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Background and purpose: Cerebral microinfarcts (CMIs) are associated with cognitive

impairment and dementia. CMIs might affect cognitive performance through disruption

of cerebral networks. We investigated in memory clinic patients whether cortical CMIs

are clustered in specific brain regions and if presence of cortical CMIs is associated with

reduced white matter (WM) connectivity in tracts projecting to these regions.

Methods: 164 memory clinic patients with vascular brain injury with a mean age of 72

± 11 years (54% male) were included. All underwent 3 tesla MRI, including a diffusion

MRI and cognitive testing. Cortical CMIs were rated according to established criteria and

their spatial location was marked. Diffusion imaging-based tractography was used to

reconstruct WM connections and voxel based analysis (VBA) to assess integrity of WM

directly below the cortex.WM connectivity and integrity were compared between patients

with and without cortical CMIs for the whole brain and regions with a high CMI burden.

Results: 30 patients (18%) had at least 1 cortical CMI [range 1–46]. More than 70% of the

cortical CMIs were located in the superior frontal, middle frontal, and pre- and postcentral

brain regions (covering 16% of the cortical surface). In these high CMI burden regions,

presence of cortical CMIs was not associated with WM connectivity after correction for

conventional neuroimaging markers of vascular injury. WM connectivity in the whole brain

and WM voxels directly underneath the cortical surface did not differ between patients

with and without cortical CMIs.

Conclusion: Cortical CMIs displayed a strong local clustering in highly interconnected

frontal, pre- and postcentral brain regions. Nevertheless, WM connections projecting to

these regions were not disproportionally impaired in patients with compared to patients

without cortical CMIs. Alternative mechanisms, such as focal disturbances in cortical

structure and functioning, may better explain CMI associated cognitive impairment.

Keywords: microinfarcts, cerebral small vessel disease, vascular cognitive impairment, white matter connectivity,

diffusion tensor imaging

INTRODUCTION

Cerebral microinfarcts (CMIs) are small (<5mm) ischemic lesions that are increasingly recognized
as a clinically relevant marker in stroke and dementia (1). Besides post-mortem detection at
autopsy, CMIs can now also be detected in vivo on MRI as chronic cortical CMIs on T1-weighted
MRI and acute CMIs on diffusion-weighted MRI (2).
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Both pathology and MRI studies have found a consistent
association between CMI presence and cognitive impairment,
also after adjustments for the presence of co-occurring
Alzheimer’s disease (3) and conventional neuroimaging markers
of vascular injury (4–7). Although these findings suggest that
CMIs play a causative role in the process of cognitive decline, the
exact mechanism by which CMIs and cognitive impairment are
linked is not yet clear.

Several manifestations of cerebral small vessel disease (SVD),
such as white matter hyperintensities (WMHs), lacunes, and
cerebral microbleeds have been suggested to affect cognitive
functioning by disruption of the WM network (8–12). It
appears that the severity and location of these SVD lesions
determine their impact on the brain network and consequently
cognition (12, 13). Disruption of WM connectivity may also
play a role in the relation between cortical CMIs and cognitive
impairment. We hypothesized that cortical CMIs exert their
effect on the brain network by secondary degeneration of
connecting WM pathways. A small study with cerebral amyloid
angiopathy (CAA) patients showed that acute subcortical CMIs
were indeed associated with changes in the surrounding local
WM microstructural integrity (14). Whether similar effects on
WM connectivity occur in relation to chronic cortical CMIs
is unknown.

We have previously reported that presence of CMIs in
memory clinic patients with vascular brain injury is associated
with other neuroimaging markers of vascular injury, a diagnosis
of vascular dementia and reduced performance in multiple
cognitive domains (4). In the present study we investigated
whether cortical CMIs in this cohort predominantly occur
in specific brain regions and if presence of cortical CMIs is
associated with impaired WM connectivity in tracts projecting
to these regions.

