1' frontiers
in Neurology

ORIGINAL RESEARCH
published: 07 May 2019
doi: 10.3389/fneur.2019.00470

OPEN ACCESS

Edited by:

Stefan Bittner,

Johannes Gutenberg University
Mainz, Germany

Reviewed by:

Michele H. Jacob,

Tufts University, United States
Dione Kobayashi,
Independent Researcher, MA,
Cambridge, United States

*Correspondence:

Andreas Roos
Andreas.Roos@uk-essen.de;
andreas.roos@isas.de

Specialty section:

This article was submitted to
Movement Disorders,

a section of the journal
Frontiers in Neurology

Received: 11 October 2018
Accepted: 17 April 2019
Published: 07 May 2019

Citation:

Kdlbel H, Hathazi D, Jennings M,
Horvath R, Roos A and Schara U
(2019) Identification of Candidate
Protein Markers in Skeletal Muscle of
Laminin-211-Deficient CMD Type
1A-Patients. Front. Neurol. 10:470.
doi: 10.3389/fneur.2019.00470

Check for
updates

Identification of Candidate Protein
Markers in Skeletal Muscle of
Laminin-211-Deficient CMD Type
1A-Patients

Heike Kélbel', Denisa Hathazi?®, Matthew Jennings?, Rita Horvath?*, Andreas Roos "?* and
Ulrike Schara’

" Department of Pediatric Neurology, Developmental Neurology and Social Pediatrics, University of Duisburg-Essen, Essen,
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Laminin-211 deficiency leads to the most common form of congenital muscular
dystrophy in childhood, MDC1A. The clinical picture is characterized by severe muscle
weakness, brain abnormalities and delayed motor milestones defining MDC1A as one
of the most severe forms of congenital muscular diseases. Although the molecular
genetic basis of this neurological disease is well-known and molecular studies of mouse
muscle and human cultured muscle cells allowed first insights into the underlying
pathophysiology, the definition of marker proteins in human vulnerable tissue such as
skeletal muscle is still lacking. To systematically address this need, we analyzed the
proteomic signature of laminin-211-deficient vastus muscle derived from four patients
and identified 86 proteins (35 were increased and 51 decreased) as skeletal muscle
markers and verified paradigmatic findings in a total of two further MDC1A muscle
biopsies. Functions of proteins suggests fibrosis but also hints at altered synaptic
transmission and accords with central nervous system alterations as part of the
clinical spectrum of MDC1A. In addition, a profound mitochondrial vulnerability of
the laminin-211-deficient muscle is indicated and also altered abundances of other
proteins support the concept that metabolic alterations could be novel mechanisms
that underline MDC1A and might constitute therapeutic targets. Intersection of our
data with the proteomic signature of murine laminin-211-deficient gastrocnemius and
diaphragm allowed the definition of nine common vulnerable proteins representing
potential tissue markers.

Keywords: laminin-211, laminin-«2, congenital muscular dystrophy, agrin, NudC domain-containing protein 2,
muscle proteomics

INTRODUCTION

Congenital muscular dystrophies (CMD) comprise a heterogenous group of genetically caused
neuromuscular diseases with muscle weakness apparent at birth or in the first 6 months of life.
Most of the different subtypes are of autosomal recessive inheritance (1). Laminin-211 (formerly
merosin) -deficient CMD type 1A (MDCI1A) is caused by recessive mutations in the LAMA2
gene (encoding for the a2 subunit of laminin-211) and constitutes approximately 10-30% of
total CMD cases in the European population. Laminin-211 is expressed in the brain vasculature,
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the skeletal muscle basal lamina as well as in the myotendinous
and neuromuscular junctions (2). White matter T2 signal
hyperintensity as reflection of increased interstitial water
content occurs in almost all patients after 6 months of age
(3, 4). MDCIl1A-patients suffer from muscular weakness
associated with elevated serum creatine kinase (CK) levels,
poor suck and cry, multiple joint contractures and delayed
motor development. Most of the MDCIlA-patients never
achieve independent ambulation (5-7). Extramuscular
manifestations include seizures in 30% of patients, demyelinating
neuropathy and CNS abnormalities such as polymicrogyria and
cortical bandlike heterotopia. Mental retardation rarely
occurs (8). Whereas patients with a complete deficiency of
laminin-211 present with a severe clinical spectrum of the
disease, a partial deficiency of the protein leads to milder
phenotypes (6). In 2011, Gawlik and Durbeej speculated that
the pathogenicity of LAMA2 mutations, which disrupt the
assembly of the corresponding laminin-211 protein with other
basal lamina components, explains the full penetrance of the
phenotype (9).

