flpILLVLL	541699	EELREkqay	628959	ailhLLVSL	725662	sIVAPLLi
456288	LLLAliphv	544699	rggaAGGALp	630008	dvAGGALthsll	727559	TAPDAaltl
456316	LLLPLpIII	545442	srvpLLLPL	632600	iLLLPLhtg	728413	TLPDGthel
457304	ntILLVSL	548131	hLLGDPmanv	633968	ILLLPLpvpa	728445	TLSALyarr
	pekTLSALI	551494	esyTLPDGrii	634370	IprLLVLLa	729508	tvpdLLLPL
457363							LVDULLIFI

Column 1: Epitopes listed according to the IEDB-ID number. Epitope details and references at www.immuneepitope.org (19). Column 2: Sequences common to pathogen antigens and human proteins related to stroke are indicated in capital letters.

the potential immunologic relationship between pathogens and human proteins that, when altered, have been associated with risk of stroke. In line with our hypothesis, we found that immune cross-reactions between infectious pathogens and human stroke-related proteins might occur, thus increasing the risk of stroke (see **Tables 1**, **2**).

The immunologically relevant peptide sharing reported in the present study depicts a complex scenario. Some potential molecular targets of cross-reactions are proteins belonging to the cardiovascular system, thus possibly directly accounting for cerebrovascular damage. Other possible targets are proteins of the immune system, thus suggesting mechanisms resulting in immune dysregulation which could lead to cerebrovascular damage.

An example of the first type of potential targets are ion-channels, particularly potassium (K⁺) and sodium (Na⁺) channels (ABCC9, KCNE2, KCNA5, KCNQ1, SCN4B, SCN5A, SCN1B, SCN3B, see Table 1). Accordingly, a growing body of evidence points to the involvement of cardiac K⁺ and Na⁺ channel dysfunction (cardiac channelopathies as a result of genetic mutations and/or inflammatory mechanisms) in the pathogenesis of atrial fibrillation (AF), an established risk factor for stroke (28, 29). Moreover, autoantibodies targeting ionchannels may be involved in cardiac arrhythmias (30). In light of the potential cross-reactivity suggested by the observed peptide sharing, AF and subsequent stroke could result from antibodies primarily targeting epitopes of infective agents but also crossreacting with cardiac ion channels. For instance, activating antibodies could lead to a gain-of-function of K⁺-channels and inhibiting antibodies to a loss-of-function of of Na⁺-channels. This could promote re-entry or increase susceptibility to early and/or delayed afterdepolarizations, two mechanisms that can generate AF (31, 32).

The second class of potential targets includes proteins that actively modulate the inflammatory response, such as cytokines and colony-stimulating factor receptors (IL-4, macrophage colony-stimulating factor 1 receptor, see Table 1) (33, 34). IL-4, for example, is a well-investigated tolerogenic cytokine that is able to suppress inflammatory responses and organ-specific autoimmunity in both animal models and humans (35, 36). It is then conceivable that autoantibodies downregulating the function of these proteins can promote inflammatory responses, thus increasing the risk of cerebrovascular damage and stroke. Indeed, inflammatory responses appear to be crucial in the pathogenesis of stroke by inducing atherosclerosis progression, pro-thrombotic activation, and AF-among other mechanisms (37). Inflammation can therefore be considered as one key factor underpinning the relationship between classical stroke risk factors and comorbidities. It appears that not just single infections, but overall infectious burden from multiple agents predicts stroke incidence. Moreover, poor outcome may be proportional to systemic inflammatory burden both in patients and experimental models. For instance, Influenza and Streptococcus infection seem to contribute to stroke incidence and outcome, and evidence from experimental models indicate that blocking inflammatory processes might be an effective prevention strategy (38, 39).