METHODS

Study Population
This study involved patients from the TRACE-VCI cohort of
the University Medical Center (UMC) Utrecht, an observational
prospective cohort study of memory clinic patients with vascular
brain injury (i.e., possible VCI) recruited between September
2009 and December 2013 [details described previously (4, 15)].
Patients were included in the cohort if they presented with
cognitive complaints at the memory clinic, and had evidence of
vascular brain injury onMRI, operationalized as: (1)WMHs with
a Fazekas scale grade ≥ 2 (16); (2) ≥ 1 lacunar or non-lacunar
infarcts; (3) ≥ 1 cerebral microbleeds; (4) ≥ 1 intracerebral
hemorrhage(s) or (5) Fazekas scale grade 1 combined with
≥ 2 vascular risk factors (15). In line with proposed VCI
criteria, patients with possible co-existing neurodegenerative
disorders (such as Alzheimer’s disease) were included in this
study cohort, but patients with primary non-vascular or non-
neurodegenerative causes of cognitive dysfunction (e.g., brain
tumors, depression) were excluded (15). All patients (n = 196)
underwent a standardized clinical assessment and 3 tesla brain
MRI. Patients were included for the present study if they had
complete MRI data, including a diffusion weighted scan (n =

177), another 13 patients were excluded due to poor quality of

the MRI (n = 3) or DTI (n = 9, including 2 network outliers)
and 1 failure to co-register the AAL-template, resulting in a study
population of 164.

Ethical approval was provided by the institutional review
board of the UMC Utrecht. All procedures were in accordance
with the ethical standards of the responsible committee on
human experimentation (institutional and national) and with
the Helsinki Declaration of 1975, as revised in 2013. Written
informed consent was obtained from all participants prior to any
research related procedures.

Clinical Diagnosis of Cognitive Impairment
Educational level was rated according to the 7-point Verhage
scale (17). The Clinical Dementia Rating scale (CDR; range:
0–3) was used to assess the severity of cognitive symptoms
and functional deficits (18). The mini-mental state examination
(MMSE) in Dutch was used as a global measure of cognitive
performance (19).

Severity of cognitive impairment was classified at a
multidisciplinary consensus meeting. No objective cognitive
impairment (NOCI) was defined as cognitive complaints, but
without objective cognitive impairment on neuropsychological
testing. Mild cognitive impairment (MCI) was defined as
complaints or deterioration from prior functioning and objective
impairment in at least one cognitive domain, but with no or mild
impairment of activities in daily living. Dementia was defined as
deficits in two or more cognitive domains at neuropsychological
testing and who experienced interference of these deficits in
daily living. Further etiological diagnoses of dementia were
made based on internationally established diagnostic criteria
(without knowledge of CSF biomarkers) into vascular dementia
(VaD) (20), Alzheimer’s disease (AD) (21), or other (i.e., dementia
such as Lewy body, primary progressive aphasia, cortical basal
syndrome, unknown etc (15).

MRI
All patients were scanned on a 3 tesla MRI scanner (Philips
Achieva or Philips Ingenia [Philips Medical Systems, Best, the
Netherlands]). The standardized MRI protocol included a 3D
T1-weighted sequence (192 slices, voxel size: 1.00 × 1.00 ×

1.00 mm3, repetition time (TR)/echo time (TE): 7.9/4.5ms); the
following transversal 2D sequences (48 slices, voxel size: 0.96 ×

0.96 × 3.00 mm3): T2-weighted turbo spin echo (TSE; TR/TE:
3198/140ms), T2∗-weighted (TR/TE: 1653/20ms), and fluid-
attenuated inversion recovery (FLAIR; TR/TE/inversion time:
11000/125/2800ms); and diffusion-weighted imaging [DWI; 48
slices, voxel size: 1.72× 1.72× 2.50 mm3, TR/TE: 6600/73ms, 45
gradient directions with a b-value of 1,200 s/mm2 and one with a
b-value of 0 s/mm2 (3 averages)].