Laminin is a cell-adhesion molecule localized to the basement
membrane of skeletal muscle. The biological functions of
laminins such as modulation of cytoskeleton and intracellular
signaling pathways are accomplished via the interaction with
transmembrane receptors which—in skeletal muscle—are
represented by dystroglycan and integrin a7B1 as the two
major receptors for laminin-211 (10, 11). In this context,
laminin has also been postulated to protect the muscle fibers
from damage under the constant stress of contractions (9).
Notably, while laminin-211 (composed of a2, BI, and yl
chains) was first isolated from placenta and originally called
merosin (12), it is now well established that laminin-211 is
the main laminin isoform in skeletal muscle (12-14). In this
context, it is important to note that laminin-211 function
has been linked to muscle development and through the
formation of laminin networks also to cytoskeleton and
intracellular signaling pathways. Moreover, it is believed
that laminin-211 influences signal transmission events and
muscle innervation via modulation of NM]J-integrity and
function (9).

Although clinical features of LAMA2-patients, especially
regarding the manifestation in skeletal muscle are well described,
molecular signatures of muscle pathology defining protein
markers of the effect of loss of functional laminin-211 remain
elusive. Utilizing label free mass spectrometry-based protein
quantification, we here systematically address laminin-211-
deficiency-related protein changes to define tissue biomarkers
in skeletal muscle of MDC1A-patients from the severe disease
spectrum. This in turn can provide potential insights into
the underlying pathophysiology and thus represent valuable
outcome measures for therapeutic intervention concepts such
as the emerging gene therapy (15). Hence, data presented
in this article provides important molecular insights into
MDCI1A-related pathophysiology due to alterations in protein
composition beyond the extra-cellular matrix, an important
aspect for the definition of further or alternative therapeutic
intervention concepts.

TABLE 1 | List of antibodies used for the immunofluorescence studies.

Primary antibody Company Number Dilution Secondary
antibody
GPI Abcam 66340 1:200 Mouse
anti-goat 488
Lama a5 Millipore MAB 1924 1:500 Mouse
anti-goat 488
Glypican-1 Abcam 55971 1:100 Donkey
anti-rabbit
488
Agrin Millipore MAB 5204 1:20 Mouse
anti-goat 488
Spectrin Leica SPEC 1-CE 1:100 Mouse
anti-goat 594
Lama a2C Millipore MAB1922 1:500 Mouse
anti-goat 488
Lama a2N Leica MEROSIN-CE ~ 1:50 Mouse

anti-goat 488
Alexa A-11029  1:500
Alexa A-11032  1:500
Alexa A-2106  1:500

Mouse anti goat IgG 488
Mouse anti goat IgG 594
Donkey anti rabbit IgG 594

MATERIALS AND METHODS

The muscle biopsy specimen investigated in this study have
been initially collected for diagnostic purposes. Written informed
consent was obtained from the participants (or rather their legal
guardians) for the participation into the subsequent research as
well as for publication of the findings (including any potentially-
identifying information). Ethical approval was not required as
per the local legislation.

Immunofluorescence-Based Studies in
Muscle Biopsies

Five micrometer cryosections of muscle biopsy specimen were
generated, dried and afterwards re-hydrated in phosphate-
buffered saline (PBS) followed by exposure to primary antibodies
(Table 1) diluted in 1% bovine serum albumin (BSA). After
incubation of the sections in a wet-chamber for one hour at
25°C (incubator), those were washed three times in PBS. Next,
the secondary antibodies (Alexa 488-conjugated) 1:500 diluted
in 1% BSA were added and sections were again incubated in a
wet-chamber for one hour at 25°C. Prior sections were finally
covered in mounting medium (Dako), three washing steps in PBS
were performed.

Immunoblot-Based Studies on Whole

Muscle Protein Extracts

Twenty micrograms of patient skeletal muscle protein lysates
were prepared using NuPAGE LDS sample buffer (Thermo) and
NuPAGE reducing agent, denatured at room temperature for
10 minutes and loaded into 4-12% gradient SDS-PAGE gels
(Thermo, NP0322). Proteins were separated and transferred to a
PVDF membrane using an iBlot2 dry transfer system (Thermo).
PVDF membranes were blocked using 5% milk in Tris buffer-
saline with 1% tween-20 (TBS-T) at room temperature for 1 hour
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before probing using monoclonal antibodies targeting NDUFBS,
SDHB, UQCRC2, COX2, and ATP5A (Abcam, ab110411) as
well as antibodies targeting GAPDH (Abcam, ab8245) and
VDACI1 (Abcam, ab14734). Membranes were washed in TBS-
T and probed again for 1h with HRP-conjugated anti-Mouse
IgG (Abcam, ab97023) prior to chemiluminescent imaging.
Quantification was performed using Image].