The increasingly recognized relevance of inflammation in stroke is consistent with a possible role of peptide sharing-based cross-reactivity as contributing factors to cerebrovascular damage. In fact, the past two decades of immunologic research have radically changed the way we think of inflammation and innate immunity. It is now known that innate immune responses can "specifically" drive the following adaptive responses through recognition of pathogen-associated molecular patterns (PAMPs) (40, 41). That is to say that peptide epitopes, cell-wall components, and other PAMPs activate immune cells already from the very first stages of immune reactions and drive inflammation. Indeed, there are examples of crossreactivity between host and pathogen-associated molecular patterns: identical inflammasomes and toll-like receptors (TLRs) recognizing molecular fingerprints of both pathogens (the PAMPs) and injured host cells (so-called danger-associated molecular patterns; DAMPs). For instance, both bacteria LPS and HMGB1 from injured host cells activate TLR4, with consequent inflammation in various tissues including the brain (41, 42). TLR- and inflammasome-dependent pathways seem to be important drivers of inflammation, vascular disease, and reportedly contribute to stroke outcome (43, 44).

Our preliminary results underline the importance of further experimental efforts to define the molecular basis through which microbial infections might contribute to an increased risk of stroke (45–50). Future studies should evaluate immunoreactivity against the peptides shared by infectious pathogens and human stroke-related proteins in sera from stroke patients. Possibly, such serological analyses could also help identify specific markers predicting a higher risk of stroke and might therefore be useful to design preventive strategies following an infection. The ultimate translational relevance of our finding lies in the possibility of adopting effective individualized primary and secondary preventive strategies in patients at risk for stroke after infections. Generic hygienic measure, as well as antibiotic prophylaxis and vaccination campaigns have already been proposed and tested with contrasting results (37). Identifying and stratifying patients according to individual biomarker profiles would allow to personalize treatment for each patient, thus possibly increasing overall efficacy.

Until now, stroke is a leading cause of preventable death and adult disability (1–5, 47–52), but preventive strategies mostly concentrate on traditional cardiovascular risk factors (53–56). Moreover, "cryptogenic" stroke (i.e., ischemic stroke with no obvious cause) poses a challenge in terms of primary and secondary prevention (57, 58).

Given the burden of cerebrovascular disease, and the potential to identify immunological markers that may then serve as prognostic indicators of risk of cerebrovascular damage after an infection, our results justify further intensive research on the cross-reactive link between infections and risk of stroke.

AUTHOR CONTRIBUTIONS

GL formulated the hypothesis, analyzed the data and wrote the manuscript. GL, AF, and BS interpreted the data, revised and finalized the manuscript.

FUNDING

We acknowledge support for the Article Processing Charge from the DFG (German Research Foundation, 393148499) and the

REFERENCES

- Benjamin EJ, Virani SS, Callaway CW, Chamberlain AM, Chang AR, Cheng S, et al. Heart disease and stroke statistics-2018 update: a report from the American Heart Association. *Circulation*. (2018) 137:e67– e492. doi: 10.1161/CIR.000000000000573
- Cabral NL, Freire AT, Conforto AB, Dos Santos N, Reis FI, Nagel V, et al. Increase of stroke incidence in young adults in a middleincome country: a 10-year population-based study. *Stroke.* (2017) 48:2925– 30. doi: 10.1161/STROKEAHA.117.018531
- Kirshner HS. Differentiating ischemic stroke subtypes: risk factors and secondary prevention. J Neurol Sci. (2009) 279:1– 8. doi: 10.1016/j.jns.2008.12.012
- Tonk M, Haan J. A review of genetic causes of ischemic and hemorrhagic stroke. J Neurol Sci. (2007) 257:273–9. doi: 10.1016/j.jns.2007.01.037
- 5. Hankey GJ. Stroke. *Lancet.* (2017) 389:641–54. doi: 10.1016/S0140-6736(16) 30962-X
- Leira Y, Seoane J, Blanco M, Rodríguez-Yáñez M, Takkouche B, Blanco J, et al. Association between periodontitis and ischemic stroke: a systematic review and meta-analysis. *Eur J Epidemiol.* (2017) 32:43–53. doi: 10.1007/s10654-016-0170-6
- Blackburn R, Zhao H, Pebody R, Hayward A, Warren-Gash C. Laboratoryconfirmed respiratory infections as predictors of hospital admission for myocardial infarction and stroke: time-series analysis of english data for 2004-2015. Clin Infect Dis. (2018) 67:8–17. doi: 10.1093/cid/cix1144
- Wimmer ML, Sandmann-Strupp R, Saikku P, Haberl RL. Association of chlamydial infection with cerebrovascular disease. *Stroke*. (1996) 27:2207– 10. doi: 10.1161/01.STR.27.12.2207
- 9. Wang H, Peng G, Bai J, He B, Huang K, Hu X, et al. Cytomegalovirus infection and relative risk of cardiovascular disease (ischemic heart disease, stroke, and cardiovascular death): a meta-analysis of prospective studies up to 2016. *J Am Heart Assoc.* (2017) 6:e005025. doi: 10.1161/JAHA.116.005025
- Chukkapalli SS, Rivera-Kweh MF, Velsko IM, Chen H, Zheng D, Bhattacharyya I, et al. Chronic oral infection with major periodontal bacteria *Tannerella forsythia* modulates systemic atherosclerosis risk factors and inflammatory markers. *Pathog Dis.* (2015) 73:ftv009. doi: 10.1093/femspd/ftv009
- Takeoka M, Takahashi T. Infectious and inflammatory disorders of the circulatory system and stroke in childhood. *Curr Opin Neurol.* (2002) 15:159– 64. doi: 10.1097/00019052-200204000-00006
- Ekstrand JJ. Neurologic complications of influenza. Semin Pediatr Neurol. (2012) 19:96–100. doi: 10.1016/j.spen.2012.02.004
- Urbanek C, Palm F, Grau AJ. Influenza and stroke risk: a key target not to be missed? *Infect Disord Drug Targets*. (2010) 10:122-31. doi: 10.2174/187152610790963474
- UniProt Consortium T. UniProt: the universal protein knowledgebase. Nucleic Acids Res. (2018) 46:2699. doi: 10.1093/nar/gky092
- Reddehase MJ, Rothbard JB, Koszinowski UH. A pentapeptide as minimal antigenic determinant for MHC class I-restricted T lymphocytes. *Nature*. (1989) 337:651–3. doi: 10.1038/337651a0
- Frank SA. Immunology and Evolution of Infectious Disease. Princeton, NJ: Princeton University Press (2002).