Neuroimaging Markers
The following neuroimaging markers were rated according
to the STRIVE criteria (22) by or under supervision of a
neuroradiologist, who was blinded to the clinical condition of the
participants: (1) WMHs on the Fazekas scale (16); (2) Lacunes
(presence and number); (3) Cerebral microbleeds (presence and
number); (4) Medial temporal lobe atrophy (MTA) using the
Scheltens scale averaged for both hemispheres (23).

Frontiers in Neurology | www.frontiersin.org 2 June 2019 | Volume 10 | Article 571

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Ferro et al. Microinfarcts and White Matter Connectivity

Brain Volume Measurements
The following semi-automated workflow was used to obtain
brain volumes: (1) automated WMH segmentation of 2D
FLAIR images using kNN-TTP (24); (2) lesion-filling of
3D T1 images using SLF toolbox (http://atc.udg.edu/nic/
slfToolbox/index.html) for Statistical Parametric Mapping 12
(SPM Wellcome Department of Cognitive Neurology, Institute
of Neurology, Queen Square London) with default settings
(25, 26); (3) default settings were used to obtain probabilistic
segmentations for gray matter, WM, and CSF. Total brain
volume was defined as the sum of the gray and WM volume.
Brain volumes were expressed as a percentage of the total
intracranial volume.

Rating of Cortical CMIs
Cortical CMIs were rated by visual inspection according to
previously proposed criteria (2, 27). Cortical CMIs were rated
on 3 tesla MRI and were hypointense on T1-weighted imaging,
hyper- or isointense on FLAIR or T2-weighted imaging and
isointense on T2∗-weighted imaging. Lesions had to be strictly
intracortical and ≤ 4mm in the greatest dimension on T1. If
the lesions measured substantially larger than 4mm on T2-
weighted imaging or within 1 cm proximity of a larger stroke,
it was disregarded as the lesion was considered part of a larger
stroke. The lesion had to be visible in two viewing planes
of the brain (e.g., sagittal, transversal, or coronal plane) and
distinct from other structures and lesions such as arteries, veins,
enlarged perivascular spaces and cerebral microbleeds. Rating
were carried out using MeVisLab (MeVis medical solutions,
Bremen, Germany) (28), while the rater was blinded to the
clinical condition of the subjects. There was a good intra-rater
and interrater (both intra-class correlation coefficient > 0.95)
agreement, details regarding the intra- and interrater reliability
were published previously (4).

Cortical CMI Spatial Mapping
Cortical CMI locations from all patients were registered to
Montreal Neurological Institute (MNI) space. The automated
anatomic labeling (AAL) template (29) was used as overlay
on this sample-averaged CMI map. The number of CMIs
within each AAL region was determined to assess whether
CMIs predominantly occurred in specific brain regions. The
AAL regions with a relatively high number of CMI were
defined as high CMI burden regions, other AAL regions were
defined as low CMI burden regions. The threshold for high
vs. low CMI burden regions was arbitrarily set at > 5 CMIs
(For a histogram of the CMI numbers per AAL region,
see Supplementary Figure 1). For 3D rendering of the spatial
distribution of cortical CMIs see Figure 1. The volume per
AAL region was calculated using automated segmentation using
CAT12 after registering the AAL template to the T1 image in
patient space.

Diffusion MRI Processing and Network
Reconstruction
Diffusion tensor imaging (DTI) scans were preprocessed as
previously described (12, 30) using ExploreDTI version 4.8.6