Proteomic Profiling in Human

Skeletal Muscle

Ammonium hydrogen carbonate (NH4HCO3), anhydrous
magnesium  chloride (MgCl,), guanidine hydrochloride
(GuHCI), iodoacetamide (IAA), and urea were purchased from
Sigma-Aldrich, Steinheim, Germany. Tris base was obtained
from Applichem Biochemica, Darmstadt, Germany and Sodium
dodecyl sulfate (SDS) was purchased from Carl Roth, Karlsruhe,
Germany. Dithiothreitol (DTT), EDTA-free protease inhibitor
(Complete Mini) tablets were obtained from Roche Diagnostics,
Mannheim, Germany. Sodium chloride (NaCl) and calcium
chloride (CaCl,) were from Merck, Darmstadt. Sequencing
grade modified trypsin was from Promega, Madison, WI
USA. Benzonase® Nuclease was purchased from Novagen.
Bicinchoninic acid assay (BCA) kit was acquired from Thermo
Fisher Scientific, Dreieich, Germany. All chemicals for ultra-pure
HPLC solvents such as formic acid (FA), trifluoroacetic acid
(TFA) and acetonitrile (ACN) were obtained from Biosolve,
Valkenswaard, The Netherlands.

Cell Lysis, Sample Preparation and Trypsin Digestion
In total eight samples derived from four healthy controls (gender-
and age-matched) and four MDCI1A-patients were processes
independently. All muscle samples were collected from the mid
portion of vastus lateralis. Approximately 10 slices of 10 um of
muscle were lysed in 50 pwL of lysis buffer (50 mM Tris-HCI
(pH 7.8) 150 mM NaCl, 1% SDS, and Complete Mini) using a
manual glass grinder. Then samples were centrifuged for 5min
at 4°C and 5.000g. Protein concentration of the supernatant
was determined by BCA assay (according to the manufacturer’s
protocol). In order to reduce the cysteines 10 mM of DTT were
added to the samples followed by incubation at 56°C for 30 min.
Next, the free thiol groups were alkylated with 30 mM IAA at
room temperature (RT) in the dark for 30.

Sample digestion and cleanup were performed using filter-
aided sample preparation (FASP) as described previously (16, 17)
with some minor changes. Briefly, 100 pg of protein lysate was
diluted 10-fold with freshly prepared 8 M urea/100 mM Tris-
HCI (pH 8.5) buffer (18) and placed on a Microcon centrifugal
device (30 KDa cutoff). Afterwards, the filter was centrifuged
at 13,500 g at RT for 15min (all the following centrifugation
steps were performed under the same conditions). Three washing
steps were carried out with 100 wL of 8 M urea/100 mM Tris-
HCI (pH 8.5). For buffer exchange, the device was washed thrice
with 100 wL of 50 mM NH4HCO; (pH 7.8). Next, 100 pL of
the digestion buffer (trypsin (Promega), 1:25 w/w, protease to
substrate, (0.2 M GuHCI and 2 mM CaCl, in 50 mM NH4HCO3
pH 7.8), was added to the filter which contains the bound
proteins and the samples were incubated at 37°C for 14h.

Resulting tryptic peptides were recovered by centrifugation with
50 uL of 50 mM NH4HCO3 followed by 50 WL of ultra-pure
water. In the final step, tryptic peptides were acidified by adding
5 ul of 10 % TFA (v/v). The digests were quality controlled as
described previously (19).

LC-MS/MS Analysis

Samples (technical duplicates) were measured using an Ultimate
3000 nano RSLC system coupled to an Orbitrap Fusion Lumos
mass spectrometer (both Thermo Scientific) and analyzed in a
randomized order to minimize systematic errors. Firstly, peptides
were preconcentrated on a 100 um X 2 cm C18 trapping column
for 10 min using 0.1 % TFA (v/v) at a flow rate of 20 wL/min.
Next the separation of the peptides was performed on a 75 pm x
50 cm C18 main column (both Pepmap, Thermo Scientific) with
a 120 min LC gradient ranging from 3 to 35 % of 84 % ACN,
0.1 % FA (v/v) at a flow rate of 230 nL/min. MS' spectra was
acquired in the Orbitrap from 300 to 1,500 m/z at a resolution of
120,000 using the polysiloxane ion at m/z 445.12003 as lock mass
(20),with maximum injection times of 50 ms. Next, top 10 most
intense signals were selected for fragmentation by HCD with a
collision energy of 30%. MS? spectra were acquired in the ion
trap at a resolution of 120,000, with maximum injection times
of 300 ms and a dynamic exclusion of 15s. The ACG target was
setat 2.0 x 10° ions for MS? and 2.0 x 10° for MS?.