Open Access Publication Fund of the University of Greifswald and from the Deutsche Forschungsgemeinschaft to AF (SFB1315 TP B03).

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fneur. 2019.00469/full#supplementary-material

- Kanduc D. Pentapeptides as minimal functional units in cell biology and immunology. Curr Protein Pept Sci. (2013) 14:111– 20. doi: 10.2174/1389203711314020003
- 18. Kanduc D. Homology, similarity, and identity in peptide epitope immunodefinition. J Pept Sci. (2012) 18:487–94. doi: 10.1002/psc.2419
- Vita R, Overton JA, Greenbaum JA, Ponomarenko J, Clark JD, Cantrell JR, et al. The immune epitope database (IEDB) 3.0. *Nucleic Acids Res.* (2015) 43 (Database issue): D405–12. doi: 10.1093/nar/gku938
- Lucchese G, Capone G, Kanduc D. Peptide sharing between influenza A H1N1 hemagglutinin and human axon guidance proteins. *Schizophr Bull.* (2014) 40:362–75. doi: 10.1093/schbul/sbs197
- Lucchese G, Stahl B. Peptide sharing between viruses and DLX Proteins: a potential cross-reactivity pathway to neuropsychiatric disorders. *Front Neurosci.* (2018) 12:150. doi: 10.3389/fnins.2018.00150
- Liu R, Wang H, Xu B, Chen W, Turlova E, Dong N, et al. Cerebrovascular safety of sulfonylureas: the role of KATP channels in neuroprotection and the risk of stroke in patients with type 2 diabetes. *Diabetes*. (2016) 65:2795– 809. doi: 10.2337/db15-1737
- 23. Boehme AK. Esenwa С. Elkind MS. Stroke risk factors. genetics, and prevention. Circ Res (2017)120:472-95. doi: 10.1161/CIRCRESAHA.116.308398
- Grau AJ, Brandt T. Do multiple chronic infections increase the risk of stroke? the infectious burden concept. *Arch Neurol.* (2010) 67:16– 17. doi: 10.1001/archneurol.2009.301
- Grau AJ, Urbanek C, Palm F. Common infections and the risk of stroke. Nat Rev Neurol. (2010) 6:681–94. doi: 10.1038/nrneurol. 2010.163
- Manousakis G, Jensen MB, Chacon MR, Sattin JA, Levine RL. The interface between stroke and infectious disease: infectious diseases leading to stroke and infections complicating stroke. *Curr Neurol Neurosci Rep.* (2009) 9:28– 34. doi: 10.1007/s11910-009-0005-x
- Elkind MS, Ramakrishnan P, Moon YP, Boden-Albala B, Liu KM, Spitalnik SL, et al. Infectious burden and risk of stroke: the northern Manhattan study. *Arch Neurol.* (2010) 67:33–8. doi: 10.1001/archneurol.2009.271
- Hucker WJ, Saini H, Lubitz SA, Ellinor PT. Atrial fibrillation genetics: is there a practical clinical value now or in the future? *Can J Cardiol.* (2016) 32, 1300–5. doi: 10.1016/j.cjca.2016.02.032
- Lazzerini PE, Capecchi PL, El-Sherif N, Laghi-Pasini F, Boutjdir M. Emerging arrhythmic risk of autoimmune and inflammatory cardiac channelopathies. J Am Heart Assoc. (2018) 7:e010595. doi: 10.1161/JAHA.118.010595
- Lazzerini PE, Capecchi PL, Laghi-Pasini F, Boutjdir M. Autoimmune channelopathies as a novel mechanism in cardiac arrhythmias. *Nat Rev Cardiol.* (2017) 14:521–35. doi: 10.1038/nrcardio.2017.61
- Nattel S, Burstein B, Dobrev D. Atrial remodeling and atrial fibrillation: mechanisms and implications. *Circ Arrhythm Electrophysiol.* (2008) 1:62– 73. doi: 10.1161/CIRCEP.107.754564
- Nattel S, Dobrev D. Electrophysiological and molecular mechanisms of paroxysmal atrial fibrillation. *Nat Rev Cardiol.* (2016) 13:575– 90. doi: 10.1038/nrcardio.2016.118
- Sredni-Kenigsbuch D. TH1/TH2 cytokines in the central nervous system. Int J Neurosci. (2002) 112:665–703. doi: 10.1080/002074502900 25725