(www.exploredti.com) and included subject motion correction,
unwarping of eddy current and EPI induced distortions and a
robust tensor estimation (including adjustment of the B-matrix)
(31–33). Next, whole brain deterministic WM tractography was
performed using constrained spherical deconvolution (CSD)-
based tractography, which is different from standard tensor-
based tractography, as it allows reconstruction of crossing
fiber pathways (34–36). Reconstruction of fiber tracts was
performed by using uniformly distributed starting seed samples
throughout the brain’sWM at every voxel with a fiber orientation
distribution (FOD) > 0.1 (indicating WM) at a 2 × 2 × 2
mm3 resolution. Fiber reconstruction was terminated if either
a deflection in an angle of more than 45 degrees occurred or
if a fiber entered a voxel with a FOD of <0.1 (indicating no
WM). An additional terminating mask was not applied. Brain
network nodes were defined using the same AAL template as
used for the cortical CMI mapping described above, consisting
of 90 cortical and subcortical gray matter regions. The AAL
template is a commonly used atlas to define nodes in clinical
network studies (8, 9, 11). The atlas has the advantage that
the gray matter regions also contain a small portion of WM,
which allows streamlines that terminate just before the gray-
white matter border to be included in the network, thereby
reducing the chance of false negative connections. Nodes were
considered to be connected if two end points of a reconstructed
fiber bundle lay within those nodes, resulting in a 90 × 90
binary connectivity matrix. This matrix was then weighted by
multiplying each connection by the mean fractional anisotropy
(FA) or mean diffusivity (MD) of that connection, resulting
in two weighted-connectivity matrices for each patient. To
reduce partial volume effects in WM connections a threshold
of FA > 0.2 was applied to all the connectivity matrices. See
Figure 2 (upper part A-D) for a graphical representation of
this workflow.

Measures of Whole Brain and Regional WM
Connectivity
The Brain Connectivity Toolbox (http://www.brain-
connectivity-toolbox.net) was used to calculate network
properties, including nodal degree (i.e., number of WM
connections per node) and nodal strength (here defined
as the mean FA or MD of all WM connections to that
node) (37). For this study we used the following constructs:
Whole brain WM connectivity was assessed by the average
FA and MD-weighted nodal strength of all network
nodes. WM connectivity in high and low CMI burden
regions was assessed by the average FA- and MD-weighted
nodal strength of the high and low CMI burden regions,
respectively, (see paragraph 2.7, for an overview of regions
see Figure 1).

Voxel-Based WM Diffusion Analysis
In addition to the network-based connectivity analyses we also
performed a WM voxel-based analysis to assess differences
in mean FA and MD. Although we assume that secondary
degeneration affects the whole axon running from the cortex
to the deep WM, one may speculate that the WM directly

Frontiers in Neurology | www.frontiersin.org 3 June 2019 | Volume 10 | Article 571

http://atc.udg.edu/nic/slfToolbox/index.html
http://atc.udg.edu/nic/slfToolbox/index.html
www.exploredti.com
http://www.brain-connectivity-toolbox.net
http://www.brain-connectivity-toolbox.net
https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Ferro et al. Microinfarcts and White Matter Connectivity

FIGURE 1 | 3D representation of the spatial distribution of cortical microinfarcts (CMIs; represented as black dots) across the brain in the cohort. The red areas

represent the Automated Anatomical Labeling (AAL)-atlas regions with a high CMI burden (i.e., the 7 brain regions which contained 75% of all the cortical CMIs).

FIGURE 2 | Overview of workflow. In the top panel (network-based approach): from a patients’ DTI images (A), WM connections are reconstructed using fiber

tractography (B). Next, brain network nodes were defined using the cortical parcellation using the AAL template (C). Subsequently, the structural brain network was

reconstructed (D). Weighting of the network was done by multiplying each connection by the mean fractional anisotropy (FA) or mean diffusivity (MD). Finally, the mean

FA and MD of connections towards high and low cortical microinfarcts (CMI) burden regions were compared between patients with and without CMIs. In the bottom

panel (voxel-based approach), the patient’s DTI image A) is combined with the patient’s WM segmentation results (E) and AAL template (F) to assess diffusion

properties of the WM voxels in the AAL region (i.e. directly underneath the cortex) (G).

underneath the CMI containing cortical (i.e., juxtacortical)
surface is primarily affected. As can be seen in Figure 2 (lower
part) AAL regions mainly consist of GM, but also contain a
small WM section in close proximity to the cortical surface.
Therefore, we also calculated the mean FA and MD of the
WM voxels within each AAL region (using a WM mask with
a WM probability threshold of 75). The FA and MD was
averaged across all AAL regions for the high and low CMI

burden regions respectively, see Figure 2 (lower part E-G) for a
graphical representation).