Label Free Data Analysis

Data analysis of the acquired label free quantitative MS data
was performed using the Progenesis LC-MS software from Non-
linear Dynamics (Newcastle upon Tyne, U.K.). Alignment of
MS raw data was conducted by Progenesis, which automatically
selected one of the LC-MS files as reference. Next, peak picking
was performed and only features within retention time and
m/z windows from 0 to 120min and 300-1,500 m/z, with
charge states +2, +3, and +4 were considered for peptide
statistics, analysis of variance (ANOVA). The MS/MS spectra
were exported as peak lists which were searched against a
concatenated target/decoy version of the mouse Uniprot database
(Homo sapiens with 20273 entries, downloaded 22.07.2017)
using Mascot 2.4 (Matrix Science), MS-GF+, and X!Tandem
Jackhammer (2013.06.15) with the help of searchGUI 1.14.4
(21). Trypsin with a maximum of two missed cleavages was
selected as enzyme. Carbamidomethylation of Cys was set as
fixed and oxidation of Met was selected as variable modification.
MS and MS/MS tolerances were set to 10 ppm and 0.5 Da,
respectively. Combined search results were filtered at a false
discovery rate (FDR) of 1 % on the protein level and exported
using PeptideShaker 0.28.0 (http://code.google.com/p/peptide-
shaker/). Data was reimported into Progenesis and peptide
sequences containing oxidized Met were excluded for further
analysis. Only proteins that were quantified with unique peptides
were exported. For each protein, the average of the normalized
abundances (obtained from Progenesis) was calculated and used
to determine the ratios between patients and control. Only
proteins which were (i) commonly quantified in all the replicates
with (ii) one unique peptides, (iii) an ANOVA p-value of <0.05
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(Progenesis) and (iv) an average ratio < log, 0.99or > log,—0.9
were considered as up respectively down regulated.

Data Plotting and Pathway Analysis

All data was plotted using Origin 6.0 and Adobe Ilustrator.
For pathway analysis, the GO ontology, KEGG and Reactome
were used and data manually filtered for relevant pathways.
The Proteomap was the online tool available (https://www.
proteomaps.net/). The annotation of these proteomaps is based
on the KEGG database platform, each protein is shown by
a polygon, and functionally relevant proteins are arranged
as neighbors. Additionally, polygon areas represent protein
abundances weighted by protein size.

RESULTS

Clinical and Genetic Findings

We followed six patients diagnosed with CMD type 1A in
the Department of Neuropediatrics of the University Children’s
Hospital, University Duisburg-Essen, in a tertiary care setting.
Mutations in LAMA2 were found in all patients; however, one
patient, who was severely affected, was lost of follow-up at the
age of 2 years (patient 1).

Table 2 summarizes the molecular genetic, clinical and
neuroradiologic findings. All six patients presented with
symptoms within the first 4 months of life: poor head control,
generalized muscular hypotonia and muscular weakness, poor
spontaneous movements, delayed motor milestones, and high
levels of creatine kinase (CK). The highest measured CK levels
are listed in Table 2. The six children never achieved ambulation.
Patient 5 was able to walk with support, but after a febrile virus
infection with rhabdomyolysis at the age of 20 months she had
a dramatic loss of motor function. Currently, at the age of 35
months, she showed a recovery with the ability to stand with
support. All patients had dysphagia, recurrent chest infections
and need varying levels of pulmonal support (i.e., cough assist).
Additionally, joint contractures were present in all six patients.
In patients 2-6, the underlying genetic mutations segregate
with the phenotypes.

Four of our six patients underwent brain MRI, and three
of the four showed white matter lesions (WMLs) on T2-
weighted brain MRI images. The WMLs were characterized
by a diffuse symmetrical distribution in cerebral areas that
are normally myelinated in the developing brain (Figure 1)
without involvement of thalamus or brainstem in both cases.
Lissencephaly could not be detected in our patients. Patient 1 had
a brain MRI performed at the age 4 months, which might be too
early to detect WML in laminin-211-deficiency. All patients had
normal cognitive development with no seizures being reported.

Muscle Biopsy Findings

Frozen biopsied muscle tissue samples from all six patients were
analyzed and showed severe features of muscular dystrophy
including increased extracellular connective tissue with fibrosis,
cell necrosis, numerous central nuclei, and high fiber size
variability (Figure 2A). All patients presented total absence
of laminin-211 in our immunofluorescence-based microscopic

FIGURE 1 | MRl findings in MDC1A-patients included in the study. Brain MRI
TIRM (Turbo-Inversion Recovery-Magnitude, axial) show diffuse symmetrical
white matter lesions predominantly in the periventricular regions and no
involvement of thalamus or brainstem in both cases. (A) Patient 3 with
expanded supratentorial leukencephalopathy at two years of age. (B) Patient 4
diffuse leukencephalopathy.

examinations (Figure 2A). Moreover, laminin-511 was mild do
moderately increased in the muscle biopsy specimen of the six
patients as shown for two representative cases in Figure 2B.
As controls, we selected subjects who had underwent a muscle
biopsy, but who were found not to have any signs of a skeletal
muscle disease.