- Hamilton JA, Achuthan A. Colony stimulating factors and myeloid cell biology in health and disease. *Trends Immunol.* (2013) 34:81– 9. doi: 10.1016/j.it.2012.08.006
- 35. Yang WC, Hwang YS, Chen YY, Liu CL, Shen CN, Hong WH, et al. Interleukin-4 supports the suppressive immune responses elicited by regulatory T cells. *Front Immunol.* (2017) 8:1508. doi: 10.3389/fimmu.2017.01508
- 36. Guenova E, Skabytska Y, Hoetzenecker W, Weindl G, Sauer K, Tham M, et al. IL-4 abrogates TH17 cell-mediated inflammation by selective silencing of IL-23 in antigen-presenting cells. *Proc Natl Acad Sci USA*. (2015) 112:2163– 8. doi: 10.1073/pnas.1416922112
- Esenwa CC, Elkind MS. Inflammatory risk factors, biomarkers and associated therapy in ischaemic stroke. Nat Rev Neurol. (2016) 12:594– 604. doi: 10.1038/nrneurol.2016.125
- Muhammad S, Haasbach E, Kotchourko M, Strigli A, Krenz A, Ridder DA, et al. Influenza virus infection aggravates stroke outcome. *Stroke.* (2011) 42:783–91. doi: 10.1161/STROKEAHA.110.596783
- Dénes Á, Pradillo JM, Drake C, Sharp A, Warn P, Murray KN, et al. *Streptococcus pneumoniae* worsens cerebral ischemia via interleukin 1 and platelet glycoprotein Ibα. *Ann Neurol.* (2014) 75:670–83. doi: 10.1002/ana.24146
- Root-Bernstein R, Fairweather D. Complexities in the relationship between infection and autoimmunity. *Curr Allergy Asthma Rep.* (2014) 14:407. doi: 10.1007/s11882-013-0407-3
- Mills K. H. TLR-dependent T cell activation in autoimmunity. Nat Rev Immunol. (2011) 11:807–22. doi: 10.1038/nri3095
- Aucott H, Lundberg J, Salo H, Klevenvall L, Damberg P, Ottosson L, et al. Neuroinflammation in response to intracerebral injections of different HMGB1 redox isoforms. *J Innate Immun.* (2018) 10:215–27. doi: 10.1159/000487056
- 43. Kim ID, Lee H, Kim SW, Lee HK, Choi J, Han PL, et al. Alarmin HMGB1 induces systemic and brain inflammatory exacerbation in post-stroke infection rat model. *Cell Death Dis.* (2018) 9:426. doi: 10.1038/s41419-018-0438-8
- Vogelgesang A, May VE, Grunwald U, Bakkeboe M, Langner S, Wallaschofski H, et al. Functional status of peripheral blood T-cells in ischemic stroke patients. *PLoS ONE*. (2010) 5:e8718. doi: 10.1371/journal.pone.0008718
- Emsley HC, Hopkins SJ. Acute ischaemic stroke and infection: recent and emerging concepts. *Lancet Neurol.* (2008) 7:341– 53. doi: 10.1016/S1474-4422(08)70061-9
- Lindsberg PJ, Grau AJ. Inflammation and infections as risk factors for ischemic stroke. *Stroke.* (2003) 34:2518– 32. doi: 10.1161/01.STR.0000089015.51603.CC
- Kuklina EV, Tong X, George MG, Bansil P. Epidemiology and prevention of stroke: a worldwide perspective. *Expert Rev Neurother*. (2012) 12:199– 208. doi: 10.1586/ern.11.99
- Kim AS, Johnston SC. Temporal and geographic trends in the global stroke epidemic. *Stroke*. (2013) 44 (6 Suppl. 1):S123– 5. doi: 10.1161/STROKEAHA.111.000067