Statistical Analysis
Differences in baseline characteristics between patients with and
without cortical CMIs were analyzed using independent sample
t-tests (for continuous normally distributed data), χ-square test
(for proportions), and Mann-Whitney U-test (for continuous,
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non-normally distributed data). Differences in volume and
connectivity strength between brain regions that were identified
as high and low CMI burden regions were compared using a
paired sample t-test (regardless of CMI presence).

The association between the presence of cortical CMIs
(predictor) and FA- and MD-weighted WM connectivity
(outcome) was analyzed using linear regression and included sex
and age (Model 1) and sex, age and conventional neuroimaging
markers (WMH Fazekas scale grade 3, presence of lacunar and
non-lacunar infarcts) (Model 2) as covariates. Beta values are
reported with 95% confidence interval (CI) and corresponding
t-values and degrees of freedom (df). These analyses were carried
out separately for whole brain, high and low CMI burden regions.
Within the group of patients with cortical CMIs, patients with
1 vs. patients with multiple cortical CMIs (predictor) were
compared on WM connectivity (outcome) using an independent
t-tests and corresponding df. Using a voxel based approach,
the association between cortical CMI presence (predictor) and
the mean FA and MD of WM voxels in close proximity to the
cortex (outcome) was analyzed using linear regression, adjusted
for age and sex. A possible interaction effect between cortical
CMI presence and clinical diagnosis on WM connectivity was
explored in a regression analysis with post hocHelmert contrasts,
where each clinical diagnosis (except the first) was compared
to the main effect of all previous diagnoses. Post-hoc power
analysis was carried out using G∗Power (Heinrich- Heine-
University, Dusseldorf, Germany) (38). All analyses were carried
out using IBM SPSS statistics (version 22). A p-value of<0.05 was
considered significant, p-values were not adjusted for multiple
comparisons, as all analyses were planned (not post-hoc).

Data Availability Statement
Any data on the VCI cohort used in these analyses that is not
published within this article is available by request from any
qualified investigator.

RESULTS

Baseline Characteristics of Patients With
and Without Cortical CMIs
The 164 patients had a mean age of 72 (± 11) years and 88 (54%)
were male. A total of 134 cortical CMIs were detected in 30 (18%)
of the 164 patients. The number of cortical CMIs per patient
ranged between 1 and 46, 14 patients had 1 cortical CMI and 16
patients had 2 or more cortical CMIs. Baseline characteristics of
patients with and without cortical CMIs are presented in Table 1.
We have previously published the detailed cognitive profile of
patients with cortical CMIs in this specific cohort (4). In short
patients with cortical CMIs weremore oftenmale, hadmore non-
lacunar infarcts and were more often diagnosed with vascular
dementia (all p < 0.05).

Characteristics of High and Low CMI
Burden Regions
The spatial location of the cortical CMIs was highly clustered,
as more than 70% (n = 99) of all cortical CMIs were located
within 7 AAL regions (High CMI burden regions: middle

TABLE 1 | Characteristics of patients with and without cortical CMIs.

Cortical CMI absent

(N = 134)

Cortical CMI present

(N = 30)

DEMOGRAPHICS

Age (years) 72 ± 11 71 ± 11

Sex (males) 67 (50) 21 (70)*

Level of education (7 categories) 5 [4-6] 5 [4-6]

Cognitive Performance

MMSE (n = 161) 26 ± 3 25 ± 3

CDR 0.5 [0.5–1] 0.5 [0.5–1]

Clinical diagnosis (n = 154)

NOCI 24 (19) 3 (11)

MCI 49 (39) 7 (25)

Alzheimer’s dementia 48 (38) 13 (46)

Vascular dementia 5 (4) 5 (18)*

Othera 8 (6) 2 (7)

NEUROIMAGING MARKERS

Total brain volume (% of TIV) 68 ± 4 67 ± 3

Gray matter volume (% of TIV) 36 ± 2 35 ± 2

WMH (Fazekas scale) 2 [1-2] 2 [1-2]

Presence of non-lacunar infarcts 26 (19) 19 (63)U

Presence of lacunar infarcts 43 (32) 12 (40)

Presence of cerebral microbleeds 46 (35) 10 (35)

CMI, Cortical microinfarct; MMSE, mini-mental state examination; CDR, Clinical dementia

rating scale; NOCI, No objective cognitive impairment; MCI, Mild cognitive impairment;

TIV, total intracranial volume; WMH, White matter hyperintensities.
aOther: includes dementia such as Lewy body, primary progressive aphasia, cortical basal

syndrome, unknown etc.