Loss of LAMA2 Induces Changes in
General Protein Composition in Human

Skeletal Muscle

Proteomic profiling is a useful approach to obtain unbiased
insights into the molecular etiology of diseases such as muscular
disorders (24, 25). To identify, molecular marker proteins
for muscle fiber vulnerability due to the loss of functional
laminin-211 (protein encoded by LAMA?2), the proteomic
signature of muscle biopsy specimen of four MDC1A-patients
(patients 1-4; see Table2) from the severe spectrum of the
disease was compared to the signature in four controls. Using
liquid chromatography coupled to tandem mass spectrometry
(LC-MS/MS) (label free protein quantification) (Figure 3), we
quantified 1977 proteins out of which 86 proteins presented
(4.3%) with statistically significant altered abundances (35
were increased and 51 decreased; Table 3). The considerable
decrease of laminin-211 (—3.84; log,) in the patient-derived
samples hereby reflects the sensitivity of our proteomic profiling
approach as well as the reliability of the data. To obtain
insights into the molecular etiopathology of MDCI1A, pathway
analyses were performed utilizing DAVID (https://david.ncifcrf.
gov/), KEGG (www.genome.jp/kegg/pathway.html), Reactome
(www.reactome.org) and Proteomap (www.proteomaps.net). In
addition, information concerning subcellular localization and
function has been extracted from uniport (www.uniprot.org)
for each protein altered in abundance to provide a complete
picture of the molecular basis of MDCIA manifestation in
skeletal muscle (Table 3). Data analysis via diverse pathway
analysis tools revealed potential changes in axon guidance,
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FIGURE 2 | Muscle biopsy findings in MDC1A-patients included in the study.
(A) Muscle biopsy cryostat sections stained with hematoxylin and eosin (HE)
and immunofluorescence staining with anti-laminin-211 antibodies reveals
absent immunoreactivity in the patient-derived sections. (B)
Immunofluorescence staining of muscle cryostat sections with
anti-laminin-511 antibody reveals in increased immunoreactivity in muscle
biopsies of MDC1A-patients as indicated for two representative cases shown
here. Ctrl, control muscle; numbers 1, 2, 3, 4, 5, and 6 refer to muscle
biopsies derived from MDC1A-patients with the corresponding patient
numbers listed in Table 2.

cell cycle and DNA-repair, extracellular matrix organization,
metabolism of fatty acids, sugar, lipids and proteins. In
addition, protein changes seem to impact on vesicular transport
machinery, TCA and respiratory electron transport as well

as proper muscle contraction (Figure3C). Data analysis via
Proteomap confirmed the impact of detected protein changes
on cell cycle, cellular metabolism, muscle contraction as well
as on the composition of the extracellular matrix. Based on
the functional properties of some of the proteoglycans with
altered abundances such as COL1Al and -A2, LAMA4 and
ITGAS6, changes in PI3K/Akt-signaling as a pathway involved
in a variety of cellular functions has been highlighted by
the Proteomaps-representation (Figure 3D). This molecular
observation accords with a postulated function of laminin-211 in
signal transmission (9).

Perturbed proteins represent tissue markers for LAMA2-
related congenital myopathy and—based on information
available in uniport—mainly localize to the sarcoplasm, to
nuclei, the SR and to mitochondria thus suggesting a global
unified organelle vulnerability in LAMA2-mutant skeletal
muscle with a predominance to mitochondria. In addition,
functions of several of the accord proteins accord with the
known involvement of laminin-211 in ECM-composition,
signal transduction, cytoskeleton, mitochondrial homeostasis
and muscle cell development. Interestingly, functions of
a variety of proteins increased in abundance hint toward
the activation of neuroprotective mechanisms including
neuromuscular transmission.

Altered Abundance of Paradigmatic
Proteins and Mitochondrial Vulnerability
Can Be Confirmed in Independent Muscle
Biopsies Derived From MDC1A-Patients

To study the potential of altered proteins as tissue markers and
reliability of our proteomic findings further immunofluorescence
studies were performed on the muscle biopsies derived
from the four patients included in the proteomic profiling
(patients 1-4) as well as on biopsies derived from two
further MDC1A-cases (patients 5 and 6). Doing so, we
focused on abundances and distribution of agrin, glypican-1,
and glucose-6-phosphate isomerase as paradigmatic proteins.
Immunofluorescence-based studies of agrin showed occasionally
focal sarcoplasmic accumulations most likely leading to the
detected increase of overall agrin protein level (Table 3)
as shown for two representative cases in Figure4A. In
comparison to the controls which show an enrichment of
glypican-1 at the sarcolemma, in MDCI1A-patient derived
biopsies, small sarcoplasmic dots immunoreactive for the
protein as well as an enrichment of these dots at the
(sub-)sarcolemmal region could be observed. This irregular
protein-distribution is shown for two representative cases
in Figure4A and most likely causes the 3.25-fold (log2
ratio) increase detected by proteomic profiling. Moreover,
immunofluorescence studies confirmed the decreased expression
of glucose-6-phosphate isomerase in muscle biopsies derived
from four MDC1A-cases (shown for two representative cases
in Figure 4A).