- Tan RY, Markus HS. Monogenic causes of stroke: now and the future. J Neurol. (2015) 262:2601–16. doi: 10.1007/s00415-015-7794-4
- 50. Kim YD, Cha MJ, Kim J, Lee DH, Lee HS, Nam CM, et al. Long-term mortality in patients with coexisting potential causes of ischemic stroke. *Int J Stroke.* (2015) 10:541–6. doi: 10.1111/ijs. 12013
- Carrera E, Maeder-Ingvar M, Rossetti AO, Devuyst G, Bogousslavsky J, Trends in risk factors, patterns and causes in hospitalized strokes over 25 years: the Lausanne Stroke Registry. *Cerebrovasc Dis.* (2007) 24:97– 103. doi: 10.1159/000103123
- 52. Inzitari D, Eliasziw M, Gates P, Sharpe BL, Chan RK, Meldrum HE, et al. The causes and risk of stroke in patients with asymptomatic internal-carotid-artery stenosis. North American Symptomatic Carotid Endarterectomy Trial Collaborators. N Engl J Med. (2000) 342:1693–700. doi: 10.1056/NEJM2000060834 22302
- Rothstein L, Jickling GC. Ischemic stroke biomarkers in blood. *Biomark Med.* (2013) 7:37–47. doi: 10.2217/bmm.12.104
- Simats A, García-Berrocoso T, Montaner J. Neuroinflammatory biomarkers: from stroke diagnosis and prognosis to therapy. *Biochim Biophys Acta*. (2016) 1862:411–24. doi: 10.1016/j.bbadis.2015.10.025
- Pullagurla SR, Baird AE, Adamski MG, Soper SA. Current and future bioanalytical approaches for stroke assessment. *Bioanalysis*. (2015) 7:1017– 35. doi: 10.4155/bio.15.40
- 56. Salat D, Penalba A, García-Berrocoso T, Campos-Martorell M, Flores A, Pagola J, et al. Immunological biomarkers improve the accuracy of clinical risk models of infection in the acute phase of ischemic stroke. *Cerebrovasc Dis.* (2013) 35:220–7. doi: 10.1159/0003 46591
- Fonseca AC, Ferro JM. Cryptogenic stroke. Eur J Neurol. (2015) 22:618– 23. doi: 10.1111/ene.12673
- Saver JL. Clinical practice. Cryptogenic stroke. N Engl J Med. (2016) 374:2065– 74. doi: 10.1056/NEJMcp1503946

Conflict of Interest Statement: AF received consulting fees from Bayer and Novartis and honoraria for oral presentations from Novartis, Böhringer-Ingelheim, Lilly, and Biogen Idec (unrelated to current research).

The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2019 Lucchese, Flöel and Stahl. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

8