Data presented as mean ± SD, n (percentages) or median [interquartile range]. *p < 0.05
Up < 0.0001.

frontal and pre- and postcentral regions of both hemispheres
and the right superior frontal region; Figure 1). The other
83 supratentorial brain regions (i.e., low CMI burden region)
contained the remaining 37 cortical CMIs. The mean volume
of the high CMI burden regions was 68 ± 8.5ml (16% of total
cortical GM volume) compared to 349 ± 41ml of the low
CMI burden regions. Network analyses showed that the high
CMI burden regions were more highly connected to the rest
of the network than the low CMI burden regions. This was
reflected in a higher nodal degree (high burden: 27.2 ± 4.1
vs. low burden: 24.0 ± 2.8), higher FA-weighted nodal strength
(high burden:0.300 ± 0.020 vs. low burden:0.293 ± 0.016) and
higher MD-weighted nodal strength (high burden:0.940 × 10−3

mm2/s ± 0.059 vs. low burden:0.985 × 10−3 mm2/s ± 0.059 all
comparisons p < 0.0001).

Association Between Cortical CMI
Presence and WM Connectivity
The presence of cortical CMIs was not associated with whole
brain FA- and MD-weighted WM connectivity (Table 2). Within
the group of patients with cortical CMIs, the number of cortical
CMIs (cortical CMI=1 vs. cortical CMI ≥ 2) also was not
related to whole brain FA- (t(df=28) = −0.71, p = 0.485) or MD-
weighted WM connectivity (t(df=28) = 0.05, p= 0.964). Regional
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TABLE 2 | Association between cortical CMI presence and whole brain and regional FA- and MD-weighted WM connectivity in high and low CMI burden regions.

Cortical CMI absent (N = 134) Cortical CMI present (N = 30) Model 1 Model 2

Beta [95% CI] t-value p Beta [95% CI] t-value p

WHOLE BRAIN

FA 0.294 ± 0.017 0.290 ± 0.017 −0.093 [−0.256;0.070] –1.19 0.234 −0.052 [−0.234;0.104] −0.69 0.490

MDa 0.979 ± 0.057 0.993 ± 0.061 0.087 [−0.047;0.228] 1.27 0.208 0.018 [−0.108;0.138] 0.26 0.795

HIGH CORTICAL CMI BURDEN REGIONS

FA 0.301 ± 0.020 0.296 ± 0.021 −0.109 [−0.254;0.036] −1.40 0.165 −0.059 [−0.216;0.098] −0.78 0.440

MDa 0.936 ± 0.057 0.958 ± 0.066 0.136 [−0.013;0.285] 1.82 0.071 0.030 [−0.102;0.162] 0.41 0.683

LOW CORTICAL CMI BURDEN REGIONS

FA 0.294 ± 0.016 0.290 ± 0.016 −0.091 [−0.228;0.068] −1.16 0.247 −0.051 [−0.204;0.102] −0.67 0.501

MDa 0.983 ± 0.058 1.000 ± 0.063 0.082 [−0.050;0.208] 1.20 0.231 0.017 [−0.102;0.130] 0.24 0.808

CMI, Cerebral microinfarct; FA, Fractional anisotropy-weighted WM connectivity; MD, Mean diffusivity-weighted WM connectivity. Lower FA and higher MD indicated impaired

WM connectivity.
aMD values×10–3 mm2/s.

Model 1: Covariates age and sex (degrees of freedom = 160).