Given that our proteomic data revealed a profound
vulnerability of NADH dehydrogenases, NADH muscle
histology (NADH-TR to highlight the oxidative enzyme
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activity) has been investigated in biopsies of six MDCIA-
cases and revealed no structural abnormalities like cores,
whorles or lobulated fibers but reduced staining and
even gaps in some muscle fibers indicative for reduced
enzyme activity (shown for four representative cases in
Figure 4B). Modified Gomori Trichrome staining has
additionally been performed in these patients to study
mitochondrial abnormalities and occasionally revealed both,
focal accumulations and reduced staining suggesting irregular
mitochondrial distribution (shown for four representative
cases in Figure 4B). Immunofluorescence studies of Glucose-
6-phosphate isomerase (GPI), glypican-1 and agrin have
been carried out twice with similar results. Prompted by
the proteomic results suggestive for vulnerability of the
respiratory chain, respective complexes have been investigated
by immunoblotting utilizing antibodies targeting proteins
localized to the respective complexes and muscle protein
extracts derived from two controls and three MDCIA-
patients. Results of these studies confirm a vulnerability of the
respiratory chain complexes (Figure 4C) and thus support our
proteomic findings which were indicative for mitochondrial
vulnerability. Immunoblot studies have been carried out twice
with similar results.

DISCUSSION

A complete loss of laminin-211, which is encoded by LAMA?2,
causes a severe congenital muscular dystrophy with onset of
symptoms in the first few months of life. Partial laminin-
211 deficiency can be caused not only by primarily LAMA2
mutations, but also secondarily by other muscular dystrophies,
including dystroglycanopathy (26, 27). This in turn suggests
the need to define tissue marker proteins for patients with
classical MDCIA based on LAMA2 mutations leading to
laminin-211 deficiency. To systematically address this need,
proteomic profiling has been carried out using muscle biopsy
specimens derived from MDCIA patients with myopathy and
brain malformations. Results not only confirm laminin-211
deficiency but also accord with elevated CK level in the patients
as intramuscular CK was significantly decreased in the patient-
derived muscle. In addition, decrease of Mth938 domain-
containing protein (involved in preadipocyte differentiation and
adipogenesis) as well as of prostaglandin reductase 2 (involved
in inhibition of adipocyte differentiation) might provide a
molecular link to a replacement of degenerating muscle fibers
by fatty tissue. Based on the considerable increase of proteins
localized to the extracellular matrix (Table 3) our data moreover
confirm proliferation of connective tissue as a pathophysiological
hallmark of fibrosis observed in the muscle biopsy specimen
of our patients (Figure 1). The increase of LAMA4 (laminin
subunit a4/ Lm-411) as well as of LAMA5 (laminin subunit
a5/ Lm-511; identified by our routine diagnostic staining
(Figure 2B) and 1.7-fold (log2 ratio) increased with a p-
Anova of 0.19 in our proteomic findings; data not shown)
most likely reflects a cellular attempt to (partially) compensate
the loss of laminin-211 and to avoid a complete breakdown

of muscle fibers. This assumption is not only supported
by the results of a previous study showing that laminin-
111 protein therapy reduces muscle pathology and improves
viability of a MDC1A mouse model (28) but also by the
known important role of LAMA4 for NMJ-integrity (29), the
concomitant increase of integrin alpha-6/beta-1, a receptor for
laminin and the increase of the basal cell adhesion molecule/
laminin alpha-5 receptor (Table 3) to optimize laminin binding
to laminin-211-deficient muscle fibers. However, despite the
increase of LAMA4 in MDCIA, the resultant laminin-protein
complex is known to bind merely poorly to integrins and a-
dystroglycan (30).

Given that subtle neuromuscular junction (NM]J) defects
have been reported in laminin a2 chain-deficient mice (31),
the detected abnormal sarcoplasmic accumulation and thus
decreased release to the synaptic cleft of muscle agrin, a
basal lamina glycoprotein crucial for the formation and
the maintenance of NM]Js, might contribute to impaired
neuromuscular transmission as part of the MDCIA-
pathophysiology. Along this line, increase of glypican-1,
might indicate activation of a compensatory mechanism to
avoid NMJ-breakdown resulting from profound de-innervation.
Notably, mini-agrin has been shown to bind to the basement
membrane and the DGC via a-dystroglycan and thus ameliorate
muscle pathology in vivo (32) and transgenic expression of mini-
agrin (contains binding sites for laminins and a-dystroglycan)
and oLNNd (recombinant protein linking LAMA4 to a-
dystroglycan) in a mouse model for MDCI1A fully restored
basement membrane stability. This effect resulted in recovery
of muscle force and size leading to increased overall body
weight, and extended life span (33). Moreover, glypican-1 has
recently been linked to the pathophysiology of a muscular
dystrophy complicated by a myasthenic syndrome (34) as well
as of laminin a4, which has an important role in NM]J-integrity
(29). However, the conclusion of endogenous activation of
compensatory mechanisms in muscle of MDC1A-patients is
further supported by the increase of C4b-binding protein alpha
chain belonging to the complement system that deposits its
activation products on innervated motor end-plates in ALS-
patients (35).These combined findings in turn underline the
significance our proteomic profiling data aiding the identification
of marker proteins with pathophysiological relevance as well
as impacts for attempts to develop new treatment strategies
for MDCI1A.