Model 2: Covariates sex, age, WMH Fazekas grade 3, presence of lacunar and non-lacunar infarct (degrees of freedom = 157).

analyses showed that in the high CMI burden regions, patients
with cortical CMIs had marginally higher MD-weighted WM
connectivity (reflecting greater WM disruption), although not
statistically significant (p = 0.071) while a similar FA-weighted
connectivity was observed (Table 2). These association remained
non-significant when conventional neuroimaging markers of
vascular injury were entered as covariates in the model (Model
2; Table 2). Within the low CMI burden regions, cortical CMI
presence was not associated with FA or MD-weighted WM
connectivity (Table 2).

Since not all cortical CMIs were located in the high burden
regions, a sensitivity analysis was performed between patients
who had CMIs exclusively in the high burden regions (n = 20)
and patients without CMIs, which yielded similar results.

A post-hoc power analysis for CMI presence in high CMI
burden regions indicated a power of 0.24 for FA- and 0.44 for
MD-weighted connectivity.

Voxel-Based WM Analysis
Limiting our analysis to WM voxels in close proximity to the
cortex showed similar results, i.e., the presence of cortical CMIs
was not associated with abnormal mean FA andMD in high CMI
burden regions [FA: t(df=158) = −1.01, p = 0.314; MD: t(df=158)

= 0.753, p = 0.452] or in low CMI burden regions [FA: t(df=158)

=−0.97, p= 0.336, MD: t(df=158) = 1.28 p= 0.204].

Association Between Clinical Diagnosis,
WM Connectivity and Cortical
CMI Presence
Clinical diagnosis (NOCI, MCI, AD, or VaD) was a significant
predictor of whole brain FA- [F(df=4,152) = 13.9, p = 0.005)
and MD-weighted WM connectivity [F(df=4,152) = 10.2, p =

0.008]. Post-hoc analyses revealed that this effect was driven by
the patients with the most severe clinical diagnosis, i.e., patients
with AD and VaD had abnormal WM connectivity compared
to the other groups (Figure 3). No significant interaction was
observed between cortical CMI presence and clinical diagnosis

on FA- or MD-weighted WM connectivity [F(df=4,152) =

0.42, p = 0.783] or MD [F(dfc=4,152) = 0.67, p = 0.700],
indicating that the association between cortical CMI presence
and WM connectivity did not differ across the various clinical
diagnoses. In a sensitivity analysis of patients without dementia
(n = 83) presence of cortical CMIs was also not associated
with whole brain FA [t(df=79) = 0.43, p = 0.667] or MD
[t(df=79) =−0.92, p= 0.359).

DISCUSSION

This study shows that cortical CMIs in memory clinic patients
vascular brain injury display a strong spatial clustering, as more
than 70% of the cortical CMIs were located in frontal, precentral,
and postcentral brain regions covering only 16% of the cortical
surface. These high CMI burden regions proved to be strongly
connected with the rest of the network. However, we found no
evidence that the actual presence of cortical CMIs was related to
disruption of WM connections to either the high CMI burden
regions or within the whole brain.

Cortical CMIs showed a strong predilection for the frontal,
precentral, and postcentral brain regions. A similar pattern
of CMIs has been found in memory clinic patients (6), but
also in patients with ischemic stroke (7, 39), Alzheimer’s
disease (40) and even in patients with CAA, where vessels
are typically affected in the posterior brain regions (41).
This preferential lesion location is likely to be of etiological
significance. A similar predilection for frontal, pre- and
postcentral brain regions was observed in patients with post-
stroke cognitive impairment, where a thromboembolic origin
has been suggested (42). Future research is encouraged to
further explore the relation between lesion location and
the pathophysiological origin of cortical CMIs using larger
study samples.

We hypothesized that cortical CMIs might affect cognitive
performance by disruption of cerebral networks. We have
previously reported a relationship between cortical CMIs
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FIGURE 3 | Box plots of FA-(upper) and MD-(lower) weighted WM connectivity between patients with and without cortical CMIs (labels) clinical diagnosis (X-axis). MD

values × 10−3 mm2/s. CMI, Cortical microinfarct; NOCI, No objective cognitive impairment; MCI, Mild cognitive impairment; AD, Alzheimer’s disease; VaD, Vascular

dementia.

and reduced cognitive performance on multiple domains in
this same cohort (4). In the current study we investigated
impaired WM connectivity as possible underlying mechanism.
As lesion location could be crucial for its effect on the cerebral
network (13), regions with high and low CMI burden were
compared. We established no convincing relationship between
cortical CMIs and WM connectivity, as the association between
cortical CMIs and impaired WM connectivity in high CMI
burden regions disappeared after correcting for conventional
neuroimaging markers of vascular injury. These findings were
in line with our voxel based analysis, showing no local
disturbances in the WM directly below the cortical surface of
high CMI burden regions. Independent of CMI presence, we
did find that patients with dementia, especially VaD, presented
with impaired WM connectivity, which corresponds to the

known association between network disruption and cognitive
deficits (43).

Previous studies in patients with SVD found a disruptive effect
of SVD MRI- manifestations, such as WMHs and lacunes, on
WM connectivity (8–10, 12, 14, 44–46). Our study is the first
to assess the effect of cortical CMIs and did not observe an
effect on WM connectivity. This contrasting finding could be
explained by the fact that these subcortical manifestations of SVD
have a more direct impact on WM integrity, while cortical CMIs
are thought to exert their effect indirectly through secondary
degeneration. The limited size of the cortical CMIs could also
account for the lack of association, as for macroscopic cortical
infarcts the size of the lesion is directly correlated to the extent
of the axonal injury (47). Considering the average lesion volume
of cortical CMIs on 3-T MRI is max 0.1ml, their effect on
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WM connectivity could indeed be modest and not of major
clinical relevance.

Since cortical CMIs were not related to WM connectivity,
other underlying mechanisms should be considered to
explain how cortical CMIs affect cognitive impairment.
Our earlier work showed that the cortical CMIs were mainly
associated with deficits in “cortical” cognitive domains,
including visuoconstruction and language (4, 6) suggesting
that cortical CMIs potentially affect cognition by disruption
of local cortical processes. This notion is supported by a
mouse study, that found diminished neural activity and
neurovascular coupling in the cortical tissue surrounding the
CMI (48). An alternative explanation is that cortical CMIs
are a marker of more widespread vascular brain damage
that affects cognitive performance (1, 2). As cortical CMIs
smaller than 1mm escape detection on 3 tesla MRI, larger
visible cortical CMIs probably only represent the tips of the
iceberg. Moreover, it is important to clarify the etiological
underpinning of both the detectable as well as these smaller
cortical CMIs in order to develop therapeutic strategies that
counter cognitive decline.

The strength of our study includes the use of high quality
imaging and clinical data of this memory clinic cohort and
the systematic approach in cortical CMI rating. Moreover, this
study utilized two different DTI approaches to assess the relation
with cortical CMIs; a network-based analysis and a voxel-based
analysis. However, this study also has some limitations. Firstly,
the sample size of cortical CMI cases in our cohort was small,
since MRI detectable cortical CMIs occur only in approximately
a quarter of memory clinic patients (6). Based on our post-hoc
power analysis for the observed effect sizes in our study, it would
be recommended to replicate results in a larger cohort. Another
possible limitation concerns the heterogeneity of the cohort,
which includes memory clinic patients with different etiologies,
severity of cognitive dysfunction and with large variation in
cortical CMI burden. Although this reflects daily clinical practice,
it may have reduced our sensitivity to detect abnormalities in
WM connectivity due to cortical CMIs.

CONCLUSION

We showed that cortical CMIs in memory clinic patients
displayed a strong local clustering in frontal and central
brain regions, which warrants further investigations into their
etiology. Nevertheless, the WM connections projecting to
these regions were not impaired in patients with cortical
CMIs. This does not support the hypothesis that cortical
CMIs affect the brain’s integrity through disturbance of WM
connections, although further studies, also in larger cohorts with
high burden of cortical CMIs, are recommended to confirm
our observations.
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