However, as the NM]J represents a paradigmatic synapse,
altered abundance of a variety of other proteins including
14-3-3F, AKR7A2, protein FAM162A, GTPC1, NIBAN, PRVA,
SRC8, Succinate-semialdehyde dehydrogenase, TTHY (Table 3),
might correlate with the broad activation of neuroprotective
mechanisms in the etiopathology of MDCI1A and thus also
link to the CNS alterations of the children. NudC domain-
containing protein 2 modulates the LIS1/dynein pathway via
stabilization of lissencephaly protein 1 (LIS1) with Hsp90, a
cellular chaperone. Importantly, the p.L279P of NudC domain-
containing protein 2 influences LIS1 stability (36). Given
that lissencephaly has been described in MDCI1A-patients (37)
increase of this protein not only accords with the concept
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FIGURE 3 | Proteomic profiling of four MDC1A-patient derived muscles. (A) Methodological workflow applied in the study. (B) Results of our label-free proteomic
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altered in abundance utilizing Proteomap platform confirming the perturbed cellular functions indicated by the results of the previous pathway analysis and moreover
indicating perturbed function of cellular signaling cascades such as PI3K-Akt signaling.
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enrichment/ aggregation in MDC1A-patient derived muscle fibers (white arrows) compared to control muscle fibers. (B) Histological NADH-TR staining revealed
“sarcoplasmic gaps” (white arrows in patient 2; second and third column) and reduced enzyme activity (white arrows in patient 2, 3, 5, and 6) as well as focal
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representative for the respiratory chain complexes |-V and of VDAC1 (porin) revealed a statistically significant decrease of complexes Il and V as well as of VDAC1 in
MDC1A-patient derived protein muscle extracts compared to controls (diagram). GAPDH has been used as loading control and proteins have been quantified against

GAPDH (ns, not significant; *statistically significant, **statistically very significant).

of activation of proteins involved in neuroprotection (in
none of our patients lissencephaly was found via MRI) but
also provides a first molecular hint to the manifestation
of lissencephaly in the etiopathology of MDCI1A. Neuronal
vulnerability associated with altered synaptic transmission—
as one pathophysiological cascade among others—is indicated

by the decrease of glucose-6-phosphate isomerase, acting as
a neurotrophic factor for spinal and sensory neurons (38),
of phosphatidylethanolamine-binding protein 1 involved in
the function of the presynaptic cholinergic neurons of the
central nervous system, of dihydropyrimidinase-related protein
2 involved in neuronal development and polarity and in
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axon growth and guidance (Table 3). Activation of protective
mechanisms toward maintenance of muscle contraction is for
instance indicated by increase of ADDG, CNN3 and myosin
light chain 4 as well as MYL6B (Table 3). Increased abundance
of sarcolemmal membrane-associated protein involved in
myoblast fusion (Table 3) might hint to activation or muscle
fiber regeneration.

Interestingly, the results of our proteomic profiling indicate
a profound vulnerability of mitochondria in laminin-211-
deficient muscle based on the downregulation of a variety of
mitochondrial proteins (Table 3 and Figure 4C) and reduced
mitochondrial respiration and ATP production in MDCIA-
patient derived muscle cells has been reported as the result of
changes in abundances of transcripts encoding for mitochondrial
key players (39). Among the dysregulated expression of genes
related to energy production in myotubes, Fontes-Oliveira and
colleagues described reduced level of NDUFA8 and decrease
of NADH dehydrogenase [ubiquinone] 1 alpha subcomplex
subunit 8 encoded by this transcript has been identified in
our study (Table3). Thus, our proteomic data confirm an
impairment of the mitochondrial bioenergetic status on the
protein level in human MDCIA muscle cells also in complex
laminin-211-deficient muscle progressed in the etiopathology.
Clincally, one of our patients (patient 5) presented with
rhabdomylosis and loss of the ability to stand and walk
with support after a febrile infection. One might speculate
that this unusual disease course also hints toward severe
metabolic impairment.

As our study is based on the utilization of material
derived from patients with progressed status of the disease,
it is not possible to clearly differentiate between primary
pathophysiological events and molecular changes occurring
as a phenomenon secondary to the primary cascades.
However, intersection with data obtained from skeletal
muscle derived from murine animal models with early (and
unified) manifestation of the disease might harbor some
limitations regrading general validity of data comparison but
still allows to define candidate marker proteins of general
significance involved in the initiate pathophysiology. De
Oliveira and co-workers studied the proteomic signature of
diaphragm and gastrocnemius muscle derived from dy*K/dy*K
mice (MDC1A mouse model). Out of the approximately 700
identified proteins, 113 and 101 respectively, were differentially
expressed in the investigated tissues (40). Notably, there was
no overlap between the proteins increased in the muscle of
the mouse model and the patients although few proteins
with elevated levels in murine laminin-211-deficient muscle
are related to extracellular matrix composition and might
hint to early stages of fibrosis. Interestingly, parvalbumin
alpha has been identified as decreased in their study but
as increased in our proteomic profiling of MDCI1A-patient
derived quadriceps muscle. As in skeletal muscle, parvalbumin
is thought to be involved in relaxation after contraction, its
increase might accord with the activation of compensatory
mechanisms upon disease progression. However, on a general
note, one might speculate that either the differences in the
investigated muscles (diaphragm and gastrocnemius in mice

and vastus in human) or the progressed disease in our patients
compared to the young-aged animals (four weeks) might
explain the missing overlap between increased proteins in mice
and human. Nevertheless, when focussing on the decreased
proteins, a variety of different ones are downregulated in
both, human and mice thus representing promising tissue
markers for MDC1A across species. These proteins include
creatine kinase M-type, voltage-dependent anion-selective
channel protein 1, glucose-6-phosphate isomerase, cytoplasmic
malate dehydrogenase, cytochrome C oxidase subunit 5A,
mitochondrial NADH-dehydrogenase [ubiquinone] flavoprotein
1 and dihydrolipollysine-residue succinyltransferase component
of 2-oxoglutarate dehydrogenase complex as well as NADH
dehydrogenase [ubiquinone] 1f subcomplex subunit 10 and
2-oxoglutarate dehydrogenase.

The intersected data is indeed indicative of defective
metabolism—especially mitochondrial function—in laminin-
211-deficient muscle cells of MDCIA patients and hence
confirm the findings of Fontes-Oliveira and colleagues in
mice (39). This is moreover underlined by the results of
our histological NADH-TR and Gomori Trichome staining
supporting the concept of impaired mitochondrial activity.
Along this line, the findings of both studies support the
hypothesis that skeletal muscle metabolism might be a promising
pharmacological target to improve muscle function, energy
efficiency and tissue maintenance of MDCIA (39). Notably, in a
pre-clinical study utilizing Lama2-deficient mice, mitochondria
have been proven to represent a promising therapeutic
target (41).

CONCLUSION

Analysis of the proteomic signature of proximal muscle
derived from four children suffering from MDCI1A allowed the
identification of 86 proteins with altered abundance and potential
pathophysiological impact. Focussing on molecular changes in
skeletal muscle, a variety of affected proteins are linked to
the vulnerability of the central nervous system, especially to
altered synaptic transmission in the disease caused by MDCIA.
Moreover, this suggests that therapeutic intervention targeting
the synaptic dysfunction might represent a promising element of
the overall concept in the treatment of MDCI1A as already shown
in mice treated with agrin. Although our patients do not present
with lissencephaly, increased NudC domain-containing protein
2 might represent a potential protein modifier of the central
nervous system phenotype of MDCIA. Proteomic signature of
laminin-211-deficient muscle moreover indicated a profound
mitochondrial vulnerability with predominant decrease of
proteins belonging to complex 1. A comparison of our data with
the proteomic signature of laminin-211-deficient distal muscle
and diaphragm from mice allowed the identification of nine
decreased proteins representing potential markers for MDCIA.
However, more comprehensive studies utilizing skeletal muscle
derived from MDC1A-patients (sub-cohorts at different stages of
the disease) are needed to ultimately define vulnerable proteins
as definite MDCI1A tissue markers.
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CONTRIBUTION TO THE FIELD
STATEMENT

MDCI1A is the most common form of congenital muscular
dystrophies. The disease is caused by mutations in the
LAMA?2 gene and molecular studies of mouse muscle and
human cultured muscle cells already allowed first insights
into the underlying pathophysiology. However, the definition
of (candidate) marker proteins in human skeletal muscle
is still lacking. To address this gap of knowledge, we
conducted a study to investigate the proteomic signature
of laminin-211-deficient vastus muscle obtained from
four MDCI1A-patients. Results of our unbiased screening
allowed the identification of potential tissue marker proteins
which might also be involved in the pathophysiology of
the disease.
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